
WJCC https://www.wjgnet.com 8906 September 6, 2022 Volume 10 Issue 25

World Journal of 

Clinical CasesW J C C
Submit a Manuscript: https://www.f6publishing.com World J Clin Cases 2022 September 6; 10(25): 8906-8921

DOI: 10.12998/wjcc.v10.i25.8906 ISSN 2307-8960 (online)

SYSTEMATIC REVIEWS

How to select the quantitative magnetic resonance technique for 
subjects with fatty liver: A systematic review

You-Wei Li, Yang Jiao, Na Chen, Qiang Gao, Yu-Kun Chen, Yuan-Fang Zhang, Qi-Ping Wen, Zong-Ming 
Zhang

Specialty type: Medicine, research 
and experimental

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B, B 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Athyros VG, Greece; 
Tarantino G, Italy; Teixeira KN, 
Brazil

Received: January 25, 2022 
Peer-review started: January 25, 
2022 
First decision: May 9, 2022 
Revised: May 25, 2022 
Accepted: July 22, 2022 
Article in press: July 22, 2022 
Published online: September 6, 
2022

You-Wei Li, Yu-Kun Chen, Yuan-Fang Zhang, Qi-Ping Wen, Department of Radiology, Beijing 
Rehabilitation Hospital, Capital Medical University, Beijing 100144, China

Yang Jiao, Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital 
Medical University, Beijing 100144, China

Na Chen, Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical 
University, Beijing 100144, China

Qiang Gao, Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, 
Capital Medical University, Beijing 100144, China

Zong-Ming Zhang, Department of General Surgery, Beijing Electric Power Hospital, State Grid 
Corporation of China, Capital Medical University, Beijing 100073, China

Corresponding author: Zong-Ming Zhang, MD, PhD, Chief Doctor, Director, Professor, 
Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of 
China, Capital Medical University, No. 1 Taipingqiaoxili, Fengtai District, Beijing 100073, 
China. zhangzongming@mail.tsinghua.edu.cn

Abstract
BACKGROUND 
Early quantitative assessment of liver fat content is essential for patients with fatty 
liver disease. Mounting evidence has shown that magnetic resonance (MR) 
technique has high accuracy in the quantitative analysis of fatty liver, and is 
suitable for monitoring the therapeutic effect on fatty liver. However, many 
packaging methods and postprocessing functions have puzzled radiologists in 
clinical applications. Therefore, selecting a quantitative MR imaging technique for 
patients with fatty liver disease remains challenging.

AIM 
To provide information for the proper selection of commonly used quantitative 
MR techniques to quantify fatty liver.

METHODS 
We completed a systematic literature review of quantitative MR techniques for 
detecting fatty liver, following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, 
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Embase, and Cochrane Library databases, and their quality was assessed using the Quality 
Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https:// 
www.referencecitationanalysis.com) was used to analyze citation of articles which were included 
in this review.

RESULTS 
Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon 
imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of 
each of the three techniques and their clinical diagnostic performances were analyzed.

CONCLUSION 
The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive 
method for accurate quantitative measurement of hepatic fat content in the diagnosis and 
monitoring of fatty liver progression.

Key Words: Fatty liver; Hepatic fat content; 1H-magnetic resonance spectroscopy; Multiple-point Dixon 
imaging; Two-point Dixon imaging

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study focused on properly selecting commonly used quantitative magnetic resonance (MR) 
techniques to quantify fatty liver disease. We completed a systematic literature review of quantitative MR 
techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses protocol. Three techniques including spectroscopy, two-point Dixon imaging, and 
multiple-point Dixon imaging, were compared. We found that proton density fat fraction derived from 
multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic 
fat content. It can be used to diagnose fatty liver disease and monitor disease progression as well as 
treatment effects.
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INTRODUCTION
Fatty liver refers to the excessive accumulation of triglycerides within the cytoplasm of hepatocytes. 
Increased fat deposition in hepatocytes can cause hepatocyte injury, inflammation, fibrosis, and 
eventually cirrhosis, with a high risk of liver failure and hepatocellular carcinoma[1]. Therefore, early 
quantitative assessment of hepatic fat content is essential for patients with fatty liver disease.

Liver biopsy is the gold standard for assessing hepatic fat content[2]. This may increase the chances of 
sampling error commonly encountered in livers with inhomogeneous fat distribution, because only a 
small fraction of the entire liver is sampled. Additionally, it can cause complications, such as bleeding, 
infection, and death. More importantly, this operation cannot be repeated and is not conducive for 
longitudinal monitoring of disease progression[3].

Ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) are commonly used 
for noninvasive examination of fatty liver. Ultrasound is easy to perform. Quantitative measurements 
were performed using the attenuation and backscatter coefficients. However, its accuracy in staging 
fatty liver is low because the images are blurred by hepatic parenchymal structures and ultrasound 
beam is attenuated significantly by the fatty liver[4], especially in obese patients[5]. Additionally, 
ultrasound is highly operator-dependent and has low reproducibility[4]. CT evaluation of fatty liver is 
based on the absolute CT value of liver parenchyma or relative attenuation difference between liver 
parenchyma and spleen[6,7]. When the threshold was 42 Hounsfield units, the sensitivity and specificity 
for grade 2–3 fatty liver were 73% and 100%, respectively[8]. The energy spectrum of fat is similar to 
that of the liver parenchyma in dual-energy CT examination. Therefore, its accuracy in diagnosing fatty 
liver is lower than that of conventional CT[6]. Moreover, CT exposes patients to radiation and is thus 
not advisable for repeated use. Various MR techniques have been developed for the quantitative 
assessment of signal fat fraction (SFF) and/or proton density fat fraction (PDFF). SFF is defined as the 
signal from fat divided by the combined signal from fat and water. This is measured using fat-
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suppressed techniques or chemical shift–encoded imaging (CSI) and MR spectroscopy (MRS) techniques
[9]. This measurement is biased by one or more confounding factors. Once all confounding factors have 
been addressed, SFF is equivalent to PDFF[10]. PDFF, which can be measured with MRS or CSI, reflects 
the true fat content in tissue and thus, has become a reliable, accurate, and standardized MR-based 
biomarker for tissue fat accumulation. Mounting evidence has shown that MR has high accuracy in 
quantitatively analyzing fatty liver and can be repeated without radiation exposure[11-14]. However, 
many packaging methods and postprocessing functions have puzzled radiologists in clinical applic-
ations. This study compiled widespread data on MR techniques. This study aimed to provide 
information for properly selecting quantitative MR techniques to visualize the fatty liver.

MATERIALS AND METHODS
Data acquisition 
A systematic review of the literature was performed following the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses guidelines[15]. Literature from 1984 to 2021 was searched in 
PubMed, Embase, and Cochrane Library. The Reference Citation Analysis database (https://www.
referencecitationanalysis.com) was used to analyze citation of articles which were included in this 
review. Combined MeSH and free text were used as retrieval strategies (Supplementary Table 1). Only 
the studies published in English were included. To ensure literature saturation, we scrutinized the 
reference lists of the included studies. The inclusion criteria were as follows: (1) Studies limited to 
human participants; (2) Studies related to the principles of MR techniques or systemic review and meta-
analysis for measuring hepatic fat content; and (3) Studies involving comparisons of MR techniques 
with other methods (liver biopsy, ultrasound, or CT) to measure hepatic fat content. Studies conducted 
on animals, those without full text, review papers, conference proceedings, and case reports were 
excluded. The studies were independently screened by two authors, and study selection was decided by 
consensus.

Assessment of study quality 
Two authors used the Quality Assessment of Diagnostic Studies (QUADAS)-2 criteria in RevMan 5.4 for 
judging the risk of bias independently. Each study was given a low, high, or unclear risk of bias (
Supplementary material) following QUADAS-2 guidance in the four domains. The signaling question 2 
in the first domain was replaced by “Was the study design prospective or retrospective” because a 
retrospective study had a relatively higher risk of bias[16]. Any disagreements were resolved by a third 
author.

Data extraction
The following data were extracted: First author, publication year, study design, number of patients, 
mean age, studied etiology, data on MR techniques such as field strength and scan sequences, 
comparison, interval between MR methods and comparison, and study outcomes. If a study reported 
multiple MR methods, the data from the main modality was extracted.

Qualitative synthesis
The principles, main technical factors, advantages, and disadvantages of each method were summarized 
and evaluated. The results of the studies with an overall low and moderate risk of bias were used to 
analyze the diagnostic performance of one of the three methods.

RESULTS
Literature search results
Electronic search identified 633 studies. Of these, 467 studies were excluded after reviewing the titles, 
abstracts, and keywords of each study. Another 52 studies were excluded after reading full-text articles. 
Of the 114 included studies, 35 were related to MR techniques, and 39 were reviews and meta-analyses. 
Consequently, 40 studies were used for further analysis, including 20, 9, and 12 studies for spectroscopy 
two-point Dixon imaging, and multiple-point Dixon imaging compared with other methods, 
respectively (Figure 1). Detailed data extraction for each study is shown in Tables 1-3.

Quality assessment 
The outcomes of risk of bias assessment in the 40 studies are summarized in Figure 2. The overall low 
risk of bias in the 1H-MRS, two-point Dixon imaging, and multiple-point Dixon imaging groups was 
50%, 55.5%, and 33.3%, respectively. Qualitative rather than quantitative synthesis was used in this 
study because of the high bias of included studies.

https://www.referencecitationanalysis.com
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Table 1 Studies reporting on the measurement of the hepatic fat content with 1H-magnetic resonance spectroscopy versus liver biopsy 
and other imaging methods

Ref. Year Study 
design

Age 
(year) N Etiology

Field 
strength 
sequence

Comparison Interval Results

Thomsen et al[22] 1994 48 14 Fatty liver 1.5 T. STEAM 
(TE = 34 ms)

Liver biopsy r = 0.897; P < 0.001

Longo et al[26] 1995 45 29 Diffuse 
steatosis

1.5 T. PRESS 
(TE = 50–200 
ms)

Liver biopsy r = 0.70 

Cowin et al[30] 2008 42 12 Steatosis 1.5 T. PRESS 
(TE = 30 ms)

Liver biopsy 6 wk r = 0.928; P < 0.0001

Irwan et al[63] 2008 Prospective 47 10 Healthy 
volunteers

1.5 T. PRESS 
(TE = 30 ms)

Dual-echo 
imaging

One 
measurement 
session

r = 0.927. In the range 
1%–10%, the MRI-determined 
the liver fat contents 
(corrected algorithm) are 
systematically higher, on 
average 4% (range: 
2.1%–6.1%) than those 
obtained with MRS

Kim et al[64] 2008 Prospective 15.9 ± 
5.3

28 Lean and obese 1.5 TPRESS 
(TE = 20 ms)

Two-Point 
Dixon

r = 0.954; P < 0.001

Borra et al[65] 2009 Prospective 62.8 ± 
8.3

33 Type 2 diabetes 1.5 T. PRESS 
(TE = 25 ms)

IP/OP (Dixon) r = 0.959–0.962; P < 0.001 

Reeder et al[66] 2009 Prospective 49.0 ± 
12

31 Suspected 
steatosis and 
unrelated 
reasons

1.5 T. PRESS 
(TE = 25 ms)

IDEAL r = 0.83 ± 0.05; P < 0.001. 
Intercept (1.76 ± 0.76%; P = 
0.03)

Zhong et al[31] 2009 50 ± 12 36 Fatty liver 3.0 T. PRESS 
(TE = 144 ms)

16-row 
multislice CT

r = –0.461; P = 0.005

Hu et al[67] 2010 16 3.0 T. PRESS 
(TE = 23 ms)

IDEAL Slope = 0.90, intercept = 
1.07%; r2 = 0.95, P < 0.001

Roldan-Valadez 
et al[68]

2010 35 18 Steatosis 3.0 T Liver biopsy r = 0.876; P ≤ 0.001

Mehta et al[32] 2010 39.9 50 Steatosis 1.5 T. PRESS 
(TE = 135 ms)

Ultrasound BMI > 30, sensitivity 96%; 
BMI ≤ 30, sensitivity 64%

Meisamy et al[23] 2011 Prospective 40 55 1.5 T. STEAM 
(TE = 10, 20, 
30, 40, and 50 
ms)

IDEAL r2 = 0.99

Georgoff et al[69] 2012 Prospective 50.6 52 Steatosis 3.0 T. PRESS 
(TE = 50 ms)

Liver biopsy 15 ± 9 d Diagnostic accuracy was 
(AUC: 0.95; 95%CI: 0.89–1.0)

Kang et al[18] 2012 Prospective 54 56 Steatosis 1.5 T. STEAM 
(TE = 20, 30, 
40, 50, and 60 
ms)

Liver biopsy 1–28 d r = 0.95

Parente et al[70] 2014 Prospective 54 ± 9 73 Nonalcoholic 
fatty liver 
disease

3.0 T. PRESS 
(TE = 40 ms)

Liver biopsy r = 0.767; P < 0.001

Bashir et al[71] 2015 Prospective 55 ± 
13.8

217 Various hepatic 
diseases

1.5 T. STEAM 
(TE = 12 ms)

Two-point 
Dixon

r = 0.61; P < 0.001

Kim et al[57] 2015 52.8 ± 
14

42 Various hepatic 
diseases

3.0 T. STEAM 
(TE = 12, 24, 
36, 48, and 72 
ms)

In- and 
opposed-phase 
echo pairs

r = 0.97

Satkunasingham 
et al[72]

2015 Retrospective 57.8 
(12–83)

156 Various hepatic 
diseases

3.0 T. STEAM 
(TE = 12, 24, 
36, 48, and 72 
ms)

MRI-PDFF r = 0.977; P < 0.001

3.0 T. STEAM 
(TE = 15, 20, 
25, 30, and 35 

MRS correlated well with the 
histopathology results (r = 
0.882). An accuracy of 96% 

Rastogi et al[73] 2016 Retrospective 32.5 73 Steatosis Biopsy and 
surgery

≤ 20 d
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ms) and sensitivity of 94%

Kramer et al[6] 2017 Prospective 57 ± 5 50 Various hepatic 
diseases

1.5 T. STEAM 
(TE = 10, 20, 
30, 40, and 50 
ms)

PDFF r2 = 0.992; slope, 0.974; 
intercept, –0.943

MRS: Magnetic resonance spectroscopy; PDFF: Proton density fat fraction; TE: Echo time; BMI: Body mass index; CT: Computed tomography; Blank: No 
information; PRESS: Point-resolved spectroscopy; STEAM: Stimulated-echo acquisition mode.

Table 2 Studies reporting on the measurement of the hepatic fat content with in-phase and out-of-phase imaging versus liver biopsy 
and other imaging methods

Ref. Year Study 
design

Age 
(year) N Etiology

Field 
strength 
sequence

Comparison Interval Results

Fishbein et 
al[35]

2005 47 ± 10 38 Various hepatic 
diseases

1.5 T. IP/OP 
(Dixon)

Biopsy 2 wk r = 0.773, P < 0.001; Macrovesicular 
steatosis: r = 0.920, mixed steatosis: r = 
0.605, P = 0.05

Kalra et al
[74]

2009 Prospective 41 ± 
9.2

10 Nonalcoholic fatty 
liver disease

1.5 T. IP/OP 
(Dixon)

Biopsy Provides data on fat infiltration 
without information of hepatic fibrosis

Mennesson 
et al[41]

2009 Prospective 52.5 40 Various hepatic 
diseases

1.5 T. IP/OP 
(Dixon)

Biopsy Same 
day

r = 0.852; P < 0.0001

Fischer et al
[37]

2010 Prospective 66 ± 12 23 Various hepatic 
diseases

1.5 T IP/OP 
(Dixon)

Biopsy and 
surgery

≤ 10 d r = 0.92; P < 0.0001

Pacifico et al
[75]

2011 Case–control 7-16 25 Nonalcoholicfatty 
liver disease

1.5 T. Two-
point Dixon

Biopsy 1–7 d r = 0.883; P < 0.0001

Guaraldi et 
al[76]

2012 Observational 
pilot

16 1.5 T. IP/OP 
(Dixon)

Biopsy r = 0.88; P < 0.0001

Koelblinger 
et al[77]

2012 Prospective 60.5 35 Various hepatic 
diseases

3.0 T. IP/OP 
(Dixon)

Biopsy Uncorrected: r = 0.67, P < 0.001. Spleen 
correction: r = 0.85, P < 0.001

Rastogi et al
[73]

2016 Retrospective 32.5 73 Steatosis 3.0 T. IP/OP 
(Dixon)

Biopsy and 
surgery

≤ 20 d Dual-echo MRI correlated well with 
the histopathology results (r = 0.871). 
An accuracy of 95% and sensitivity of 
97%

Bhat et al[78] 2017 Prospective 46 30 Steatosis 1.5 T. Two-
point 
DIXON

Biopsy 1 wk Good correlation between the MR 
estimation of liver fat and histological 
grading. 90% of patients had a fat 
content of less than 10%. The maximal 
fat content of 28% was observed in one 
patient

MRI: Magnetic resonance imaging; Blank: No information.

Findings of three MR methods
1H-MRS-principle: 1H-MRS measures the chemical composition of tissues. A signal from a region of 
interest (ROI) is Fourier transformed into an MR spectrum that displays various metabolites with 
unique frequencies. Triglycerides are composed of three fatty acid chains connected to a glycerol 
backbone; hence, at least six peaks can be resolved in the MRS spectrum. The water proton yields a 
single peak whose position in the spectrum may vary slightly depending on the temperature[17]. Liver 
SFF can be calculated as follows: Afat/(Afat+ Awater) × 100%, where Afat is the summation of lipid peak 
areas and Awater is the area under the water peak[18]. After T1 and T2 relaxation effects are corrected, 
spectroscopy-derived PDFF can be corrected[19,20].

Main technical factors-single-voxel technique vs multi-voxel technique: 1H-MRS spectra can be 
obtained using single-voxel or multiple-voxel techniques. The single-voxel technique for sampling a 
voxel of interest with a high signal-to-noise ratio (SNR) is commonly applied in hepatic MRS 
measurements[19].

Main technical factors-PRESS vs stimulated-echo acquisition mode: The most commonly used 
techniques for 1H-MRS are point-resolved spectroscopy (PRESS) and stimulated-echo acquisition mode 
(STEAM). PRESS is a spin-echo technique with a longer minimal echo time (TE) that allows for better 
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Table 3 Studies reporting on the measurement of the hepatic fat content with multiple-point Dixon imaging versus liver biopsy and 
other imaging methods

Ref. Year Study 
design

Age 
(year) N Etiology

Field 
strength 
sequence

Comparison Interval Results

Noureddin 
et al[79]

2013 Randomized 50 Nonalcoholic fatty 
liver disease

MRI-PDFF MRS 0 and 24 
wk

r2 = 0.98; P < 0.0001

Idilman et al
[28]

2013 Prospective 44.7 ± 
13.1

70 Nonalcoholic fatty 
liver disease

1.5 T. IDEAL-
IQ

Biopsy 14.5 d 
(0–259)

r = 0.820; The correlation of 
PDFF in mild hepatic steatosis 
was found to be better than that 
of moderate or severe steatosis (
r = 0.835 and r = 0.402, 
respectively; P = 0.003)

Deng et al
[51]

2014 Prospective 3–16 10 Nonalcoholic fatty 
liver disease

1.5 T. Multi-
point Dixon

Biopsy r = 0.90; P = 0.0004

Kukuk et al
[59]

2015 51.7 ± 
15.2

59 Liver disorders 3.0 T. Six echo-
mDixon

Biopsy ≤ 6 wk r = 0.967, P < 0.001. Slightly a 
higher hepatic fat contents than 
q Histo (mean difference 2.1% 
for 6E-mDixon and 1.9% for 
MRS)

Rehm et al
[52]

2015 Prospective 13.3 ± 2 
(11–22)

132 Healthy females 3.0 T. Multi-
echo Dixon 

STEAM (TE = 
10, 15, 20, 25, 
and 30 ms)

r = 0.96

Schwimmer 
et al[80]

2015 Prospective 14 174 No steatosis and 
nonalcoholic fatty 
liver disease

3.0 T. Multi-
echo Dixon 

Biopsy 57 ± 51 d r = 0.725; P < 0.01

Idilman et al
[55]

2016 Retrospective 41.7 ± 
14.6

19 Nonalcoholic fatty 
liver disease

1.5 T. DEAL-
IQ

Biopsy r = 0.743; P < 0.001

Hetterich et 
al[39]

2016 Prospective 57.2 ± 
9.4

215 3.0 T. STEAM 
(TE = 12, 24, 
36, 48, and 72 
ms)

Multi-echo 
Dixon

r = 0.96; P = 0.001

Middleton et 
al[81]

2017 Randomized 51 ± 11 113 Nonalcoholic 
steatohepatitis

1.5 T or 3.0 T. 
Six echo-
mDixon

Biopsy 51 d r = 0.80; P < 0.001

Kang et al
[46]

2018 Prospective 47.3 ± 
14.9

29 NAFLD (34). 
Alcoholic liver 
disease (13). Liver 
cirrhosis (9)

3.0 T. 
mDIXON-
Quant 
sequence

Biopsy Same 
day

r = 0.809; P < 0.001

Pickhardt et 
al[82]

2018 Retrospective 54 ± 12 221 1.5 T or 3.0 T. 
MRI-PDFF

CT 0–158 
mo

r = 0.88 (≤ 1 mo) substantially 
worsened with increasing time

Guo et al[83] 2020 PProspective 52.6 
(22–83)

400 Healthy adults and 
older adults

3.0 T mDixon-
Quant 
sequence

CT Same 
day

r = 0.79; P < 0.001

MRS: Magnetic resonance spectroscopy; PDFF: Proton density fat fraction; TE: Echo time; BMI: Body mass index; CT: Computed tomography; Blank: No 
information; PRESS: Point-resolved spectroscopy; STEAM: Stimulated-echo acquisition mode.

visualization of metabolites with long T2 relaxation times. However, STEAM applies a 90°–90°–90° 
pulse and provides a shorter TE that is suitable for metabolites with short T2 relaxation times. PRESS 
has a higher SNR and is relatively insensitive to patient motion compared to STEAM, whereas STEAM 
is less affected by J-coupling and is generally preferred[21].

Main technical factors-correcting T1 and T2 effects: T1 and T2 values affect fat content measurement. 
In general, T1 relaxation times cause no trouble because the TR of MRS is much longer than the longest 
T1 of fat[22,23]. However, different T2 relaxation times may be problematic[24]. Both PRESS and 
STEAM sequences have a TE delay, causing spin-spin relaxation and decrease the signal[25]. Multiple 
spectroscopic acquisitions with different TEs are required to correct T2 values. If the spectra are 
acquired at a single TE, the sequence must use minimal TE to reduce T2 effects. Therefore, STEAM with 
shorter TE is recommended.

Main technical factors-ROI: The ROI was placed at the center of the right hepatic lobe to avoid vascular 
structures, bile ducts, and the liver edge[19].



Li YW et al. Quantitative MRI for fatty liver

WJCC https://www.wjgnet.com 8912 September 6, 2022 Volume 10 Issue 25

Figure 1 Flowchart of the study selection. MR: Magnetic resonance.

Main technical factors-advantages: 1H-MRS is an alternative to liver biopsy. It can accurately quantify 
fat content with high intra- or inter-individual reproducibility[26] and is not affected by hepatic iron 
deposition, inflammation, and fibrosis[18].

1H-MRS is a noninvasive method for assessing hepatic lipid composition. Higher indices of hepatic 
fatty acid saturation and lower indices of unsaturation were observed in patients with obesity-related 
metabolic disease[27].

Main technical factors-disadvantages: 1H-MRS requires technical expertise for its acquisition and 
analysis[28]. 1H-MRS introduced sampling errors, especially in the liver with nonhomogeneous fat 
distribution, because fat is measured in the ROI rather than in the entire liver[29].

Hepatic fat showed multiple peaks on MR spectroscopy. The main lipid peak is at approximately 
0.9–2.75 ppm and two unsolved lipid resonances at 4.2 and 5.3 ppm overlapping with the water peak, 
leading to quantification errors[19].

Diagnostic performance-1H-MRS vs liver biopsy: Five studies with an overall low risk of bias were 
used to evaluate the diagnostic performance of 1H-MRS[22,26,30-32]. These studies showed that 1H-MRS 
strongly correlated with the degree of hepatic steatosis on liver biopsy (r = 0.767–0.959). The sensitivity 
and specificity for 1H-MRS diagnosis of hepatic fat content of 5% or more were 94.4% and 89.5%, 
respectively[18].

Diagnostic performance-1H-MRS vs other imaging methods: 1H-MRS is considered the gold standard 
for other imaging methods to quantify hepatic fat content. One study[32] demonstrated that ultrasound 
detected liver fat in 82% of cases, measurable by 1H-MRS. Zhong et al[31] compared CT with 1H-MRS to 
quantitatively assess hepatic fat content and found that 1H-MRS correlated with the CT liver/spleen 
ratio (r = –0.461).

Two-point Dixon technique
Principle: Two-point Dixon technique produces in-phase (IP) and out-of-phase (OP) images using two 
acquisitions[33,34]. The signal intensity (SI) on IP images is the sum of water and fat signals within a 
voxel, whereas that on OP images is the difference between water and fat signals. Thus, SFF can be 
calculated using the following formula: SFF = [(SIIP – SIOP]/2SIIP] × 100, where SIIP is the SI in a voxel on 
the IP image and SIOP is the SI on the OP image[35].

Main technical factors-SE vs gradient-recalled echo: Gradient-recalled echo (GRE) is routinely used for 
hepatic fat estimation. Since the GRE sequence is susceptible to the motion and paramagnetic effects of 
iron, Dixon used the SE sequence instead of the GRE sequence for CSI. A three-point Dixon method, 
which introduced a third echo to correct phase errors, was required to overcome long scan time and 
sensitivity to magnetic field inhomogeneities[34,36].
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Figure 2 Risk-of-bias and applicability concerns graph. A: Studies for 1H-magnetic resonance spectroscopy vs liver biology and other imaging methods in 
measuring hepatic fat content; B: Studies for in-phase and out-of-phase imaging vs liver biology and other imaging methods in measuring hepatic fat content; C: 
Studies for multiple-point Dixon imaging vs liver biology and other imaging methods in measuring hepatic fat content.

Main technical factors-2D vs 3D: IP and OP images are typically obtained in 2D acquisitions with 
multiple breath-holds for nonvolumetric quantification of hepatic fat. The 3D GRE sequence provided 
volumetric coverage of the liver but increased the post-processing time[37].

Main technical factors-ROI: ROIs were drawn at anatomically matched locations on the hepatic 
parenchyma on paired sequences, using a co-registration tool to exclude vessels, bile ducts, motion 
artifacts, and partial volume effects. Two of the 12 circular ROIs were placed in the right liver and two 
in the left liver above, below, and at the level of the porta hepatis[38].

Main technical factors-advantages: This technique could be used with all types of MR scanners (0.5T-
3T). Both IP and OP images were acquired in the same breath-hold, and all imaging parameters, except 
TE, were similar. Therefore, the SI differences between the two images were based only on parallel, 
opposing water, and fat protons. The quality of the images was not affected by phase-related effects 
owing to amplitude imaging without phase information[33].

Main technical factors-disadvantages: The IP and OP images contained T1, T2, and T2*. These estimate 
the hepatic fat content inaccurately, especially for the liver with a fat content lower than 5%[38,39]. 
Because the liver SFF is within the dynamic range of 0%–50%[18], when the hepatic fat content was > 
50%, the dominant constituent in a voxel is ambiguous on IP and OP images. This require phase-
sensitive processing or a dual flip angle (20°and 70°) for removal[40].

The SFF derived from the IP and OP images assumes that water and fat have a single resonance 
frequency. In fact, this was not true for fat. Therefore, SFF based on IP and OP images is intrinsically 
incorrect[33].

Diagnostic performance: The sensitivity and specificity of SFF for diagnosing hepatic fat content > 20% 
are 96% and 93%, respectively[41]. However, a sensitivity of 89% and specificity of 82% were observed 
for an SFF of 1.8%[37].

Multiple-point Dixon technique 
Principle: Multiple-point Dixon acquires data from more than three echoes and provides images with 
both the magnitude and phase information of the echoes. This method addresses many confounding 
factors and yields accurate PDFF measurements. Simultaneously, transverse relaxation rate maps for 
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measuring the iron content are also obtained[33,34,40]. The whole-liver PDFF was measured by 
averaging PDFF values from multiple regions in different parts of the liver. However, an optimal ROI-
based sampling strategy has not yet been established[42].

Main technical factors-correcting T1 and T2* effects: In general, a long TR or a low flip angle in spoiled 
GRE acquisitions is used to minimize T1 bias. Echoes were acquired at three or more nominally OP and 
IP TEs to minimize T2* interference, especially the IDEAL-IQ sequence using a 6-echo 3-point Dixon 
method[28,33].

Main technical factors-noise and eddy: The noise bias originated from the skewed noise distribution in 
areas with a low signal during the magnitude operation. It significantly affects low-fat regions and 
makes the diagnosis of mild steatosis difficult. Noise bias can be mitigated using a hybrid 
complex/magnitude reconstruction[43].

Eddy currents were generated during rapid gradient switches at multiple TEs, which led to a phase 
shift and adversely affected the complex-based PDFF. This can be addressed by acquiring additional 
calibration data[44].

Main technical factors-fat spectral complexity: The fat spectrum consisted of multiple peaks that 
interfered with each other, as well as water, and made the PDFF incorrect. Multiple spectral models are 
required to address these multifrequency effects[45].

Main technical factors-ROI: It is recommended to select one to three ROIs per Couinaud segment, with 
the first ROI in each segment as centrally as possible and the remaining two on the same slice. ROI 
placement on the source images must avoid vessels, artifacts, and the edge of the liver.

Main technical factors-advantages: Multipoint Dixon imaging can be completed within a single breath-
hold[46]. MRI-PDFF calculation used both the phase and magnitude data of the MR signal to measure 
the fat concentration in the range of 0%–100%[47]. The field strength and imaging manufacturer had 
negligible effects on the measurements[48].

Main technical factors-disadvantages: The accuracy of MRI-PDFF measurements is affected by fibrosis 
and severe steatosis[49]. The correlation between liver biopsy findings and MRI-PDFF was weaker in 
patients with moderate or severe hepatic steatosis than in those with milder forms[50].

Diagnostic performance: The sensitivity and specificity of MRI-PDFF were 83% and 89% for LS ≥ G2, 
and 79% and 89% for LS = G3, respectively[12]. An excellent correlation (r = 0.96–0.984)[28,51,52] with 1

H-MRS has also been shown and confirmed by a previous meta-analysis (r = 0.96)[48].

DISCUSSION
MR techniques have emerged as reliable tools for the noninvasive estimation of hepatic fat content. This 
systematic review compared three common MR techniques: 1H-MRS, two-point Dixon imaging, and 
multiple-point Dixon imaging. These techniques have the same basic physical principles based on the 
chemical shift between the main peak of fat and that of water[33].

Before 2012, many studies used 1H-MRS and two-point Dixon imaging to measure hepatic fat content. 
The liver SFF calculated from 1H-MRS was not affected by iron deposition, fibrosis, or coexisting 
pathology, and provided accurate quantification of liver fat[19,53], especially MRS-PDFF[20]. Therefore, 
1H-MRS is commonly used as a reference for other imaging techniques to measure hepatic fat content. 
However, expensive and complex post-processing procedures as well as only providing accurate data of 
liver fat content from small parenchymal regions, especially single-voxel 1H-MRS, hampered its 
widespread clinical application. Moreover, 1H-MRS is not available at every institution. Chemical shift 
MR imaging can visualize the regional distribution of intrahepatic lipids. The IP and OP images derived 
from the two-point Dixon technique are simple approaches. This technique requires several data sets 
with different TEs to calculate the fat content, which contains T1 and T2* effects; therefore, it evaluates 
the hepatic fat content inaccurately, especially for livers with less than 5% fat[39]. Springer[54] used 
additional individual time-consuming T1 and T2* measurements to correct the measured intrahepatic 
lipids; however, most measurements are not applicable in time-restricted examination protocols. This 
method also measures liver fat concentration within the dynamic range of 0%–50%[18].

Aside from measuring the liver fat concentration in the range of 0%–100%, the PDFF derived from 
multiple-point Dixon imaging mitigates confounding factors, such as T1, T2*, lipid spectral complex, 
noise, and eddy current, and has been successfully applied to quantify liver fat. It has been extensively 
used for detecting and grading hepatic steatosis, especially for differentiating moderate/severe steatosis 
from mild/no hepatic steatosis[55] accurately. This is due to its good correlation with histopathology 
and 1H-MRS measurements[12,56] as well as the shorter acquisition time compared with MRS[3,10,12,
28,57]. Concurrent with PDFF acquisition, an R2* (1/T2*) map might also be formed, which could 
measure the iron concentration in the liver[58]. Additionally, PDFF was independent of field strength, 
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scanner platform, and specific scanning parameters. However, this method yields a slightly higher 
hepatic fat content than liver histology[59] and the accuracy of measurements could be affected by 
fibrosis and severe steatosis. It lacked the power to detect the changes in non-alcoholic fatty liver disease 
(NAFLD) such as inflammation or fibrosis[13,47].

Recent studies have also shown that MR elastography and T1-T2 mapping can be useful in detecting 
hepatic inflammatory and fibrotic changes[13,60,61]. Therefore, the multiparametric MRI protocol may 
be helpful in liver tissue characterization and in risk stratification and therapeutic management of 
patients with NAFLD.

How do we choose each technique in daily practice? For epidemiological studies, MR and CT are 
unsuitable because of the expensive and time-consuming nature of MR and radiation damage from CT. 
Here, ultrasound is preferred. For clinical studies, especially follow-up or assessment of treatment 
efficacy, two-point Dixon and multiple-point Dixon imaging are preferred because of their subjective 
and robust characteristics. However, CT can be selected for shorter follow-up in primary or secondary 
care where there is no MR machine. MRS is the most accurate noninvasive technique and is a good 
standard in research studies, although its accuracy depends on expertise and the result is difficult to 
explain. Multiparametric MRI protocols, including MR elastography and T1-T2 mapping may be useful 
for stratification and therapeutic management of patients with NAFLD.

This study has several limitations. First, this review may have potential publication bias because gray 
literature and non-English language literature were not retrieved. Second, the overall moderate and 
high risks of bias in the 1H-MRS, two-point Dixon imaging, and multiple-point Dixon imaging groups 
were 50%, 45.5%, and 66.7%, respectively. Therefore, qualitative methods other than quantitative 
synthesis were used. The diagnostic accuracy of each method requires further investigation through a 
meta-analysis. Third, less commonly used methods for quantitative analysis of hepatic fat content were 
not included in this review. These include fat-selective imaging with spectral-spatial excitation, which 
requires a homogenous static magnetic field for optimal spectral-spatial excitation and is relatively 
sensitive to breathing artifacts[54,62].

CONCLUSION
PDFF derived from multiple-point Dixon imaging is a noninvasive method that provides an accurate, 
quantitative measurement of hepatic fat content. It can be used clinically to diagnose fatty liver and 
follow-up the progression of the disease and treatment effect.

ARTICLE HIGHLIGHTS
Research background
Fatty liver can cause hepatocyte injury, inflammation, fibrosis, and eventually cirrhosis, with a high risk 
for liver failure and hepatocellular carcinoma. Early quantitative assessment of liver fat content is 
essential for patients with fatty liver disease.

Research motivation
Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the 
quantitative analysis of fatty liver disease. However, many packaging methods and postprocessing 
functions have puzzled radiologists in clinical applications. Hence, selecting quantitative MR imaging 
(MRI) for patients with fatty liver disease is challenging.

Research objectives
To provide information for the proper selection of commonly used quantitative MR techniques to 
quantify fatty liver.

Research methods
A systematic review of the literature from 1983 to May 2021 using PubMed, Embase, and Cochrane 
Library was performed in accordance with the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses guidelines.

Research results
A total of 114 articles were included, including 35 articles on MR techniques for measurement of hepatic 
fat content, 39 articles on reviews and meta-analysis, and 40 studies for further qualitative analysis. 
Because the overall moderate and high risk of bias in the 40 studies was approximately 50.0%, 
qualitative synthesis other than quantitative synthesis was used in this systematic review. The principle, 
main technical factors, advantages, and disadvantages of 1H-MR spectroscopy, two-point Dixon 
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imaging, and multiple-point Dixon imaging, as well as their clinical diagnostic performance were 
summarized and analyzed.

Research conclusions
Proton density fat fraction (PDFF) derived from multiple-point Dixon imaging is a noninvasive method 
that provides an accurate, quantitative measurement of hepatic fat content.

Research perspectives
The accuracy of the PDFF derived from multiple-point Dixon imaging can be affected by fibrosis and 
severe steatosis. Therefore, the multiparametric MRI protocol might be helpful in liver tissue character-
ization and thereby in the risk stratification and therapeutic management of patients with non-alcoholic 
fatty liver disease.
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