Table 1.
Ref.
|
Year
|
Study design
|
Age (year)
|
N
|
Etiology
|
Field strength sequence
|
Comparison
|
Interval
|
Results
|
Thomsen et al[22] | 1994 | 48 | 14 | Fatty liver | 1.5 T. STEAM (TE = 34 ms) | Liver biopsy | r = 0.897; P < 0.001 | ||
Longo et al[26] | 1995 | 45 | 29 | Diffuse steatosis | 1.5 T. PRESS (TE = 50–200 ms) | Liver biopsy | r = 0.70 | ||
Cowin et al[30] | 2008 | 42 | 12 | Steatosis | 1.5 T. PRESS (TE = 30 ms) | Liver biopsy | 6 wk | r = 0.928; P < 0.0001 | |
Irwan et al[63] | 2008 | Prospective | 47 | 10 | Healthy volunteers | 1.5 T. PRESS (TE = 30 ms) | Dual-echo imaging | One measurement session | r = 0.927. In the range 1%–10%, the MRI-determined the liver fat contents (corrected algorithm) are systematically higher, on average 4% (range: 2.1%–6.1%) than those obtained with MRS |
Kim et al[64] | 2008 | Prospective | 15.9 ± 5.3 | 28 | Lean and obese | 1.5 TPRESS (TE = 20 ms) | Two-Point Dixon | r = 0.954; P < 0.001 | |
Borra et al[65] | 2009 | Prospective | 62.8 ± 8.3 | 33 | Type 2 diabetes | 1.5 T. PRESS (TE = 25 ms) | IP/OP (Dixon) | r = 0.959–0.962; P < 0.001 | |
Reeder et al[66] | 2009 | Prospective | 49.0 ± 12 | 31 | Suspected steatosis and unrelated reasons | 1.5 T. PRESS (TE = 25 ms) | IDEAL | r = 0.83 ± 0.05; P < 0.001. Intercept (1.76 ± 0.76%; P = 0.03) | |
Zhong et al[31] | 2009 | 50 ± 12 | 36 | Fatty liver | 3.0 T. PRESS (TE = 144 ms) | 16-row multislice CT | r = –0.461; P = 0.005 | ||
Hu et al[67] | 2010 | 16 | 3.0 T. PRESS (TE = 23 ms) | IDEAL | Slope = 0.90, intercept = 1.07%; r2 = 0.95, P < 0.001 | ||||
Roldan-Valadez et al[68] | 2010 | 35 | 18 | Steatosis | 3.0 T | Liver biopsy | r = 0.876; P ≤ 0.001 | ||
Mehta et al[32] | 2010 | 39.9 | 50 | Steatosis | 1.5 T. PRESS (TE = 135 ms) | Ultrasound | BMI > 30, sensitivity 96%; BMI ≤ 30, sensitivity 64% | ||
Meisamy et al[23] | 2011 | Prospective | 40 | 55 | 1.5 T. STEAM (TE = 10, 20, 30, 40, and 50 ms) | IDEAL | r 2 = 0.99 | ||
Georgoff et al[69] | 2012 | Prospective | 50.6 | 52 | Steatosis | 3.0 T. PRESS (TE = 50 ms) | Liver biopsy | 15 ± 9 d | Diagnostic accuracy was (AUC: 0.95; 95%CI: 0.89–1.0) |
Kang et al[18] | 2012 | Prospective | 54 | 56 | Steatosis | 1.5 T. STEAM (TE = 20, 30, 40, 50, and 60 ms) | Liver biopsy | 1–28 d | r = 0.95 |
Parente et al[70] | 2014 | Prospective | 54 ± 9 | 73 | Nonalcoholic fatty liver disease | 3.0 T. PRESS (TE = 40 ms) | Liver biopsy | r = 0.767; P < 0.001 | |
Bashir et al[71] | 2015 | Prospective | 55 ± 13.8 | 217 | Various hepatic diseases | 1.5 T. STEAM (TE = 12 ms) | Two-point Dixon | r = 0.61; P < 0.001 | |
Kim et al[57] | 2015 | 52.8 ± 14 | 42 | Various hepatic diseases | 3.0 T. STEAM (TE = 12, 24, 36, 48, and 72 ms) | In- and opposed-phase echo pairs | r = 0.97 | ||
Satkunasingham et al[72] | 2015 | Retrospective | 57.8 (12–83) | 156 | Various hepatic diseases | 3.0 T. STEAM (TE = 12, 24, 36, 48, and 72 ms) | MRI-PDFF | r = 0.977; P < 0.001 | |
Rastogi et al[73] | 2016 | Retrospective | 32.5 | 73 | Steatosis | 3.0 T. STEAM (TE = 15, 20, 25, 30, and 35 ms) | Biopsy and surgery | ≤ 20 d | MRS correlated well with the histopathology results (r = 0.882). An accuracy of 96% and sensitivity of 94% |
Kramer et al[6] | 2017 | Prospective | 57 ± 5 | 50 | Various hepatic diseases | 1.5 T. STEAM (TE = 10, 20, 30, 40, and 50 ms) | PDFF | r 2 = 0.992; slope, 0.974; intercept, –0.943 |
MRS: Magnetic resonance spectroscopy; PDFF: Proton density fat fraction; TE: Echo time; BMI: Body mass index; CT: Computed tomography; Blank: No information; PRESS: Point-resolved spectroscopy; STEAM: Stimulated-echo acquisition mode.