Published online 15 September 2022

NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 1
https:Ildoi.orgl10.1093/nargabllqac067

EventPointer 3.0: flexible and accurate splicing
analysis that includes studying the differential usage

of protein-domains

Juan A. Ferrer-Bonsoms ', Marian Gimeno ~, Danel Olaverri, Pablo Sacristan,
César Lobato, Carlos Castilla, Fernando Carazo = and Angel Rubio

Biomedical Engineering and Science Department, TECNUN, Universidad de Navarra, San Sebastian, Spain

Received January 21, 2022; Revised July 29, 2022; Editorial Decision August 08, 2022; Accepted September 07, 2022

ABSTRACT

Alternative splicing (AS) plays a key role in can-
cer: all its hallmarks have been associated with dif-
ferent mechanisms of abnormal AS. The improve-
ment of the human transcriptome annotation and the
availability of fast and accurate software to estimate
isoform concentrations has boosted the analysis of
transcriptome profiling from RNA-seq. The statisti-
cal analysis of AS is a challenging problem not yet
fully solved. We have included in EventPointer (EP),
a Bioconductor package, a novel statistical method
that can use the bootstrap of the pseudoaligners. We
compared it with other state-of-the-art algorithms to
analyze AS. lts performance is outstanding for shal-
low sequencing conditions. The statistical frame-
work is very flexible since it is based on design and
contrast matrices. EP now includes a convenient tool
to find the primers to validate the discoveries using
PCR. We also added a statistical module to study al-
teration in protein domain related to AS. Applying it
to 9514 patients from TCGA and TARGET in 19 differ-
ent tumor types resulted in two conclusions: i) aber-
rant alternative splicing alters the relative presence
of Protein domains and, ii) the number of enriched
domains is strongly correlated with the age of the
patients.

INTRODUCTION

Alternative splicing (AS) is a co- and pot-transcriptional
process (1) by which a single pre-mRNA can lead to dif-
ferent mature mRNA (called isoforms or transcripts) by in-
cluding, excluding, shortening, or lengthening exons and in-
trons. Approximately 90% of the human genes present AS
(2-4). In recent years, AS has been related to different dis-
ease processes in cancer and other pathologies (5,6). For ex-

ample, a study indicates that the two isoforms provided by
the gene ITSNI (ITSN1-L and ITSNI-S) perform an oppo-
site function in glioma progression (7). Aberrant AS leads
to the expression of unusual mRNA that might produce ei-
ther non-functional (8,9) or aberrant proteins (10,11).

RNA-Seq is nowadays the method of choice to study
AS events. Algorithms to detect AS events —such as Event-
Pointer (12), rMATS (13), SUPPA2 (14) or MAJIQ (15),
among others— can be divided into two groups (16): those
that find novel events and those that focus on known ones.
The ability to discover novel events is, in some cases, a crit-
ical decision: novel events can be specific to the study and,
therefore, can be considered for further analysis as possi-
ble biomarkers or even drivers of the disease. The main
drawback of these algorithms is twofold: the computational
burden is much larger, and it is difficult to jointly ana-
lyze data from disparate experiments. Algorithms that focus
on known events—such as SUPPA2—use a reference tran-
scriptome to find out splicing events and the isoform quan-
tifications (provided by pseudo aligners such as Kallisto
(17) or Salmon (18)) to quantify the found splicing events.
Since the human transcriptome is being profusely anno-
tated, novel events occur less often, and disease-specific
events can also be included in the reference. On the other
hand, alternative splicing can be also studied by analyzing
the differential expression of the isoforms instead of alter-
native splicing events as it is done by 3D-RNA-Seq (19),
Sleuth (20) or CuffDiff (21).

Accurate estimation of differential splicing is an active
field of research. The presence of different sources of bias in
RNA sequencing, the tiny differences of the corresponding
isoforms (a few nucleotides in the alternative 3’ site for in-
stance), or the lack of expression of the studied gene, make
its study a challenging problem. For example, MAJIQ cor-
rects the GC bias (22). Kallisto corrects its estimates using a
fragment length correction (23) and showed that it also cor-
rects the GC bias. Interestingly, rMATS, even though they
tried different correction methods, none of them improved
the computation of PSI. Besides, a complete analysis of the
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biological impact of alternative splicing is still an open ques-
tion.

In this work, we present a new version of EventPointer
(EP) that tries to solve these challenges. EP is an R Bio-
conductor package to identify AS events that includes ei-
ther simple (case—control experiment) or complex experi-
mental designs —such as time-course experiments, paired
analysis, etc. The first version was developed to study mi-
croarrays. The second version (here referred to as Event-
Pointer BAM) also analyzes RNAseq experiments and is
able to find novel splicing events. The main improvements
of this third version—the focus of this manuscript—are (i)
the implementation of an algorithm to identify and state the
statistical significance of known events using either Kallisto
or Salmon pseudo-aligners, (i) a bootstrap-based statisti-
cal method that provides better sensitivity and specificity
than previous methods, (ii1) the implementation of a pro-
tein domain enrichment analysis to predict functional con-
sequences of the splicing and, finally, (iv) the option to de-
sign primers and probes for RT-PCR validation (either Taq-
Man, SYBR-green or semiquantitative). Also, we improved
the speed of several algorithms and fix some minor bugs in
the classification of the AS events.

Using a reference transcriptome opens the possibility to
reanalyze previous data without the burden to map a large
number of samples against the genome. We have studied the
enrichment of domains based on splicing for all the samples
in TCGA and TARGET (24). In addition to the identifica-
tion of events differentially spliced, we analyzed the differ-
ential presence of protein domains between the tumor and
its healthy counterparts. Interestingly, protein domains tend
to be downregulated in most adult cancer types, and upreg-
ulated in tumors of youngsters and childhood. Besides, de-
pleted protein domains are shared among the different can-
cer types. On the contrary, upregulated protein domains are
usually cancer type-specific.

As a result, the new version of the EventPointer
R package aims to provide a comprehensive solution
to perform the analysis of AS in sequencing data. It
affords estimates, statistics, and functional interpreta-
tion of the results of AS analysis. EP is available at
Bioconductor. (https://bioconductor.org/packages/release/
bioc/html/EventPointer.html)

MATERIALS AND METHODS
Data availability

The HVS dataset is available at the Sequence Read Archive
(SRA) under the accession number SRS354082. The CX-
4945 dataset is available at Gene Expression Omnibus with
the accession number GSE104974.

All code to replicate the results of this work is available
in GitHub (https://github.com/JFerrer-B/EventPointer_3.
O_replicate).

Identification of known events

EP identifies and categorizes the splicing events based on
the splicing graph of a gene. This splicing graph can be gen-
erated from the sequence reads (to find events ex novo by
EP BAM), or from the provided transcriptome (by EP ST or

EP ML) (25). Given the splicing graph, EP defines a splicing
event as a triplet of subgraphs (Path 1, Path 2 and Reference
Path) (Supplementary Figure S1). The events are classified
into 7 main categories (cassette exons, alternative 3'splice
site, alternative 5'splice site, intron retention, alternative last
exon, alternative first exon, and mutually exclusive exons)
(Figure 1A). EP classifies an event by checking the struc-
ture of its corresponding subgraph of triplets. Since many
splicing events are non-canonical, events that do not match
any of these categories are classified as ‘complex events’. For
more details of how events are detected and classified see
(25) and (Additional file 1). To ease the interpretation of
‘complex events’, EP subclassiflies these events by compar-
ing the structure of its corresponding subgraph of triples
with the features of the canonical events (Additional file 1).

PSI (¥) computation

EventPointer uses the isoform expression obtained from
pseudo-alignment (either Kallisto or Salmon) to compute
W. Let us assume that there are N isoforms included in Path
1 and that [7]"] is the expression of the isoform ‘n’. Similarly,
[73"] is the expression of the ‘m’ isoform out of the M iso-
forms that include the Path 2. By definition, the value of
W is the quotient of the concentrations of the isoforms that
include the Path 1 over the concentrations of the isoforms
that either include the Path 1 or the Path 2, i.e.

The expression to calculate the W is defined by the follow-
ing equations:

Y [17]
v — . (1)
Yo [77'] + Yool (73]

The denominator of equation 1 is the sum of the con-
centrations of the isoforms that include Path 1 and Path 2,
which in turn, are the isoforms that include the reference
path.

The computation of W is extremely fast since it only re-
quires matrix multiplications: the expression matrix and a
sparse indicial matrix whose elements state whether an iso-
form belongs to a path or not. This efficiency in the compu-
tation makes it possible to apply bootstrap statistics with a
reasonable computational burden.

Statistical analysis based on bootstrap resampling

Bootstrapping is a statistical technique that estimates the
distribution of a statistic by using random sampling with
replacement. Bootstrapping W values make it possible to es-
timate the distribution desired contrasts of W (usually AW).

Thus, the first step consists of the calculation of the ex-
pression of the isoforms with Kallisto or Salmon. If the
option of the bootstrap in these tools is selected, the ex-
pression of the isoforms (maximum likelihood) and their
corresponding bootstraps are obtained. This bootstrap re-
sampling (17) can be exploited to model the distribution of
AW. In some studies, only the maximum likelihood estimate
of the expression is available (for example, if the FASTQ
files are not available). Our recommended pipeline is to use
EventPointer ML in this case, and EventPointer ST if boot-
strap data from pseudoalignment is available.
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Figure 1. Overview of the new version of EventPointer (EP) complete pipeline. (A) EP identifies and classifies all possible alternative splicing events given
a reference transcriptome. Here EP returns a .txt file with the information of all the events and the information of which isoform build up the path of
each event (Events build info tables). (B) EP has two alternative pipelines to estimate the value of W, namely: using only the maximum likelihood isoform
expression (Isoform Expression yp. Matrix) or harnessing the bootstraps returned by the pseudo-aligner (Isoform Expression* matrices). The former will
return a unique matrix with the Westimates (¥y; matrix) and the later a matrix with the W estimate for each bootstrap (¥*matrices). (C) The statistical

significance of the AW between conditions is estimated based
the analysis of protein domain affected by splicing.

on a bootstrap test. (D) EP provides the option of primers design for PCR validation and
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Once the isoform expression is provided, the value W is
computed as depicted in equation 1. For Event Pointer ML
the result is a matrix with the estimated W values using
maximum-likelihood (¥ from now on, Figure 1B). For
EventPointer ST, the result is an array with the W values us-
ing each of the bootstrap estimates (W* for now on, Figure
1B). Given these data, the last steps consist of the estima-
tion of the distribution of the desired contrasts with their
corresponding P-values:

Estimation of the distribution of AW

This process selects bootstrap samples from either Wy or
W* for each condition separately, i.e. all the samples that
share identical rows of the design matrix are sampled in-
dependently. For each bootstrap sample, the value of the
desired contrasts is computed. This process is repeated 7,
times. For two given design and contrast matrices (D and
C) the estimated value of the contrast is,

AV* = (D" D) DT )

where W** is the estimated value of W for each n;, bootstraps
and AW™* is the estimated value of the desired contrast.

The distribution of the contrast is modeled by using a
generalized lambda distribution (26). The estimation of the
four parameters of this distribution (location ft, dispersion
&, and shape parameters yx, &) is done using the method of
the moments to decrease the computational requirements.
As a result, the algorithm provides an approximate density
function for the contrast under study

A\y**NfGLD(xv /17&3 X’s) (3)

This parametric approach makes it possible to estimate
low P-values without the burden of using a large number of
tens of or even hundreds of thousands of bootstrap samples
(Figure 1C).

P-value calculation

As we are estimating the distribution of the desired contrast
and not the null distribution, we compute the P-value har-
nessing the duality between the confidence intervals and the
hypothesis tests (27). Thus, once the distribution of the con-
trast is estimated, the P-value can be obtained by focusing
on the area of the tails of the distribution. Specifically, the

P-value is two times one minus the maximum area of the
tails of the density function, i.e.

0 oo
p*V’der:2<1 — max (/ ferp (X, 1,6, x,§)dx, f Jferp (x, /1,&,x,$)d~¥))
—00 0

(4)

In the case of using a composite hypothesis, i.e. the null
hypothesis is defined by IAWI < 6, where 0 is a threshold,
the P-value is estimated focusing on the tails considering
absolute values larger than the threshold. In this case,

pfvaluezz(lfmaxﬁ’ forp (v, 16 x.8)dx. | forn (x. M.x.f)dx))
—00 6

)

If 6 is large and the distribution of the contrast is close to
the origin, the integrands are nulls, and the P-value could be

larger than 1 (at most 2). The P-value should be clamped to
one in these cases, or, as we have implemented, be modified
by including a correction factor depending on the area of
the null hypothesis. The formula for this correction is:

y N
p—value = 2 — ) (l—max (j Soun (5. Buox €)% T foun (v ﬁ.&.x.é)dx».

(6)

where
0 ~ ~
Yy = fefGLD(x’ M707X’$)dx (7)

With this correction, the P-value is bounded between
zero and one.

For this computation, EP uses the estimate of the distri-
bution of AW. This approach is different (but equivalent)
to the estimation of the P-values using the null distribution.
This approach is equivalent to computing the confidence in-
terval AW with different « levels and selecting the minimum
value « to reject the null hypothesis.

Protein domain enrichment

This analysis aims to evaluate if alternative splicing changes
the proportion of splicing events encoding a specific protein
domain and state its statistical significance. The approach is
similar (but not identical) to a GO enrichment analysis. A
positive AW increases the relative expression of a protein
domain if it is included in the isoforms in Path 1. If AW is
positive, and the domain is included in isoforms of path 2,
the domain will be depleted and also the path where the pro-
tein domain is mapped. Using the isoforms that build each
path of the events and the protein domains encoded by each
transcript, EP builds an ExD matrix. The dimension of ExD
is the number of events times the number of domains. Each
entry Ex Dj;is 1 if domain jis encoded by path 1 of the event
i and not by path 2 and is —1 if it is encoded by path 2 and
not by path 1. ExDy; is 0 if domain j is encoded by both
path 1 and path 2 or by neither of them. In the latter case,
the relative presence of the domain will not be affected by
splicing.

If the AW is positive, and the domain is included in Path
1 (the corresponding entry of the £x D matrix is a one), the
relative usage of the domain increases. If the entry is —1 the
relative usage of the domain decreases. Intuitively, if the rel-
ative presence of a domain increases the AW will be positive
for the +1 entries of the ExD matrix and negative for the —1
entries (Figure 2). This will correspond to a positive corre-
lation between the AW and the group of each event.

The relative presence of the protein domain will decrease
if the AW is positive for domains whose £x D is—1 and neg-
ative if Ex D is + 1. This will correspond to a negative cor-
relation between AW and the group of each event (Figure
2).

The statistical P-values of the enrichment are provided by
computing a Spearman correlation test between AW of the
events and the three categories of the columns of the Ex D
matrix.
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Figure 2. Overview of the protein domain enrichment analysis. (A) Example of how the matrix £x D is built. Protein domain m is encoded only by path
1 of the event x corresponding to a 1 in the matrix Ex D. In the second event, protein domain n is only encoded by path 2 resulting in a —1 in the matrix
ExD and finally, protein domain p is encoded by both path 1 and path 2 of event z, and therefore, the Ex D is 0. Thus, for each protein domain, events can
be split into three groups, namely: events where the protein domain is only encoded by the path 2 (~1), only by the path 1 (1), and by both paths or none
of them (0). (B) Then, a protein domain will be gained if: (i) events that encoded it by the path 1 have a positive AW and (ii) if the events that encoded it
by the path 2 have a negative AW (blue boxplots). Therefore, a positive correlation between the AW and the categories of the events implies a gain of the
protein domain. Likewise, a negative correlation implies a loss of it (green boxplots). Thus, a correlation between the AW and the group of each event is
performed. SSF48371 in AML cancer (gain) and SSF50729 in LUAD cancer (loss) corresponding example boxplots are displayed.
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Primers design

EP implements an algorithm that designs both primers and
TaqMan probes to make a quantitative validation of al-
ternative splicing events. The algorithm takes as input the
splicing graph created by EP and the specific splicing event.
It provides a set of possible groups of primers and TagMan
probes ranked according to a score.

EP creates a directed splicing graph (SG) using the gene
structure. In this splicing graph, nodes are the genomic co-
ordinates of the start and the end position of subexons (con-
tiguous regions of the genome that belong to the same tran-
script). The beginning of the subexons forms the ‘a’ nodes
and the end of the subexons forms the ‘b’ nodes. The edges
of the graph represent exons if they join an ‘a’ node with a
‘b’ node or junctions if they connect a ‘b’ node with an ‘a’
node (Figure 3). Since ‘a’ nodes are connected by ‘b’ nodes
and vice versa, this graph is bipartite. Internally, two addi-
tional nodes start and end are included in the graph but not
shown in the figure for the sake of simplicity.

The splicing graph can be described with its correspond-
ing incidence matrix. The incidence matrix Bis a n x m ma-
trix where n and m are the numbers of vertices and edges
respectively, such that b;; = —1 if the edge ¢; leaves vertex
v;, 1 if it enters vertex v; and 0 otherwise.

The problem of detecting the primers can be split into
two subproblems: (i) identify the genomic regions to place
the primers (described below), and (ii) identify the actual
primers that meet certain characteristics (for which we use
primer3). The subproblem of finding suitable regions can be
solved for each path of the event independently.

For each path, the (sub)exons where the primers are to be
placed must have a minimal length (otherwise the primer
cannot be placed). The primers must be placed upstream
and downstream of the event. Besides, the candidate exons
must fulfill the ‘Full Flux Condition’, i.e. the primer must
amplify all the transcripts that traverse the path. It is also
desirable that the primers are close enough to the event un-
der study.

The Full Flux Condition problem is solved with a
quadratic optimization problem (equation 8) that mini-
mizes the sum of the squared fluxes subject to: (i) all the
fluxes are positive, (ii) follow the graph structure and (iii)
the studied path has a flux value of one.

min’y |e|?

subject to ®)
B-e = Qwithe; >0 foriinl,2,...,n

€path = 1

Figure 3 exemplifies solving the full flux condition prob-
lem for a given splicing graph. In this case, the edge between
nodes 1b and 3a is imposed to be one. This is equivalent to
stating that the concentration of the transcripts that include
this edge must be one. After running the optimization prob-
lem, some edges have flux equal to one and, other edges have
flux smaller than one. Only the exons whose fluxes are 1 are
potential candidates to interrogate the selected path. In this
case, exons 1, 3 and 6.

Finally, it is also desirable to have the primers as close as
possible to the studied event (it is better to place the primer

in exon 3 than in exon 6) and the solutions are ranked ac-
cordingly.

After filtering out the valid exons to place the primers and
solving for the alternate paths, EP sets a figure of merit to
rank all the possible exon combinations. This score depends
on the number of primers required (two or three) to measure
the event, the length of the expected bands (if longer than
a certain value will be penalized), the number of expected
bands (in some cases, there can be more than two bands in
semiquantitative RT-PCR), and the difference in the length
of the bands. Tagman probes must be set on the exons of
one of the paths and the exons of the reference.

Once the exons are known, primer3 (28) is called to calcu-
late primer sequences and the TagMan probes (one is placed
on the reference and another probe in one of the paths of the
event).

RESULTS

Exploiting pseudoaligner bootstraps improves the accuracy of
AS analyses

Most algorithms quantify the splicing events in terms of the
‘proportion spliced-in” (PSI or W) and its statistical anal-
ysis relies on the increment of PSI (AW) between condi-
tions. In a canonical event, ¥ measures the ratio between
the expression of the isoforms that include the alternative
region (a cassette exon, for example) with the expression of
the isoforms that either include or exclude the alternative
sequence —considering isoforms that share the reference re-
gion of the event. W is zero if none of the isoforms that in-
clude the alternative region are expressed and W is one if
none of the isoforms that exclude the alternative region are
expressed.

The estimate of the statistical distribution of ¥ (or its in-
crement, AW) depends on many characteristics: the depth
of sequencing, the expression of the spliced gene, the length
of the regions specific to each of the splicing paths, the type
of event, the influence of junction reads —more difficult to
map- to state the value of W, the ability to sequence that
specific part of the transcriptome, etc. All of them (except
the sequencing depth) are specific to each event and are very
difficult to model properly. As a result, since each event
has different characteristics, results are far from perfect if
parametric statistics are used. To circumvent the difficulty
of modeling the statistical behavior, EP now implements a
bootstrap analysis to assert the statistical significance of the
desired contrasts. Both Kallisto and Salmon have the option
to provide bootstrap estimations of the isoform expression.
EP exploits these bootstrap values to provide the statisti-
cal significance of the desired contrast (usually AW between
normal and tumoral samples).

The new EP version implements two alternative pipelines
depending on the availability of the bootstrap data pro-
vided by pseudo-aligners (Figure 1B). Both pipelines use
bootstrap sampling to state the statistical significance of an
event. The standard pipeline uses the bootstrap estimates
of isoform expression provided by pseudo-aligners (either
Salmon or Kallisto) to estimate the distribution of the de-
sired contrasts (EventPointer ST —STandard method-). As
the bootstrap data from pseudo-aligners is not always avail-
able, EP also implements another statistical analysis based
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Figure 3. Representation of a direct splicing graph from the structure of a gene. Nodes represent the start and end of subexons (contiguous regions of the
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equation 11. The Flux of edge 1b-3a is fixed to 1 to obtain which combination of exons upstream and downstream fulfill the Full Flux Condition. Exons
whose flux estimated from equation 11 is equal to the flux imposed in our path of interest are our candidate exons placing the primers. In this example,
exon | for the upstream primer location, and exons 3 and 6 for the downstream primer location.

on the Maximum-Likelihood isoform expression estimate
(EventPointer ML). EventPointer ST method outperforms
EventPointer ML in terms of accuracy, especially if the
number of samples is small. The underlying reason for this
improvement is that Kallisto or Salmon bootstraps indi-
rectly provide an estimate of the reliability of the measured
W. The counterpart of EventPointer ST is that using pseu-
doalignment’s bootstraps is more computing-intensive and
is not always available.

Although wusing alignment’s bootstraps is more
computing-intensive, it is worth considering this pipeline
as the accuracy of predictions improves, especially if the
number of samples is small. The underlying reason for
this improvement is that Kallisto or Salmon bootstraps
indirectly provide an estimate of the reliability of the
measured .

In some cases, despite AW being statistically significant,
its value is very small and has little biological impact. To
address this concern, EP mimics the ‘treat’ extension of the
limma R package (29) to modify the simple null hypothesis
(Hp : AW = 0) to a composite hypothesis (Hg: IAW] < 0). A
proper selection of the threshold provides events more in-
teresting from a biological point of view and, especially if
using semiquantitative PCR, easier to validate (see Meth-
ods).

EP describes the experiment by using design and con-
trast matrices. This modeling technique is very versatile
as shows the widespread use of limma (30). We have
adapted this modeling technique to use bootstrap statis-
tics. As a result, EP achieves more reliable results than
state-of-the-art methods. To substantiate these claims, we
tested EventPointer against independent real and simulated
data.

EP’s accuracy is high under different conditions of sequencing
depth and read lengths and excels at shallow coverage

We analyzed the accuracy of EP (both ST and ML, with
and without setting a threshold on AW) using the simu-
lated data of SUPPA2 (14). Specifically, this dataset sim-
ulated 554 cassette exons (277 positives and 277 negatives)
and 636 alternative splice-site events (318 positives and 318
negatives) between two conditions with three replicates for
each condition. The simulations were carried out at differ-
ent depths (120, 60, 25, and 10 Million (M) of reads) and for
different read lengths (25, 50, 75 and 100 nt at a depth of 25
M of reads) using RSEM (31). We augmented the dataset
with simulations with very shallow sequencing depth (5, 3,
2, and 1 M reads). Further, we applied SUPPA2, Event-
Pointer BAM, tMATS, and MAIJIQ pipelines to the same
simulated data and compared its results with the ones ob-
tained with EP. For all methods, we also applied a threshold
option for a IAW| of 0.1. All methods except EventPointer
BAM provide this option to compute the statistical signif-
icance. Thus, for EventPointer BAM, we set a P-value of 1
for those slicing events with a IAW] lower than 0.1.

The algorithms are considered to provide a positive de-
tection if the P-value is smaller than 0.05 (as done in the
SUPPA2 manuscript). MAJIQ does not return P-values but
probabilities of change. We considered that MAJIQ returns
a positive if and only if the probability of change is higher
than 0.95 and the probability of no change is lower than 0.5.

For both cassettes and alternative 5" or 3’ events, Event-
Pointer ML (Supplementary Figure S3) is the most sen-
sitive method (higher TPR) but is less specific (1-FPR)
than SUPPA2 and EventPointer ST. Thus, harnessing the
bootstrap data returned by Kallisto or Salmon (Event-
Pointer ST) we obtain similar sensitivity with higher speci-
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ficity (Supplementary Figure S3). Both SUPPA2 and Event-
Pointer STP-values are prudently pessimistic: the expected
FPR should be around 5% and the measured FPR is well
below 5% for most simulations. The poor results in sensitiv-
ity of MAJIQ might be caused by the fact that MAJIQ only
uses junction reads. On the contrary, the other methods use
both exon and junction reads.

Further, when applying a threshold of 0.1 on |AWI, Event-
Pointer ST improves its specificity keeping a high sensi-
tivity (Supplementary Figure S4). In this case, using the
threshold, MAJIQ improves its specificity—it is almost
perfect—and the sensitivity does not degrade.

Receiver Operating Characteristic Curve (ROC) and the
Precision-Recall Curve (PRC) are used to compare the al-
gorithms without having to set a threshold on the P-value
(for MAJIQ we considered the difference between the prob-
ability of change and no change to perform the ROC and
the PRC). We used both methods to compare cassette and
alternative 5’ and 3’ events (Supplementary Figures S5-
S15). As expected, all methods perform better at higher
depths (Figure 4A-B, Supplementary Figures S14 and S15)
and with longer read lengths (Figure 4C-D, Supplementary
Figures S18 and S19). SUPPA2 and EP’s outperforms the
other methods and have also similar performance for deeply
sequenced experiments and for any read length. EP’s ap-
proaches outperform SUPPA2 in the case of low depth, es-
pecially if a threshold is set on the IAW| (Supplementary Ta-
bles SI-S11). Summarizing, EP provides similar results to
SUPPA2 under a wide range of conditions and outperforms
SUPPA?2 for shallow sequencing: the AUROC and AUPRC
for EP methods is similar to SUPPA2 with half the number
of reads (Supplementary Figures S16 and S17).

EP provides versatile statistical modeling for simple and com-
plex experiments

To test how EP works with real data, we analyzed two in-
dependent experiments. The first RNA-Seq data set, re-
ferred to as HVS, consists of an experiment of prostate
cell lines split into two conditions (PC3E and GS689) with
three replicates each (Supplementary Table S12). This data
was used to show the accuracy of rMATS (13). The sec-
ond RNA-Seq experiment, referred to as CX-4945, is de-
picted in (12). In this experiment, three different breast can-
cer cell lines (five replicates each) were exposed to CX-4945
(five replicates) and control (DMSO) (Supplementary Ta-
ble S16). The experiment aims at deciphering how CX-4945
affects splicing. CX-4945 is a known casein kinase 2 (CK?2)
inhibitor (32), which has been proposed as a potential can-
cer treatment (33) and has been attested to regulate splicing
in mammalian cells (34). Supplementary Tables S13 and S17
show the number of events found and reported as significant
by each method in both experiments respectively.

We applied EventPointer (both new and previous ver-
sions), SUPPA2, rMATS and MAJIQ methods to the HVS
data set. In this experiment, 32 out of 34 cassette exons
were validated by PCR (13). The new versions of EP (both
ST and ML) returned similar results as SUPPA2 (only one
event was skipped by EP) in terms of the number of events
reported correctly as significant. Moreover, the new version
enhanced the results returned by EventPointer BAM, that

missed four events and reported five incorrectly. rMATS
and MAJIQ found all events. The former failed reporting
only two events while the later reported only 26 as signif-
icant (with one false positive) and seven as negative (with
six false negatives). Moreover, W values corresponding to
the PCR was available in (13) and compared with the W esti-
mates of each method by a Pearson correlation. The highest
correlations correspond to the methods whose quantifica-
tion step relies on events rather than in transcripts (rMATS,
EventPointer BAM and MAJIQ). As expected, the correla-
tions corresponding to EP and SUPPA2 are almost identi-
cal, since both methods use the transcript expression to es-
timate the value of W (Table 1, Supplementary Figure S20).
Supplementary Tables S14 and S15 show a further compar-
ison between all the methods in terms of common events
found and reported as significant.

We also tested the methods with the CX-4945 data set.
One of the main advantages of EventPointer over other
algorithms is the ability to describe the experiment using
design and contrast matrices. Most algorithms (including
SUPPA2, rMATS, etc.) only consider case-control experi-
ments. In many cases, the experiment requires a more flex-
ible description of it. In this work, 27 out of 29 selected
events were validated by PCR. The new versions of EP (both
ST and ML versions) were very sensitive as no positive
events was missed. SUPPA2, EventPointer BAM, rMATS
and MAJIQ reported as no significant 7, 3, 1 and 5 events,
respectively (Table 1). Supplementary Tables S18 and S19
show a further comparison between all the methods in
terms of common events found and reported as significant.

This experiment is not a simple case-control study and
as SUPPA2, rMATS and MAJIQ cannot accommodate a
complex design matrix to study it. To make the compari-
son, we considered the differences in AS regardless of the
cell-type. Other approaches are also possible, such as an in-
dependent study of the three cell-lines followed by a side-
by-side comparison of all of them, but in this case, there are
3 different case-control tests and therefore, interpretation
is more difficult. This simple example illustrates the ability
of EP to model a complex experiment using the design and
contrast matrices framework.

It should be noted that in both experiments there are only
two2 events as true negatives (Table 1) so the specificity
of the algorithms is not completely assessed, i.e. an over-
sensitive algorithm may appear to perform better.

Despite being based on bootstrap statistics, the whole
pipeline for the new version of EP is reasonably fast and
is not very memory demanding. For the HVS experiment,
EP takes 4 h to pseudoalign the fastq files —using Kallisto—
, 30 min to compute the splicing graph and detect the AS
events (this step is not inherent to the experiment as it does
not depend on the samples), and takes less than 2 minutes to
quantify and perform the statistical analysis. The maximum
memory requirement is below 4 Gb per core. On the other
hand, EP BAM requires 8 h to map the samples —using
STAR-, takes 30 h to build the splicing graph and 10 min to
detect and quantify the AS events. It takes <1 min to per-
form the statistical analysis and its maximum memory need
is 32GB for mapping reads (if using STAR). The memory
requirements to build the splicing graph strongly depends
on the samples and we found it difficult to estimate the
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Figure 4. Receiver operating characteristic curve (ROC curve) and Precision recall curve (PRC) from both simulated cassette exon and alternative splice
site events at (A) depth of 1 M, (B) depth of 120 M with reads length of 100 nt and at (C) read length of 25 nt, and (D) read length of 100 nt at a sequencing
depth of 25 M. Methods with the threshold variant are depicted in dotted lines. For all methods, the threshold was set to IAW| = 0.1. In panels B, C and
D, a zoom of the left and right up corner of the ROC and PRC curves respectively is displayed.

memory requirements. In our experiments, required around
20 Gb per core but other experiments required even more
(Supplementary material, Table S20).

Different analysis methods result in different classifications
of events

All the compared methods use a splicing graph to detect
and classify the events. The splicing graph is built using the

BAM files in the case of rIMATS, EP BAM and MAIJIQ.
In turn, SUPPA2, EP ML and EP ST build the splicing
graph from a reference transcriptome. Based on the topol-
ogy of the splicing graph, the methods classify the events
according to the canonical classes. Unfortunately, the splic-
ing graph of many genes is very complex and many splic-
ing events do not match perfectly into the canonical classes.
The definition of canonical events changes in the different
methods to accommodate these complex events (for exam-
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Table 1. Summary of the PCR-validated events found by each method for both HVS and CX-4945 data sets. TP, FP, TN and FN columns depict True
Positives, False Positive, True Negatives and False Negative events respectively. For the HVS Data Set, it is also shown the correlation of the estimates
of the A W values with the A W values using PCR. Since EventPointer and SUPPA2 compute the W values using Kallisto, its estimates are identical and

therefore the correlation

HVS data set CX-4945 data set
Method Events found TP FP TN FN p (AWpcR vs AWRNAseq) Events found TP FP TN FN
EventPointer ST 33/34 31 2 0 0 0.82 20/29 18 2 0 0
EventPointer ML 33/34 31 2 0 0 0.82 20/29 18 2 0 0
SUPPA2 34/34 32 2 0 0 0.82 17/29 8 0 2 7
EventPointer BAM 30/34 25 1 0 4 0.95 25/29 20 0 2 3
rMATS 34 /34 32 2 0 0 0.96 23/29 20 2 0 1
MAIJIQ 34/34 26 1 1 6 0.92 28/29 21 2 0 5
Table 2. Number of events for each event type detected by EP and SUPPA2 in GRCH37.V74 reference transcriptome
Type of event EP SUPPA2 Type of event EP SUPPA2
Alternative 3’ splice Site 5326 16910 Alternative 5’ splice site 3728 14 146
Alternative First Exon 3916 4651 Alternative last exon 1947 2182
Cassette Exon 8242 32268 Retained intron 3939 7644
Mutually Exlusive Exons 79 509 Complex event 51113 0

ple, MAJIQ divides the canonical events (including the cas-
sette events) into two different events—called Local Splice
Variants—and provides the probabilities of change and no
change of each of the junctions involved in each local splice
variant).

In EventPointer, a splicing event is defined as a triplet of
subgraphs {Reference Path, Path 1 and Path 2} of the splic-
ing graph. These subgraphs are composed of sets of edges
and nodes that share the following characteristics: (i) the
flow traversing any edge of each subgraph is identical and
(i1) the flow traversing any edge in Ref Path is the sum of
the flows traversing Path 1 and Path 2. The detection of the
events can be automated using graph theory. In the case of
the splicing graph, the flow has a straightforward interpre-
tation: the flow of an edge is the sum of the concentrations
of the isoforms that share that edge. As a result, some iso-
forms share all the nodes and edges in Path 1, other different
isoforms share all the nodes and edges in Path 2, and all of
them share the nodes and edges in the reference path. An
example of a cassette exon illustrates this definition. Path 1
consists of the nodes and edges that correspond to the inclu-
sion of the alternative exon and its junctions. Path 2 is the
edge that corresponds to the edge that skips the alternative
exon. The Reference paths are, at least, the flanking exons
of the skipping exon. (Supplementary Figure S2). This defi-
nition of splicing event is quite broad and eases the location
of PCR primers in the reference path.

However, the classification of the events detected by
EventPointer and SUPPA2 do not always match. The sup-
plementary material illustrates examples of some of these
disparities. If EventPointer ST or ML are compared to
rMATS, or EventPointer BAM the disparities are even
larger, since the splicing graph is different as it depends on
the expression of isoforms in the samples, not only on the
annotation.

We applied SUPPA2 and EP event detection approaches
to the GRCH37.V74 reference transcriptome. EP detects
a total of 130 957 events while SUPPA2 detects 179 108
events. EP and SUPPA2 share 90 769 common events. Ta-

ble 2 shows how these events are classified by both methods.
All the events classified as canonical by EP share this classi-
fication with SUPPA2 (Supplementary Figure S21). Many
of the events classified as canonical in SUPPA2 are classified
as complex in EP (see an example in supplementary Figure
S22). To facilitate the interpretation of these events, EP has
the option of subclassifying complex events according to
their resemblance to the characteristics of canonical events.
We compared this subclassification with SUPPA?2 classifi-
cation (supplementary Figure S21).

Supplementary Figures S22 and S25 show events whose
classification is different or specific to one of the algorithms.
For example, the event shown in Figure S25, is classified as
a cassette exon by SUPPA2 and subclassified by EP as two
events subtypes (a Cassette Exon plus plus a Retained In-
tron event). Using semiquantitative PCR for this event and
placing the primers in the flanking exons, would produce a
counterintuitive result of having 3 different bands in a cas-
sette event.

MAJIQ uses a different approach to classify events: it
evaluates the splicing by studying Local Splice Variants
(LSV). MAIJIQ considers a source or a target (somehow
equivalent to the ‘common region’ in EP) that lead to dif-
ferent alternative 3’ splice sites or alternative 5" splice sites
respectively. The former is referred to as Single Source LSV
(SS-LSV) and the later as Single Target LSV (ST-LSV). For
example, a cassette exon is depicted by a SS-LSV and a ST-
LSV. MAJIQ does not classify the events according to the
standard categories (15).

EP analyses the domains disrupted by splicing, partially ex-
plaining its downstream effects

EP provides a function to identify which protein domains
are affected by alternative splicing and perform an en-
richment study on them (see Materials and Methods). In
a previous work, we studied the effect of the CX-4945
treatment on triple-negative-breast-cancer cell lines. This
compound inhibits the Casein Kinase (CK) domain. This
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Table3. Top-ranked enriched downregulated protein domains. The four specific protein domains related to the CK kinase family (IPR000719, IPR011009,
IPR008271, and IPR017441) are ranked among the top ones. The Statistic column depicts the z-score of the enrichment analysis, the P-value column shows
its corresponding P-value, Description column includes a brief description of each protein domain, and the Ranking column the position in the ranking

of the most down-regulated protein domains

PROTEIN DOMAIN Statistic P-value Description Ranking
IPR016024 -14.18 1.51 e-45 Armadillo-type fold 1/5783
IPR027417 -12.95 2.80 e-38 P-loop containing nucleoside triphosphate hydrolase 2/5783
IPR017986 -11.23 3.35e-29 WD40-repeat-containing domain 3/5783
IPR011993 -11.12 1.08 e-28 PH domain-like 4/5783
IPR000719 -10.75 2.07 e-14 Protein kinase domain 5/5783
IPR011009 -10.03 2.63e-13 Protein kinase-like domain 6/5783
IPR008271 -8.13 4.46 ¢-09 Serine/threonine-protein kinase, active site 14/5783
IPRO17441 -6.35 5.55¢e-09 Protein kinase, ATP binding site 23/5783

domain is mapped to different Interpro (35) protein do-
mains such as IPR011009 (Kinase-like_dom_sf), IPR000719
(Prot_kinase_dom), IPR017441 (Protein_kinase_ ATP_BS),
and IPR0O08271 (Ser/Thr_kinase_AS) (36). The result of
the domain enrichment analysis reports that these domains
have a lower relative presence in samples treated with CX-
4945 than in control samples (negative value of the statistic)
and that is statistically significant (Table 3, shaded rows).

In addition to these CK-related domains, Table 3 reports
also other downregulated domains that were even more
significant.Table Interestingly, IPR016024 (Armadillo-type
fold) aims to bind large proteins and is known to be related
with the regulation pathways of CK2A (37). IPR027417
(P-loop) which frequently appears in multiple nucleoside-
binding protein folds, appears in MBNLI1 protein (breast
cancer metastasis suppressor) (38,39) and in pathways
where CK2A is involved (40). IPR017986 (WD40-repeat)
was found to act as protein-DNA interaction. Besides,
WD40-repeat-containing domain appears in several onco-
proteins from breast cancer cells (41) and it is altered in
cells treated with CK2 inhibitors (42). Finally, IPR011993
is known to be related to lipid binding (35) and it is included
in AKT—oncogene related to breast cancer and part of the
CK2 signaling pathway (43,44). On the contrary, in this case
the upregulated protein domains are less significant than
the downregulated ones, suggesting that alternative splic-
ing in this experiment is associated with the loss of protein
domains—and likely, the corresponding functions (Supple-
mentary Table S21).

Protein domains affected by alternative splicing in TCGA and
TARGET are related to aging

The domain enrichment functionality was also used to an-
alyze the impact of alternative splicing on protein domains
for The Cancer Genome Atlas (TCGA) and Therapeuti-
cally Applicable Research to Generate Effective Treatments
(TARGET) datasets. Specifically, for each type of cancer,
we compared the pattern of splicing between normal and
cancer samples and applied our protein domain enrichment
analysis. We excluded cancer types with less than six normal
samples (Supplementary Table S22). Only 3 TARGET can-
cer types (acute myeloid leukemia, AML; Wilms tumor, WT
and rhabdoid timor, RT) remained after processing due to
the absence of normal samples in the others.

In all, we analyzed 991 superfamilies (45) obtained from
biomaRt (46) ensuring at least one AS event is related to
each of them. We selected a local false discovery rate thresh-
old of 0.1 to consider that a domain gained or lost presence
in the tumor samples. This threshold is equivalent to a FDR
of 4.5%.

517 superfamilies did not change their presence be-
tween normal and tumor samples across any type of can-
cer. All cancer types but THCA, WT, AML and RT
present more downregulated than upregulated superfam-
ilies (Figure 5, supplementary Table S22) which may in-
dicate that one of the main effects of alternative splic-
ing is the loss of functionality of the genes by transcrib-
ing isoforms that codify non-functional proteins or, di-
rectly, do not codify proteins (9,47). Conversely, the four
remaining cancer types— THCA, WT, AML and RT—have
more up-regulated superfamily domains. These differences
may be related to aging: the TARGET dataset—WT, AML
and RT—contains information on pediatric patients whilst
TCGA dataset contains information on adult cancers. In-
terestingly, patients with THCA in the TCGA cohort are
significantly younger than in any other cancer (the maxi-
mum P-value of pairwise comparisons using a one-tailed
Wilcoxon.test smaller than 0.0048, Supplementary Table
S23). These results suggest that cancer behavior is differ-
ent in children and adults (48). Supplementary Figure S26
shows boxplots that relate the ratio between upregulated
and downregulated domains number with the age of the pa-
tients for each cancer type and shows that there is a trend
that relates aging and downregulation of protein domains.

We distinguished two cohorts: the adult cohort that in-
cludes all the TCGA samples but THCA, and the young
cohort that includes the TARGET samples and THCA.
The adult cohort, share several downregulated superfami-
lies. These findings are coherent with previous work done in
(47) where they studied alternative splicing in several cancer
sites and noticed the highly recurrent effect of protein do-
main losses. Their work compares these losses produced by
alternative splicing to similar effects produced by somatic
mutations.

In many superfamilies, the description is not sufficiently
informative to hypothesize the functional implications of
gaining or losing a domain. To guess the functional im-
plications, we run a GO enrichment analysis (using a hy-
pergeometric test (49), additional material) using the genes
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Figure 5. UpSet plot of the intersection of upregulated (panel A) and downregulated (panel B) superfamilies in 19 cancer types. The dark bar plot on the left
shows the number of upregulated and downregulated superfamilies for each type of cancer respectively. The dot-matrix represents the different intersections.
In A, sky blue: intersections of superfamilies upregulated in 1 or 2 cancer types, dark blue: intersections of superfamilies upregulated in at least three cancer
types and up to 12. In B, green: intersection of superfamilies downregulated in one or two cancer types, orange: intersection of superfamilies downregulated
in at least three cancer types and up to 12, pink: superfamilies downregulated in 12 or more cancer types. In both panels A and B, the colored bar chart at the
top represents the number of superfamilies that each intersection contains. KICH: Kidney Chromophobe, BLCA: Bladder Urothelial Carcinoma, LUSC:
Lung squamous cell carcinoma, READ: Rectum adenocarcinoma, KIRC: Kidney renal papillary cell carcinoma, COAD: Colon adenocarcinoma, HNSC:
Head and Neck squamous cell carcinoma, KIRP: Kidney renal papillary cell carcinoma, LUAD: Lung adenocarcinoma, LIHC: Liver hepatocellular
carcinoma, UCEC: Uterine Corpus Endometrial Carcinoma, PRAD: Prostate adenocarcinoma, STAD: Stomach adenocarcinoma, ESCA: Esophageal
carcinoma, BRCA: Breast invasive carcinoma, THCA: Thyroid carcinoma, WT: Wilms Tumor, RT: Rhabdoid Tumor, AML: Acute Myeloid Leukemia.



with any isoform annotated to each family. The predicted
functions are the GO categories with a corresponding ¢-
value lower than 0.1. GO redundancy was removed us-
ing the R package GOxploreR (50). From the final list,
the top 10 GO terms with most significant P-valuess were
selected. 8 different superfamilies were downregulated for
all cancer types in the adult cohort (Additional File 2).
Some relationship observed are already known and are re-
lated with cancer —even though these relationships might
not be exclusive for cancer—, for example, SSF46966 (‘Spec-
trin repeat superfamily’), and SSF47031(‘Second domain of
FERM superfamily’) are related to spectrin binding that
is related to cytoskeleton proteins and growth factor sig-
naling and its down-regulation is associated with most tu-
mors and also common to other diseases such as hemolytic
anemia (51,52). SSF48371(‘ARM repeat superfamily’) is re-
lated to the phosphatidylinositol 3-kinase pathway which
is involved in proliferation, growth, and apoptosis (53).
SSF49899 (‘Concanavalin A-like lectins/glucanases super-
family’), and SSF57196 (‘EGF/Laminin superfamily’) are
related with the membrane which degradation is related
with tumor invasion, tumor cell growth, and angiogenesis
(54). SSF50729 (‘PH domain-like superfamily’) is related to
the GTPase activity which is related to the RAS pathway
(55).

On the contrary, the young cohort only shared 2 upreg-
ulated superfamilies (Additional File 3). It seems that up-
regulated superfamilies are cancer-specific (Additional file
4). From these families, some altered functions are asso-
ciated with gene expression including epigenetic and tran-
scriptomic alteration of chromatin accessibility and protein
alterations due to phosphorylation. These alterations occur
in the benefit of cell growth and internal organization for
cell movement and can also be associated with cancer hall-
marks (56-60), suggesting a different focus for cancer de-
velopment if compared to the adult cohort.

Finally, we analyzed if there is any type of event leading
to upregulated or downregulated domains in each cancer
type. We observed that the most influential type of events
are Retained intron —whose importance in cancer is already
known (61)—, Alternative 3" splice site and mutually exclu-
sive exons. Interestingly, these types of events are related to
downregulated domains in most types of cancers whilst they
are only related to upregulated domains in the young cohort
(Supplementary Figures S28 and S29).

We run the same enrichment analysis with Interpro do-
mains and, as expected, the results were coherent with the
previous findings (Supplementary Figure S27).

EventPointer provides primers and TagMan probe sequences
for the detection and validation of alternative splicing events

EP provides primers and TagMan probes for PCR vali-
dation. The selection of the regions to place primers and
TagMan probes for validation is not straightforward. The
primers on these regions must amplify only the transcripts
involved in the event under study and this task may be quite
involved in complex events. Similarly, one of the Tagman
probes must be designed so that it interrogates only the tran-
scripts in one of the paths (either Path 1 or Path 2) and the
other probe is selected to interrogate all the isoforms in the
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event (usually in the reference path). With this selection of
probes and primers, W is the quotient of the expression be-
tween the signal of these two probes.

The definition of a splicing event in EP includes a ‘com-
mon region’ of the genome that shares the set of transcripts
that form the event. This reference path makes it possible, at
least theoretically, to validate all the events detected by EP
using PCR as primers and probes can be placed in either
path 1, path 2 or the reference.

EP ranks the regions to place the primers according to
their suitability. Once the regions are selected, Primer3 (28)
is used to compute the primers and probes. In some cases,
the algorithm does not provide a result since no region
meets the requirement of both EP and Primer3.

We have applied our primer design algorithm to the
events found by EP in the GRCH37.V74 reference tran-
scriptome. Primer3 provided design primers for 90,993
events (69%) out of the 130 957. In turn, the algorithm also
found Tagman probes in 80283 events (88%) of them.

We applied EP’s primers design method to the 34 events
validated in (13). EP detected 33 out of the 34 events (Ta-
ble 1) and was able to design primers for 31 out of the 33
events. The primers proposed by EP and the primers used
in (13) are placed on the same exons. Supplementary data
file 5 includes the table with the primers used in (13) and the
ones proposed by EP. It also includes an image from IGV
showing where the primers are located of both rMATS and
EP.

DISCUSSION

Previous versions of EventPointer were focused either on
microarray data to find known events or RNA-seq to de-
tect novel events (using as input the BAM files and the
reconstructed splicing graph). The new version, described
here, fills the gap to detect known events in RNA-seq us-
ing as input the concentrations from pseudo-aligners such
as Kallisto or Salmon.

It could be argued that focusing on known events is a step
back. We think that this is not the case: in many cases, the
FASTQ or the BAM files from a study are not available
(or have restricted access) because of privacy reasons and
the previous EP version simply cannot be applied. More-
over, since the human transcriptome is being profusely an-
notated, novel events occur less often, and disease-specific
events can also be included in the reference. Besides, the
fact of sharing a common transcriptome makes it possible
to compare results from different studies or to perform a
meta-analysis. If this were not the case, matching the events
from different samples is not trivial and many of the events
would be lost in the translation. In an extreme case, the in-
tegration of different experiments could require reanalyzing
all of them.

EP describes the experiments using design and contrast
matrices. In some circumstances, case-control modeling can
be adapted to study a more complex experiment. However,
this adaptation implies a lack of statistical power since the
number of samples for each sub-study is smaller than the
initial one. The design-contrast matrix paradigm encom-
passes a larger number of experiments if compared to case-
control modeling. We have developed a novel bootstrap sta-
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tistical method to interrogate experiments described by de-
sign and contrast matrices.

We have compared the new EP version with the old EP
version, SUPPA2, rMATS and MAIJIQ algorithms using
simulated data (generated by SUPPA2) and PCR validated
events (for rIMATS and the previous version of EP). The re-
sults show that, in the simulated data, both EP and SUPPA2
have high accuracy with different depth and read length
conditions with an edge for EP if the sequencing depth
is very shallow. Furthermore, although using bootstraps
data from pseudo-alignment (EP ST) is more computing-
intensive, it is worth considering this pipeline as the accu-
racy of predictions improves. EP includes the possibility of
setting a threshold in the null hypothesis (mimicking the
‘treat’ function of the limma package) and results improve
both in sensitivity and specificity. This threshold improves
the behavior of other algorithms.

Since EP performance for shallow sequencing is remark-
able, it would be interesting to study its application for
single-cell sequencing in which the number of reads per cell
is very small. Although, the small number of reads per cell
makes it difficult to perform a transcriptome-wide study of
splicing, using pseudo-bulk techniques (for example using
DESeq?2 (62)) this analysis could be achieved especially for
well-expressed genes.

The correlation of PSI between the estimates of algo-
rithms based on local analysis (rMATS, EP BAM and
MAIJIQ) and the estimate using PCR is almost perfect
(above 0.9 for all the algorithms). Isoform-based algorithms
(SUPPA2, EP ST, and EP ML) also have a very good cor-
relation (above 0.8) but not as good as the previous ones.
It seems, that the noise induced by other parts of the gene
in the isoform concentration estimate negatively affects the
estimation of PSI for local events. Nevertheless, the simu-
lations show that isoform-based algorithms detect splicing
events with higher sensitivity and specificity.

EP studies splicing functional impact using a protein do-
main enrichment analysis. It includes the PFAM, Inter-
pro, or Superfamily categorizations, but could also be ex-
tended to other transcript-annotated information. We have
applied this enrichment analysis to a previous experiment
(12) and correctly identified altered functions known by
literature, reporting 4 treatment-related Interpro domains
as downregulated. We also analyzed the enrichment on
TCGA and TARGET using the Superfamily and Interpro
annotations. Both datasets showed striking differences: in
TCGA—except THCA—protein domains tend to be de-
pleted in cancer conditions and in TARGET, the domains
tend to be enriched. We hypothesized that these differ-
ences are related to the age of the patients. The downreg-
ulated superfamilies common to the studied TCGA can-
cer types—except THCA—are related to cancer hallmarks
such as extracellular organization, cell movement, mem-
brane signaling, among others. Upregulated families in
TARGET and THCA are also related with the hallmarks
of cancer. Nevertheless, these down- and up-regulate super-
families are also related to other diseases suggesting that
these relationships are not exclusive for cancer.

Lastly, RT-PCR and TagMan assays still stand as the
gold-standard approach for validating alternative splicing
events. EP eases this task by providing an algorithm that de-

signs primers and probes for them. EP uses a specific defini-
tion of splicing events that makes it possible this automatic
selection.

Summarizing, EventPointer analyzes AS both for case-
control and complex experiments and includes the option
of finding novel events. EP exploits the bootstrap estimates
of isoform expression provided by pseudo-aligners. EP also
includes the option of a domain analysis of proteins affected
by AS and an algorithm for the design of primers for PCR
validation. Thus, EP provides a one-step solution to per-
form the analysis of AS integrated into an R package and
is available via Bioconductor.
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