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Abstract

The use of carbon dioxide as a C1 chemical feedstock remains an active field of research. Here we 

showcase the use of milled dry ice as a method to promote the availability of CO2 in a reaction 

solution, permitting practical synthesis of arylcarboxylic acids. Notably, the use of milled dry ice 

produces marked increases in yields relative to those obtained with gaseous CO2, as previously 

reported in the literature.
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Carboxylic acid functional groups play a major role in chemistry as biologically relevant 

substituents, medicinally relevant pharmacophores, or synthetically relevant handles that 

can be used to deliver more complex moieties.1–3 Whereas the synthesis of carboxylic 

acids has been well studied, the impetus provided by green chemistry has driven a demand 

for new methods that use renewable chemical feedstocks.4 To meet this demand, carbon 
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dioxide (CO2) has been widely employed as a cheap, renewable, and atom-economical 

C1 building block.5–7 The use of solid CO2 in the synthesis of carboxylic acids from 

aryl lithiates or Grignard reagents has been known for some time.8,9 Green chemistry 

examples have also been reported in which catalytic methods are used to deliver the desired 

carboxylic acids through the use of CO2 gas. Recently, Zhang and co-workers reported 

a visible-light-mediated carboxylation of aryl halides with gaseous CO2.10 Interestingly, 

this method employed a phosphine ligand whose twofold role involved first impeding the 

formation of the undesired protodehalogentated product through use of a basic moiety and 

secondly encouraging emulsion formation in the biphasic mixture of water and toluene. 

This surfactant-promoted emulsion technique exploits the high availability of CO2 present 

in solution to deliver the desired carboxylic acids in good yields. Alternative methods 

have reported the use of ultrahigh pressures and temperatures as forcing conditions in 

carboxylation reactions.11 We recently reported a convenient synthetic route to deliver 

xanthylium and acridinium photocatalysts, in which ortho-lithiated biaryl ethers were 

condensed onto methyl benzoate derivatives in high yield.12 While the scope of this reaction 

proved to be robust, its scalability was limited by difficulties in obtaining the benzoic 

acid starting materials. Notably, lithium–halogen exchange conditions of the corresponding 

aryl bromide followed by subsequent addition of gaseous CO2 at ambient pressures gave 

4-fluoro-2,6-dimethylbenzoic acid (1; see Scheme 1 below) in only a modest 17% yield.

These syntheses entail many of the drawbacks associated with the use of CO2 as a 

reagent, chiefly that of delivering readily available dry CO2 in solution. This task is 

often cumbersome, requiring the gas to be passed through a drying agent such as calcium 

sulfate, molecular sieves, or neat sulfuric acid, thereby greatly limiting the practicality of the 

method.12,13 Furthermore, the solubility of CO2 varies greatly in organic solvents, leading 

to solvent–reaction incompatibilities.14,15 To address these shortcomings, we envisioned the 

deployment of dry ice, milled in a pestle and mortar, as a desirable CO2 source that has a 

markedly enhanced surface area and, in turn, delivers a greatly increased availability of CO2 

in solution. The solid CO2 provides a marked practical improvement upon CO2 gas in terms 

of both its ease of use and in permitting larger scale reactions.

To deliver acid 1 in a more synthetically useful yield than the 17% yield previously 

reported, we sought to develop reaction conditions that implement principles discussed 

in the literature, and that also overcome the undesired introduction of water through 

condensation on milled dry ice, a common problem associated with its use. These goals 

were accomplished by washing the milled dry ice with THF under nitrogen.16 With milled 

dry ice as the CO2 source, the use of THF as a solvent instead of diethyl ether gave 

the desired acid 1 in an improved 43% yield. Decreasing the temperature of the lithium–

halogen exchange from 0 to −78 °C compounded this improvement, resulting in a yield 

of 96% (Scheme 1a). This significant increase in yield is probably due to suppression of 

the decomposition of the aryl–lithium intermediate, which occurs at higher temperatures.17 

Fortunately, the low reagent loading and the high efficiency of the reaction permitted the 

delivery of the desired product after a simple acid–base workup, circumventing the need for 

column chromatography or solvent recrystallization. This practicality was supportive of a 
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multigram-scale reaction (3.04 g from 14.8 mmol of the starting aryl bromide), permitting 

the delivery of 1 in a consistent 96% yield.

With these improved reaction conditions in hand, we applied our method to a range of 

other substrates. The general reaction procedure gave 2,6-dimethylbenzoic acid (2) in a 

comparable 93% yield. 2,6-Diisopropylbenzoic acid (4), with bulkier isopropyl substituents 

at the two ortho-positions, was also obtained in good yield (71%). Changing the electronics 

of the para-substituent had little impact on reaction yield: fluoro (8, 73%), trifluoromethyl 

(9, 71%), methoxy (10, 65%), and trifluoromethoxy (11, 69%) substituents were all well 

tolerated. Notably, these reaction conditions are chemoselective, delivering the desired 

carboxylic acid 16 in 80% yield in the presence of two chloro substituents.

We then sought to elaborate this method to the lithiation of aryl moieties through proton 

removal instead of lithium–halogen exchange (Scheme 1b). Notably, removal of an aryl 

proton was achieved in the presence of a bromo substituent through the use of LiTMP 

instead of n-BuLi, delivering the bromobenzoic acid (17) in a good 81% yield. Moreover, 

lithiation and subsequent carboxylation of 1-benzothiophene to give 18 proceeded almost 

quantitatively (99% yield).

We also sought to elaborate our carboxylation method to install additional substrate 

functionality in one-pot fashion via the carboxylate intermediate. After formation of 

2,6-dimethylbenzoic acid (2) under the reaction conditions previously described, 1.2 

equivalents of iodomethane were added to the reaction mixture in an attempt to deliver 

the corresponding methyl ester 19. However, after 24 hours, none of the desired product 

was obtained. A subsequent acidic quench, workup, and trituration, delivered acid 2 in a 

slightly reduced yield (80%). Simple subsequent addition of DMF, potassium carbonate, and 

methyl iodide to the general reaction conditions then gave the desired methyl ester 19 in a 

decent 43% yield. Again, the corresponding methyl 2,6-dimethylbenzoate (20) was delivered 

in a comparable yield (44%). The apparent decrease in yield relative to the two-step method 

reported in the literature is probably a result of the strong coordination of the lithium ion to 

the carboxylate intermediate. Consequently, a stepwise synthetic route to these products is 

probably more desirable.12

In summary, the direct carboxylation of aryl bromides by using milled dry ice as a C1 

source is demonstrated. The use of milled dry ice produced a significant increase in yields 

compared with methods previously reported in the literature that employ gaseous CO2. Aryl 

and hetaryl substrates with ether, halogen, nitrile, or alcohol functional groups underwent 

conversions in yields of 57–99%. The reaction provides rapid access to carboxylic acid 

derivatives with a low reagent loading and permits the production of these synthetically 

useful products without the need for column chromatography or solvent recrystallization. 

The reactive carboxylate intermediates were also elaborated to provide ester functionalities 

in a one-pot synthesis.
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Scheme 1. 
Substrate scope. Yields reported as the average isolated yield of two separate trials run 

on 1.0 mmol scale. a Highest yield reported in the literature through aryllithium or 

arylmagnesium addition to gaseous CO2 at atmospheric pressure.12,18–25 b n-BuLi (2.1 

equiv). cLiTMP (1.0 equiv). d After the standard reaction conditions were employed, K2CO3 

(1.5 equiv), MeI (1.2 equiv), and DMF were added to the reaction flask.
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