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Abstract

Reporting biomarkers assessed by routine immunohistochemical (IHC) staining of tissue is 

broadly used in diagnostic pathology laboratories for patient care. To date, clinical reporting is 

predominantly qualitative or semi-quantitative. By creating a multitask deep learning framework 

referred to as DeepLIIF, we present a single-step solution to stain deconvolution/separation, cell 

segmentation, and quantitative single-cell IHC scoring. Leveraging a unique de novo dataset of 

co-registered IHC and multiplex immunofluorescence (mpIF) staining of the same slides, we 

segment and translate low-cost and prevalent IHC slides to more expensive-yet-informative mpIF 

images, while simultaneously providing the essential ground truth for the superimposed brightfield 

IHC channels. Moreover, a new nuclear-envelop stain, LAP2beta, with high (>95%) cell coverage 

is introduced to improve cell delineation/segmentation and protein expression quantification on 

IHC slides. By simultaneously translating input IHC images to clean/separated mpIF channels 

and performing cell segmentation/classification, we show that our model trained on clean IHC 

Ki67 data can generalize to more noisy and artifact-ridden images as well as other nuclear and 

non-nuclear markers such as CD3, CD8, BCL2, BCL6, MYC, MUM1, CD10, and TP53. We 

thoroughly evaluate our method on publicly available benchmark datasets as well as against 

pathologists’ semi-quantitative scoring. The code, the pre-trained models, along with easy-to-run 
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containerized docker files as well as Google CoLab project are available at https://github.com/

nadeemlab/deepliif.
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Introduction

The assessment of protein expression using immunohistochemical staining of tissue sections 

on glass slides is critical for guiding clinical decision-making in several diagnostic clinical 

scenarios, including cancer classification, residual disease detection, and even mutation 

detection (BRAFV600E and NRASQ61R). Standard brightfield chromogenic IHC staining, 

while high throughput, has a narrow dynamic range and results in superimposed channels 

with high chromogen/stain overlap, requiring specialized digital stain deconvolution/

separation, e.g. (1), as an essential preprocessing step in both state-of-the-art research as 

well as commercial IHC quantification algorithms. Stain deconvolution is an open problem 

requiring extensive hyper-parameter tuning (on per-case basis) or (highly-error prone and 

time consuming) manual labeling of different cell types (2, 3), but still results in sub-optimal 

color separation in regions of high chromogen overlap.

As opposed to standard brightfield IHC staining, multiplex immunofluorescence (mpIF) 

staining provides the opportunity to examine panels of several markers individually (without 

requiring stain deconvolution) or simultaneously as a composite permitting accurate co-

localization, stain standardization, more objective scoring, and cut-offs for all the markers’ 

values (especially in low-expression regions, which are difficult to assess on IHC stained 

slides and can be misconstrued as negative due to weak staining that can be masked by the 

hematoxylin counterstain) (4, 5). Moreover, in a recent meta-analysis (6), mpIF was shown 

to have a higher diagnostic prediction accuracy (at par with multimodal cross-platform 

composite approaches) than IHC scoring, tumor mutational burden, or gene expression 

profiling. However, mpIF assays are expensive and not widely available. This can lead to 

a unique opportunity to leverage the advantages of mpIF to improve the explainability and 

interpretability of the conventional IHCs using recent deep learning breakthroughs. Current 

deep learning methods for scoring IHCs rely solely on the error-prone manual annotations 

(unclear cell boundaries, overlapping cells, and challenging assessment of low-expression 

regions) rather than on co-registered high-dimensional imaging of the same tissue samples 
(that can provide essential ground truth for the superimposed brightfield IHC channels). 
Therefore, we present a new multitask deep learning algorithm that leverages a unique 

co-registered IHC and mpIF training data of the same slides to simultaneously translate 

low-cost/prevalent IHC images to high-cost and more informative mpIF representations 

(creating a Deep-Learning-Inferred IF image), accurately autosegment relevant cells, and 

quantify protein expression for more accurate and reproducible IHC quantification; using 

multitask learning (7) to train models to perform a variety of tasks rather than one narrowly 

defined task makes them more generally useful and robust. Specifically, once trained, 

DeepLIIF takes only IHC image as input (e.g., Ki67 protein IHC as a brown Ki67 stain with 
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standard hematoxylin nuclear counterstain) and completely bypassing stain deconvolution, 

produces/generates corresponding hematoxylin, mpIF nuclear (DAPI), mpIF protein (e.g., 

Ki67), mpIF LAP2Beta (a new nuclear envelop stain with > 95% cell coverage to better 

separate touching/overlapping cells) channels and segmented/classified cells (e.g., Ki67+ 

and Ki67− cell masks for estimating Ki67 proliferation index which is an important clinical 

prognostic metric across several cancer types), as shown in Figure 1. Moreover, DeepLIIF 

trained just on clean IHC Ki67 images generalizes to more noisy and artifact-ridden images 

as well as other nuclear and non-nuclear markers such as CD3, CD8, BCL2, BCL6, MYC, 

MUM1, CD10, and TP53. Example IHC images stained with different markers along with 

the DeepLIIF inferred modalities and segmented/classified nuclear masks are also shown in 

Figure 1. In essence, DeepLIIF presents a single-step solution to stain deconvoluion, cell 
segmentation, and quantitative single-cell IHC scoring. Additionally, our co-registered mpIF 
data, for the first time, creates an orthogonal dataset to confirm and further specify the target 
brightfield IHC staining characteristics.

Results

In this section, we evaluate the performance of DeepLIIF on cell segmentation and 

classification tasks. We evaluated the performance of our model and other state-of-

the-art methods using pixel accuracy (PixAcc) computed from the number of true 

positives, TP, false positives, FP and false negatives, FN, as TP
TP + FP + FN , Dice Score 

as 2 × TP
2 × TP + FP + FN , and IOU as the class-wise intersection over the union. We compute 

these metrics for each class, including negative and positive, and compute the average value 

of both classes for each metric. A pixel is counted as TP if it is segmented and classified 

correctly. A pixel is considered FP if it is falsely segmented as the foreground of the 

corresponding class. A pixel is counted as FN if it is falsely detected as the background of 

the corresponding class. For example, assuming the model segments a pixel as a pixel of a 

negative cell (blue), but in the ground-truth mask, it is marked as positive (red). Since there 

is no corresponding pixel in the foreground of the ground-truth mask of the negative class, it 

is considered FP for the negative class and FN for the positive class, as there is no marked 

corresponding pixel in the foreground of the predicted mask of the positive class. We also 

evaluate our model against other methods using Aggregated Jaccard Index (AJI) which is 

an object-level metric (8), defined as 
∑i = 1

N Gi ∩ PM
i

∑i = 1
N Gi ∪ PM

i + ∑F ∈ U PF
. Considering that the goal 

is an accurate interpretation of IHC staining results, we compute the difference between the 

IHC quantification percentage of the predicted mask and the real mask, as shown in Figure 

2.

To compare our model with state-of-the-art models, we use three different datasets. 1) We 

evaluate all models on our internal test set, including 600 images of size 512 × 512 and 

40x magnification from bladder carcinoma and non-small cell lung carcinoma slides. 2) 

We randomly selected and segmented 41 images of size 640 × 640 from recently released 

BCDataset (9) which contains Ki67 stained sections of breast carcinoma from scanned 

whole slide images with manual Ki67+ and Ki67− cell centroid annotations (targeting cell 
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detection as opposed to cell instance segmentation task), created from consensus of 10 

pathologists. We split these tiles into 164 images of size 512 × 512; the test set varies widely 

in the density of tumor cells and the Ki67 index. 3) We also tested our model and others on 

a publicly available CD3 and CD8 IHC NuClick Dataset (10). We used the training set of 

BC Dataset containing 671 IHC patches of size 256 × 256, extracted from LYON19 dataset 

(11). LYON19 (11) is a Grand Challenge to provide a dataset and an evolution platform 

to benchmark existing algorithms for lymphocyte detection in IHC stained specimens. The 

dataset contains IHC images of breast, colon, and prostate stained with an antibody against 

CD3 or CD8.

Trained on clean lung and bladder images stained with Ki67 marker, DeepLIIF generalizes 

well to other markers. We trained state-of-the-art segmentation networks, including FPN 
(12), LinkNet (13), Mask_RCNN (14), Unet++ (15), and nnU-Net (16) on our training set 

(described in Section Training Data) using the IHC images as the input and generating 

the colored segmentation mask representing normal cells and lymphocytes. DeepLIIF 

outperformed previous models trained and tested on the same data on all three metrics. 

We trained and tested all models on a desktop with an NVIDIA Quadro RTX 6000 GPU, 

which was also used for all implementations.

We compare the DeepLIIF model’s performance against state-of-the-art models on the 

test set obtained from BC-Dataset (9). The results were analyzed both qualitatively and 

quantitatively, as shown in Figure 2. All models are trained and validated on the same 

training set as the DeepLIIF model. Application of DeepLIIF to the BC Dataset resulted in a 

pixel accuracy of 94.18%, Dice score of 68.15%, IOU of 53.20%, AJI of 53.48%, and IHC 

quantification difference of 6.07%, and outperformed Mask_RCNN with pixel accuracy of 

91.95%, IOU of 66.16%, Dice Score of 51.16%, AJI of 52.36% , and IHC quantification 

difference of 8.42%, nnUnet with pixel accuracy of 89.24%, Dice Score of 58.69%, IOU 

of 43.44%, AJI of 41.31%, and IHC quantification difference of 9.84%, UNet++ with pixel 

accuracy of 87.99%, Dice Score of 54.91%, IOU of 39.47%, AJI of 32.53%, and IHC 

quantification difference of 36.67%, LinkNet with pixel accuracy of 88.59%, Dice score 

of 33.64%, IOU of 41.63%, AJI of 33.64%, and IHC quantification difference of 21.57%, 

and FPN with pixel accuracy of 85.78%, Dice score of 52.92%, IOU of 38.04%, AJI of 

27.71%, and IHC quantification difference of 17.94%, while maintaining lower standard 

deviation on all metrics. We also performed a significance test to show that DeepLIIF 

significantly outperforms other models. As mentioned earlier, all models are trained and 

tested on the exact same dataset, meaning that the data is paired. Therefore, we perform a 

paired Wilcoxon rank-sum test, where a p-value of 5% or lower is considered statistically 

significant. All tests are two-sided, and the assumption of normally distributed data was 

tested using a Shapiro-Wilk test. The computed p-values of all metrics show that DeepLIIF 

significantly outperforms the state-of-the-art models.

We used pixel-level accuracy metrics for the primary evaluation, as we are formulating 

the IHC quantification problem as cell instance segmentation/classification. However, since 

DeepLIIF is capable of separating the touching nuclei, we also performed a cell-level 

analysis of DeepLIIF against cell centroid detection approaches. U–CSRNet (9), for 

example, detects and classifies cells without performing cell instance segmentation. Most 
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of these approaches use crowd-counting techniques to find cell centroids. The major hurdle 

in evaluating these techniques is the variance in detected cell centroids. We trained FCRN_A 
(17), FCRN_B (17), Deeplab_Xeption (18), SC_CNN (19), CSR-Net (20), U–CSRNet (9) 

using our training set (the centroids of our individual cell segmentation masks are used as 

detection masks). Most of these approaches failed in detecting and classifying cells on the 

BCData testing set, and the rest detected centroids far from the ground-truth centroids. As a 

result, we resorted to comparing the performance of DeepLIIF (trained on our training set) 

with these models trained on the training set of the BCDataset and tested on the testing set 

of the BCData. As shown in Exteneded Data Figure 1, even though our model was trained 

on a completely different dataset from the testing set, it has better performance than the 

detection models that were trained on the same training set of the test dataset. The results 

show that, unlike DeepLIIF, the detection models are not robust across different datasets, 

staining techniques, and tissue/cancer types.

As was mentioned earlier, our model generalizes well to segment/classify cells stained 

with different markers, including CD3/CD8. We compare the performance of our trained 

model against other trained models on the training set of the NuClick dataset (21). The 

comparative analysis is shown in Figure 3. The DeepLIIF model outperformed other models 

on segmenting and classifying CD3/CD8+ cells (tumor-infiltrating lymphocytes or TILs) on 

all three metrics.

We also evaluated the quality of the inferred modalities using mean squared error (MSE) 

(the average squared difference between the synthetic image and the actual image) and 

Structural Similarity Index (SSIM) (the similarity between two image). As shown in the 

Extended Data Figure 2, based on these metrics, DeepLIIF generates highly-realistic images. 

In this figure, We further visualized the first two components of PCA applied to the feature 

vectors of synthetic and real images, calculated by the VGG16 model and then applied 

PCA on the calculated feature vectors. The results show that the synthetic image data points 

have the same distribution as the real image data points, confirming that the generated 

images by the model have the same characteristics as the real images. Original/real and 

DeepLIIF-Inferred modality images of two samples taken from Bladder and Lung tissues are 

also shown side-by-side with SSIM and MSE scores.

We also tested DeepLIIF on IHC images stained with eight other markers acquired with 

different scanners and staining protocols. Our testing set includes (1) nine IHC snapshots 

from a digital microscope stained with Ki67 and PDL1 markers (two examples shown in 

Extended Data Figure 8), (2) testing set of LYON19 (11) containing 441 IHC CD3/CD8 

breast, colon, and prostate ROIs (no annotations) with various staining/tissue artifacts 

from 8 different institutions (Figure 3(c), and Extended Data Figure 9), (3) PathoNet 

IHC Ki67 breast cancer dataset (22), containing manual centroid annotations created from 

consensus of multiple pathologists, acquired in low-resource settings with microscope 

camera (Extended Data Figure 7), (4) Human Protein Atlas (23) IHC Ki67 (Figure 5) and 

TP53 images (Extended Data Figure 10), and (5) DLBCL-Morph dataset (24) containing 

IHC tissue-microarrays for 209 patients stained with BCL2, BCL6, CD10, MYC, MUM1 

markers (Extended Data Figure 10.) We visualized the structure of the testing dataset by 

applying t-distributed stochastic neighbor embedding (t-SNE) to the image styles tested on 
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DeepLIIF in Figure 4. We first extracted the features from each image using the VGG16 

model, and applied principal component analysis (PCA) to reduce the number of dimensions 

in the feature vectors. Next, we visualize the image data points based on the extracted 

feature vectors using t-SNE. As shown in Figure 4, DeepLIIF is able to adapt to images 

with various resolutions, color and intensity distributions, and magnifications captured 

in different clinical settings, and successfully segment and classify the heterogeneous 

collection of aforementioned testing sets covering eight different IHC markers.

We have also evaluated the performance of DeepLIIF with and without LAP2beta and found 

the segmentation performance of DeepLIIF with LAP2beta better than without LAP2beta 

(Extended Data Figure 4). LAP2beta is a nuclear envelope protein broadly expressed in 

normal tissues. In Extended Data Figure 3, LAP2beta immunohistochemistry reveals nuclear 

envelope-specific staining in the majority of cells in spleen (99.98%), colon (99.41%), 

pancreas (99.50%), placenta (76.47%), testis (95.59%), skin (96.74%), lung (98.57%), liver 

(98.70%), kidney (95.92%) and lymph node (99.86%). Placenta syncytiotrophoblast does 

not stain with LAP2beta, and the granular layer of skin does not show LAP2beta expression. 

However, the granular layer of skin lacks nuclei and is therefore not expected to express 

nuclear envelope proteins. We also observe a lack of consistent Lap2beta staining in the 

smooth muscle of blood vessel walls (not shown).

DeepLIIF which is solely trained on IHC images stained with Ki67 marker was also tested 

on H&E images from the MonuSeg Dataset (8). As shown in Extended Data Figure 5, 

DeepLIIF (out-of-the-box without being trained on H&E images) was able to infer high-

quality mpIF modalities and correctly segment the nuclei in these images.

Discussion

Assessing IHC stained tissue sections is a widely utilized technique in diagnostic pathology 

laboratories worldwide. IHC-based protein detection in tissue with microscopic visualization 

is used for many purposes, including tumor identification, tumor classification, cell 

enumeration, and biomarker detection and quantification. Nearly all IHC stained slides for 

clinical care are analyzed and reported qualitatively or semi-quantitatively by diagnostic 

pathologists.

Several approaches have been proposed for deep learning-based stain-to-stain translation of 

unstained (label-free), H&E, IHC, and multiplex slides, but relatively few attempts have 
been made (in limited contexts) at leveraging the translated enriched feature set for cellular-
level segmentation, classification or scoring (25, 26). Recently, Liu et al. (27) used publicly 

available fluorescence microscopy and histopathology H&E datasets for unsupervised nuclei 

segmentation in histopathology images by learning from fluorescence microscopy DAPI 

images. However, their pipeline incorporated CycleGAN, which hallucinated (28) nuclei 

in the target histopathology domain and hence, required segmentation masks in the source 

domain to remove any redundant or unnecessary nuclei in the target domain. The model 

was also not generalizable across the two target histopathology datasets due to the stain 

variations, making this unsupervised solution less suitable for inferring different cell types 

from given H&E or IHC images. Burlingame et al. (29) on the other hand, used supervised 
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learning trained on H&E and co-registered single-channel pancytokeratin IF for four 

pancreatic ductal adenocarcinomas (PDAC) patients to infer pancytokeratin stain for given 

PDAC H&E image. Another work (30) used a supervised learning method trained on H&E, 

and co-registered IHC PHH3 DAB slides for mitosis detection in H&E breast cancer WSIs. 

Recently, Haan et al. (31) used co-registered H&E and special stains for kidney needle 

core biopsy sections to translate given H&E image to special stains. In essence, there are 

methods to translate between H&E and IHC but none for translating between IHC and mpIF 

modalities. To focus on immediate clinical application, we want to accentuate/disambiguate 
the cellular information in low-cost IHCs (using a higher-cost and more informative mpIF 
representation) to improve the interpretability for pathologists as well as for the downstream 
analysis/algorithms.

By creating a multitask deep learning framework referred to as DeepLIIF, we provide a 

unified solution to nuclear segmentation and quantification of IHC stained slides. DeepLIIF 

is automated and does not require annotations. In contrast, most commercial platforms use 

a time-intensive workflow for IHC quantification, which involves user-guided (a) IHC-DAB 

deconvolution, (b) nuclei segmentation of hematoxylin channel, (c) threshold setting for the 

brown DAB stain, and (d) cell classification based on the threshold. We present a simpler 

workflow; given an IHC input, we generate different modalities along with the segmented/

classified cell masks. Our multitask deep learning framework performs IHC quantification 

in one process and does not require error-prone IHC deconvolution or manual thresholding 

steps. We use a single optimizer for all generators and discriminators that improves the 

performance of all tasks simultaneously. Unique to this model, DeepLIIF is trained by 

generating registered mpIF, IHC, and hematoxylin staining data from the same slide with 

the inclusion of nuclear envelope staining to assist in accurate segmentation of adjacent and 

overlapping nuclei.

Formulating the problem as cell instance segmentation/classification rather than a detection 

problem helps us to move beyond the reliance on crowd counting algorithms and towards 

more precise boundary delineation (semantic segmentation) and classification algorithms. 

DeepLIIF was trained for multi-organ, stain invariant determination of nuclear boundaries 

and classification of subsequent single-cell nuclei as positive or negative for Ki67 staining 

detected with the 3,3’-Diaminobenzidine (DAB) chromogen. Subsequently, we determined 

that DeepLIIF accurately classified all tested nuclear antigens as positive or negative.

Surprisingly, DeepLIIF is often capable of accurate cell classification of non-nuclear 

staining patterns using CD3, CD8, BCL2, PDL1, and CD10. We believe the success of the 

DeepLIIF classification of non-nuclear markers is at least in part dependent on the location 

of the chromogen deposition. BCL2 and CD10 protein staining often show cytoplasmic 

chromogen deposition close to the nucleus, and CD3 and CD8 most often stain small 

lymphocytes with scant cytoplasm whereby the chromogen deposition is physically close to 

the nucleus. DeepLIIF is slightly less accurate in classifying PDL1 staining (Extended Data 

Figure 8) and, notably, PDL1 staining is more often membranous staining of medium to 

large cells such as tumor cells and monocyte-derived cell lineages where DAB chromogen 

deposition is physically further from the nucleus. Since DeepLIIF was not trained for 
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non-nuclear classification, we anticipate that further training using non-nuclear markers will 

rapidly improve their classification with DeepLIIF.

DeepLIIF, handling of H&E images (Extended Data Figure 5), was the most pleasant 

surprise where the model out-of-the-box learnt to even separate the H&E images into 

hematoxylin and (instead of mpIF protein marker) eosin stains. The nuclei segmentations 

were highly precise. This opens up lot of interesting avenues where we can potentially drive 

whole slide image registration of neighboring H&E and IHC sections (32) by converting 

these to a common domain (clean mpIF DAPI images) and then performing deformable 

image registration.

For IHC images, we have purposely assessed the performance of DeepLIIF for the detection 

of proteins currently reported semi-quantitatively by pathologists with the goal of facilitating 

the transition to quantitative reporting if deemed appropriate. We anticipate the further 

extension of this work to assess the usability of Ki67 quantification in tumors with more 

unusual morphologic features such as sarcomas. The approach will also be extended to 

handle more challenging membranous/cytoplasmic markers such as PDL1, Her2, etc as 

well as H&E and multiplex IHC staining (without requiring any manual/weak annotations 

for different cell types (3)). Finally, we will incorporate additional mpIF tumor and 

immune markers into DeepLIIF for more precise phenotypic IHC quantification such as 

for distinguishing PDL1 expression within tumor vs. macrophage populations.

This work provides a universal, multitask model for both segmenting nuclei in IHC images 

and recognizing and quantifying positive and negative nuclear staining. Importantly, we 

describe a modality where training data from higher-cost and higher-dimensional multiplex 

imaging platforms improves the interpretability of more widely-used and lower-cost IHC.

Methods

Training Data.

To train DeepLIIF, we used a dataset of lung and bladder tissues containing IHC, 

hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF Ki67 of the same tissue scanned using 

ZEISS Axioscan (see Supplementary Materials for more details on staining protocol). 

These images were scaled and co-registered with the fixed IHC images using affine 

transformations, resulting in 1667 registered sets of IHC images and the other modalities 

of size 512 × 512. We randomly selected 709 sets for training, 358 sets for validation, and 

600 sets for testing the model.

Ground-truth Classified Segmentation Mask.

To create the ground-truth segmentation mask for training and testing our model, we used 

our interactive deep learning ImPartial annotations framework (33). Given mpIF DAPI 

images and few cell annotations, this framework auto-thresholds and performs cell instance 

segmentation for the entire image. Using this framework, we generated nuclear segmentation 

masks for each registered set of images with precise cell boundary delineation. Finally, using 

the mpIF Ki67 images in each set, we classified the segmented cells in the segmentation 

mask, resulting in 9180 Ki67 positive cells and 59000 Ki67 negative cells. Examples of 
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classified segmentation masks from the ImPartial framework are shown in Figures 1 and 2. 

The green boundary around the cells are generated by ImPartial, and the cells are classified 

into red (positive) and blue (negative) using the corresponding mpIF Ki67 image. If a 

segmented cell has any representation in the mpIF Ki67 image, we classify it as positive (red 

color), otherwise, we classify it as negative (blue color).

Objective.

Given a dataset of IHC+Ki67 RGB images, our objective is to train a model f(.) that maps 

an input image to four individual modalities, including Hematoxylin channel, mpIF DAPI, 

mpIF Lap2, and mpIF Ki67 images, and using the mapped representations, generate the 

segmentation mask. We present a framework, as shown in Figure 6 that performs two tasks 

simultaneously. First, the translation task translates the IHC+Ki67 image into four different 

modalities for clinical interpretability as well as for segmentation. Second, a segmentation 

task generates a single classified segmentation mask from the IHC input and three of the 

inferred modalities by applying a weighted average and coloring cell boundaries green, 

positive cells red, and negative cells blue.

We use cGANs to generate the modalities and the segmentation mask. cGANs are made of 

two distinct components, a generator and a discriminator. The generator learns a mapping 

from the input image x to output image y, G : x → y. The discriminator learns to the 

paired input and output of the generator from the paired input and ground truth result. 

We define eight generators to produce four modalities and segmentation masks that cannot 

be distinguished from real images by eight adversarially trained discriminators (trained to 

detect fake images from the generators).

Translation.

Generators Gt1, Gt2, Gt3, and Gt4 produce hematoxylin, mpIF DAPI, mpIF Lap2, and mpIF 

Ki67 images from the input IHC image, respectively (Gti:xi yi, where i = 1,2,3,4). The 

discriminator Di is responsible for discriminating generated images by generators Gti. The 

objective of the conditional GAN for the image translator tasks are defines as follows:

ℒtGAN Gti, Dti = Ex, yi log Dti x, yi + Ex, yi log 1 − Dti x, Gti x (1)

We use smooth L1 loss (Huber loss) to compute the error between the predicted value 

and the true value, since it is less sensitive to outliers compared to L2 loss and prevents 

exploding gradients while minimizing blur (34, 35). It is defined as:

ℒL1 G = Ex, y smootℎL1 y − G x (2)

where

smootℎL1 a = 0.5a2 if a < 0.5
a − 0.5 otherwise

(3)
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The objective loss function of the translation task is:

ℒT Gt, Dt = ∑
t = 1 ∼ 5

ℒtGAN Gti, Dti + λℒL1 Gti (4)

where λ controls the relative importance of two objectives.

Segmentation/Classification.

The segmentation component consists of five generators GS1, GS2, GS3, GS4, and GS5
producing five individual segmentation masks from the original IHC, inferred hematoxylin 

image Gt1 , inferred mpIF DAPI Gt2 , inferred mpIF Lap2 Gt3 , and inferred mpIF 

marker Gt4 , GSi ≕ zi ysi where i = 1,2,3,4,5. The final segmentation mask is created 

by averaging the five generated segmentation masks by GSi using pre-defined weights, 

S zi = ∑n = 1
5 wsi × GSi zi , where wsi are the pre-defined weights. The discriminators DSi

are responsible for discriminating generated images by generators GSi.

In this task, we use LSGAN loss function, since it solves the problem of vanishing gradients 

for the segmented pixels on the correct side of the decision boundary, but far from the 

real data, resulting in a more stable boundary segmentation learning process. We define the 

objective of the conditional GAN for segmentation/classification task as follows:

ℒsGAN DS = ∑
i = 1 ∼ 5

1
2Ezi, ysi DSi zi, ysi − 1 2 + 1

2Ezi, ysi DSi zi, S zi
2

(5)

ℒsGAN S = ∑
i = 1 ∼ 5

1
2Ezi, ysi DSi zi, S zi − 1 2

For this task, we also use smooth L1 loss. The objective loss function of the segmentation/

classification task is:

ℒS S, DS = ℒsGAN S, DS + λℒL1 S (6)

Final Objective.

The final objective is:

ℒ Gt, Dt, S, DS = ℒT Gt, Dt + ℒS S, DS (7)

Generator.

We use two different types of generators, ResNet-9blocks generator for producing 

modalities and U-Net generator for creating segmentation mask.
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ResNet-9blocks Generator.—The generators responsible for generating modalities 

including hematoxylin, mpIF DAPI and mpIF Lap2 starts with a convolution layer and a 

batch normalization layer followed by Rectified Linear Unit (ReLU) activation function, 

2 downsampling layers, 9 residual blocks, 2 upsampling layers, and a covolutional layer 

followed by a tanh activation function. Each residual block consists of two convolutional 

layers with the same number of output channels. Each convolutional layer in the residual 

block is followed by a batch normalization layer and a ReLU activation function. Then, 

these convolution operations are skipped and the input is directly added before the final 

ReLU activation function.

U-Net Generator.—For generating the segmentation masks, we use the generator 

proposed by (35), using the general shape of U-Net (36) with skip connections. The skip 

connections are added between each layer i and layer n − i where n is the total number of 

layers. Each skip connection concatenates all channels at layer i with those at layer n − i.

Markovian discriminator (PatchGAN).

To address high-frequencies in the image, we use a PatchGAN discriminator that only 

penalizes structure at the scale of patches. It classifies each N × N patch in an image as 

real or fake. We run this fully convolutional discriminator across the image, averaging all 

responses to provide the final output of D.

Optimization.

To optimize our network, we use the same standard approach as (37), alternating between 

one gradient descent step on D and one step on G. In all defined tasks (translation, 

classification, and segmentation), the network generates different representations for the 

same cells in the input meaning all tasks have the same endpoint. Therefore, we use a 

single optimizer for all generators and a single optimizer for all discriminators. Using this 

approach, optimizing the parameters of a task with a more clear representation of cells 

improves the accuracy of other tasks since all these tasks are optimized simultaneously.

Synthetic Data Generation.

We found that our model consistently failed in regions with dense clusters of IHC positive 

cells due to the absence of similar characteristics in our training data. To infuse more 

information about the clustered positive cells into our model, we developed a novel GAN-

based model for the synthetic generation of IHC images using coregistered data. The model 

takes as input Hematoxylin channel, mpIF DAPI image, and the segmentation mask and 

generates the corresponding IHC and marker images (Extended Data Figure 6). The model 

converts the Hematoxylin channel to grayscale to infer more helpful information such as the 

texture and discard unnecessary information such as color. The Hematoxylin image guides 

the network to synthesize the background of the IHC image by preserving the shape and 

texture of the cells and artifacts in the background. The DAPI image assists the network in 

identifying the location, shape, and texture of the cells to better isolate the cells from the 

background. The segmentation mask helps the network specify the color of cells based on 

the type of the cell (positive cell: a brown hue, negative: a blue hue) and in creating the 

marker image. In the next step, we generated synthetic IHC images with more clustered 
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positive cells. To do so, we change the segmentation mask by choosing a percentage of 

random negative cells in the segmentation mask (called Neg-to-Pos) and converting these 

into positive cells. We synthesized new IHC images by setting Neg-to-Pos to 50%, 70%, 

and 90%. DeepLIIF was retrained with the new dataset, containing original images and these 

synthesized ones, which resulted in improvement of Dice score by 6.57%, IOU by 7.08%, 

AJI by 5.53%, and Pixel Accuracy by 2.49%.

Training Details.

We train our model from scratch, using a learning rate of 0.0002 for 100 epochs, and 

linearly decay the rate to zero over the next 100 epochs. The weights were initialized from 

a Gaussian distribution N (0, 0.02). We set λ = 100 to give more weight to L1 loss. We 

used batch normalization in our main model. Adam solver (38) was used with a batch size 

of 1. We use Tree-structured Parzen Estimator (TPE) for hyperparameter optimization, and 

chose the L1 loss (Least Absolute Deviations) as the evaluation metric to be minimized. 

We compute the L1 loss for the segmentation mask generated by the model and try to 

minimize the L1 loss using the TPE approach. We optimized various hyperparameters, 

including the network generator architecture, the discriminator architecture, the number 

of layers in the discriminator while using layered architecture, the number of filters in 

the generator and discriminator, normalization method, initialization method, learning rate, 

and learning policy, λ, and the GAN loss function, segmentation mask generators weights 

with diverse options for each of them. Based on the hyperparameter optimization, the 

following predefined weights (wsi) were set for individual modalities to generate the final 

segmentation mask: weight of segmentation mask generated by original IHC image (ws1)= 

0.25, Hematoxylin channel (ws2)= 0.15, mpIF DAPI (ws3) = 0.25, mpIF Lap2 (ws4)= 0.1, 

and mpIF protein marker image (ws5)= 0.25. The cell type (positive or negative) is classified 

using the original IHC image (where brown cells are positive and blue cells are negative) 

and the mpIF protein marker image (which only shows the positive cells). Therefore, to 

have enough information on the cell types, these two representations are assigned 50% of 

the total weight with equal contribution. The mpIF DAPI image contains the representation 

of the cell where the background and artifacts are removed. Since this representation has 

the most useful information on the cell shape, area, and boundaries, it was assigned 25% 

of the total weight in creating the segmentation mask. The mpIF Lap2 image is generated 

from the mpIF DAPI image and it contains only the boundaries on the cells. Even though 

it has more than 90% coverage, it still misses out on cells, hence 15% of the total weight 

makes sense. With this weightage, we can be sure that if there is any confusing information 

in the mpIF DAPI image, it does not get infused into the model by a large weight. Also, by 

giving less weight to the Lap2, we increase the final segmentation probability of the cells not 

covered by Lap2. The Hematoxylin image has all the information, including the cells with 

lower intensities, the artifacts, and the background. Since this image shares the background 

and artifacts information with the IHC image and the cell information with the mpIF DAPI 

image, it is given less weight to decrease the probability of artifacts being segmented and 

classified as cells.

One of the challenges in GANs is the instability of its training. We used spectral 

normalization, a weight normalization technique, to stabilize the training of the 
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discriminator (39). Spectral normalization stabilizes the training of discriminators in GANs 

by re-scaling the weight tensor with spectral norm σ of the weight matrix calculated using 

the power iteration method. If the dimension of the weight tensor is greater than 2, it is 

reshaped to 2D in the power iteration method to get the spectral norm. We first trained 

the model using spectral normalization on the original dataset. The spectral normalization 

could not significantly improve the performance of the model. The original model achieved 

Dice score of 61.57%, IOU 46.12%, AJI 47.95% and Pixel Accuracy 91.69% whereas the 

model with spectral normalization achieved a Dice score of 61.57%, IOU of 46.17%, AJI 

of 48.11% and Pixel Accuracy of 92.09%. In another experiment, we trained the model 

with spectral normalization on our new dataset containing original as well as the generated 

synthetic IHC images. The Dice score, IOU, and Pixel accuracy of the model trained using 

spectral normalization dropped from 68.15% to 65.14%, 53.20% to 51.15%, and 94.20% to 

94.18%, respectively, while the AJI improved from 53.48% to 56.49%. As the results show, 

the addition of the synthetic images in training improved the model’s performance across all 

metrics.

To increase the inference speed of the model, we also experimented with many-to-one 

approach for segmentation/classification task to decrease the number of generators to one. 

In this approach, we still have four generators and four discriminators for inferring the 

modalities but use one generator and one discriminator (instead of five) for segmentation/

classification task, trained on the combination of all inferred modalities. We first trained 

this model with the original dataset. Compared to the original model with five segmentation 

generators, the Dice score, IOU, AJI, and Pixel Accuracy dropped by 12.13%, 10.21%, 

12.45%, and 3.66%, respectively. In another experiment, we trained the model with one 

segmentation generator on the new dataset including synthetic images. Similar to the 

previous experiment, using one generator instead of five independent generators deteriorated 

the model’s performance in terms of Dice score by 7%, IOU by 6.49%, AJI by 3.58%, and 

Pixel Accuracy by 0.98%. We observed that similar to the original model, the addition of 

synthetic IHC images in the training process with one generator could increase the Dice 

score from 49.44% to 61.13%, the IOU from 35.91% to 46.71%, the AJI from 35.50% to 

49.90%, and Pixel Accuracy from 88.03 to 93.22%, while reducing the performance drop, 

compared to the original model; this was still significantly less than the best performance 

from the multi-generator configuration, as shown above, Dice score 68.15%, IOU 53.20%, 

AJI 53.48%, and Pixel Accuracy 94.20%.

Testing Details.

The inference time of the model for a patch of 512 × 512 is 4 seconds. To infer modalities 

and segment an image larger than 512 × 512, we tile the image into overlapping patches. 

The tile size and overlap size can be given by the user as an input to the framework. The 

patches containing no cells are ignored in this step, improving the inference time. Then, we 

run the tiles through our model. The model resizes the given patches to 512 for inference. 

In the final step, we stitch tiles using the given overlap size to create the final inferred 

modalities and the classified segmentation mask. It takes about 10 to 25 minutes (depending 

on the percentage of cell-containing region, the WSI magnification level, user-selected tile 
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size and overlap size) to infer the modalities and the classified segmentation mask of a WSI 

with size of 10000 × 10000 with 40x magnification.

Ablation Study.

DeepLIIF infers four modalities to compute the segmentation/classification mask of an 

IHC image. We perform an ablation study on each of these four components. The goal of 

this experiment is to investigate if the performance improvements are due to the increased 

ability of each task-specific network to share their respective features. In each experiment, 

we trained our model with three modalities, each time removing a modality to study the 

accuracy of the model in absence of that modality. We tested all models on the BC Dataset 

of 164 images with size 512 × 512. The results show that the original model (with all 

modalities) with Dice score 65.14%, IOU 51.15%, AJI 56.49% and Pixel Accuracy of 

94.20% outperforms the model without Hematoxylin modality with Dice score 62.86%, IOU 

47.68%, AJI 50.10% and Pixel Accuracy 92.43%, model without mpIF DAPI with Dice 

score 62.45%, IOU 47.13%, AJI 50.38% and Pixel Accuracy 92.35%, model without mpIF 

Lap2 with Dice score 61.07%, IOU 45.71%, AJI 49.14%, and Pixel Accuracy 92.16%, and 

model without mpIF protein marker with Dice score 57.92%, IOU 42.91%, AJI 47.56%, 

and Pixel Accuracy 91.81%. The mpIF Lap2 is important for splitting overlapping cells and 

detecting boundaries (the model without mpIF Lap2 has the lowest AJI score). Moreover, 

mpIF Lap2 is the only modality among the four that clearly outlines the cells in regions 

with artifacts or noise. The model without mpIF protein marker image has the worst Pixel 

Accuracy and Dice score, showing its clear importance in cell classification. The mpIF 

DAPI image guides the model in predicting the location of the cells, given the drop in Pixel 

Accuracy and AJI score. Hematoxylin image on the other hand seems to make the least 

difference when removed, though it helps visually (according to two trained pathologists) by 

providing a separated hematoxylin channel from the IHC (Hematoxylin + DAB) input.
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Extended Data

Extended Data Figure 1. 
Qualitative and quantitative analysis of DeepLIIF against detection models on the testing set 

of the BC Data (9). (a) An example IHC image from the BC Data testing set, the generated 

modalities, segmentation mask overlaid on the IHC image, and the detection mask generated 

by DeepLIIF. (b) The detection masks generated by the detection models. In the detection 

mask, the center of a detected positive cell is shown with red dot and the center of a detected 

negative cell is shown with blue dot. We show the missing positive cells in cyan bounding 

boxes, the missing negative cells in yellow bounding boxes, the wrongly detected positive 

cells in blue bounding boxes, the wrongly detected negative cells in pink bounding boxes. 

(c) The detection accuracy is measured by getting average of precision TP
TP + FP , recall 

TP
TP + FN , and f1-score 2 × precision × recall

precision + recall  between the predicted detection mask of each 

class and the ground-truth mask of the corresponding class. A predicted point is regarded as 

true positive if it is within the region of a ground-truth point with a predefined radius (we 

set it to 10 pixels in our experiment which is similar to the predefined radius in (9)). Centers 

that have been detected more than once are considered as false positive. Evaluation of all 

scores show that DeepLIIF outperforms all state-of-the-art models.
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Extended Data Figure 2. 
Quantitative and qualitative analysis of DeepLIIF on modality inference. (a) The 

Quantitative analysis of the synthetic data against the real data using MSE, SSIM, Inception 

Score, and FID. The low value of MSE (close to 0) and the high value of SSIM (close to 

1) shows that the model generates high quality synthetic images similar to real images. (b) 

Visualization of first two components of PCA applied to synthetic and real images. We first, 

calculated a feature vector for each image using VGG16 model and then we applied PCA 

on the calculated feature vectors and visualized the first two components. As shown in the 
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figure, the synthetic image data points have the same distribution as the real image data 

points, showing that the generated images by the model have the same characteristics as the 

real images. (c) The original/real and model-inferred modalities of two samples taken from 

Bladder and Lung tissues are shown side-by-side.

Extended Data Figure 3. 
LAP2beta coverage for normal tissues. LAP2beta immunohistochemistry reveals nuclear 

envelope-specific staining in the majority of cells in spleen (99.98%), colon (99.41%), 

pancreas (99.50%), placenta (76.47%), testis (95.59%), skin (96.74%), lung (98.57%), liver 

(98.70%), kidney (95.92%) and lymph node (99.86%).
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Extended Data Figure 4. 
Qualitative and quantitative analysis of DeepLIIF against the same model without using 

mpIF Lap2, referred to as noLap2 model. (a) A qualitative comparison of DeepLIIF against 

noLap2 model. (b) Some example IHC images. The first image in each row shows the 

input IHC image. In the second image, the generated mpIF Lap2 image is overlaid on the 

classified/segmented IHC image. The third and fourth images show the segmentation mask, 

respectively, generated by DeepLIIF and noLap2.
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Extended Data Figure 5. 
Application of DeepLIIF on some H&E sample images taken from MonuSeg Dataset (8). 

We tested DeepLIIF, trained solely on IHC images stained with Ki67 marker, on H&E 

images. In each row, the inferred modalities and the segmentation mask overlaid on the 

original H&E sample are shown.
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Extended Data Figure 6. 
Overview of synthetic IHC image generation. (a) A training sample of the IHC-generator 

model. (b) Some samples of synthesized IHC images using the trained IHC-Generator 

model. The Neg-to-Pos shows the percentage of the negative cells in the segmentation mask 

converted to positive cells.
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Extended Data Figure 7. 
Samples taken from the PathoNet IHC Ki67 breast cancer dataset (22) along with 

the inferred modalities and classified segmentation mask marked by manual centroid 

annotations created from consensus of multiple pathologists. The IHC images were acquired 

in low-resource settings with microscope camera. In each row, the sample IHC image along 

with the inferred modalities are shown. The overlaid classified segmentation mask generated 

by DeepLIIF with manual annotations are shown in the furthest right column. The blue 

and red boundaries represent the negative and positive cells predicted by the model, while 

the pink and yellow dots show the manual annotations of the negative and positive cells, 

respectively.
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Extended Data Figure 8. 
Microscopic snapshots of IHC images stained with two different markers along with inferred 

modalities and generated classified segmentation mask.

Ghahremani et al. Page 22

Nat Mach Intell. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 9. 
Some examples from LYON19 Challenge Dataset (11). The generated modalities and 

classified segmentation mask for each sample are in a separate row.
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Extended Data Figure 10. 
Examples of tissues stained with various markers. The top box shows sample tissues stained 

with BCL2, BCL6, CD10, MYC, and MUM1 from DLBCL-morph dataset (24). The bottom 

box shows sample images stained with TP53 marker from the Human Protein Atlas (23). 

In each row, the first image on the left shows the original tissue stained with a specific 

marker. The quantification score computed by the classified segmentation mask generated 

by DeepLIIF is shown on the top of the whole tissue image, and the predicted score by 
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pathologists is shown on the bottom. In the following images of each row, the modalities and 

the classified segmentation mask of a chosen crop from the original tissue are shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of DeepLIIF pipeline and sample input IHCs (different brown/DAB markers 

– BCL2, BCL6, CD10, CD3/CD8, Ki67) with corresponding DeepLIIF-generated 

hematoxylin/mpIF modalities and classified (positive (red) and negative (blue) cell) 

segmentation masks. (a) Overview of DeepLIIF. Given an IHC input, our multitask deep 

learning framework simultaneously infers corresponding Hematoxylin channel, mpIF DAPI, 

mpIF protein expression (Ki67, CD3, CD8, etc.), and the positive/negative protein cell 

segmentation, baking explainability and interpretability into the model itself rather than 
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relying on coarse activation/attention maps. In the segmentation mask, the red cells denote 

cells with positive protein expression (brown/DAB cells in the input IHC), whereas blue 

cells represent negative cells (blue cells in the input IHC). (b) Example DeepLIIF-generated 

hematoxylin/mpIF modalities and segmentation masks for different IHC markers. DeepLIIF, 

trained on clean IHC Ki67 nuclear marker images, can generalize to noisier as well as other 

IHC nuclear/cytoplasmic marker images.
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Figure 2. 
Qualitative and quantitative analysis of DeepLIIF against state-of-the-art semantic 

segmentation models tested on BC Dataset (9). (a) Three example images from our training 

set. (b) A segmentation mask showing Ki67− and Ki67+ cell representation, along with 

a visual segmentation and classification accuracy. Predicted classes are shown in different 

colors where blue represents Ki67− and red represents Ki67+ cells, and the hue is set using 

the log2 of the ratio between the predicted area and ground-truth area. Cells with too large 

areas are shown in dark colors, and cells with too small areas are shown in a light color. 
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For example, if the model correctly classifies a cell as Ki67+, but the predicted cell area 

is too large, the cell is colored in dark red. If there is no cell in the ground-truth mask 

corresponding to a predicted cell, the predicted cell is shown in yellow, which means that 

the cell is misclassified (cell segmented correctly but classified wrongly) or missegmented 

(no cell in the segmented cell area). (c) The accuracy of the segmentation and classification 

is measured by getting the average of Dice score, Pixel Accuracy, absolute value of IHC 

Quantification difference between the predicted segmentation mask of each class and the 

ground-truth mask of the corresponding class (0 indicates no agreement and 100 indicates 

perfect agreement). Evaluation of all scores shows that DeepLIIF outperforms all state-of-

the-art models. (d) As mentioned earlier, DeepLIIF generalizes across different tissue types 

and imaging platforms. Two example images from the BC Dataset (9) along with the 

inferred modalities and generated classified segmentation masks are shown in the top rows 

where the ground-truth mask and segmentation masks of five state-of-the-art models are 

shown in the second row. The mean IOU and Pixel Accuracy are given for each model in the 

box below the image.
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Figure 3. 
Qualitative and quantitative analysis of DeepLIIF against state-of-the-art semantic 

segmentation models tested on NuClick Dataset (21) and four sample images from the 

LYON19 challenge dataset (11). (a) A segmentation mask showing CD3/CD8+ cells, along 

with a visual segmentation and classification accuracy. Predicted CD3/CD8+ cells are shown 

in red color, and the hue is set using the log2 of the ratio between the predicted area and 

ground-truth area. Cells with too large areas are shown in dark colors, and cells with too 

small areas are shown in a light color. For example, if the model correctly classifies a cell as 
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CD3/CD8+, but the predicted cell area is too large, the cell is colored in dark red. If there 

is no cell in the ground-truth mask corresponding to a predicted cell, the predicted cell is 

shown in yellow, which means that the cell is missegmented (no corresponding ground-truth 

cell in the segmented cell area). (b) The accuracy of the segmentation and classification is 

measured by getting the average of Dice score, Pixel Accuracy, and IOU (intersection over 

union) between the predicted segmentation mask of CD3/CD8 and the ground-truth mask 

of the corresponding cells (0 indicates no agreement and 100 indicates perfect agreement). 

Evaluation of all scores shows that DeepLIIF outperforms all state-of-the-art models. (c) As 

mentioned earlier, DeepLIIF generalizes across different tissue types and imaging platforms. 

Two example images from the NuClick Dataset (21) along with the modalities and classified 

segmentation masks generated by DeepLIIF, are shown in the top rows where the ground-

truth mask and quantitative segmentation masks of DeepLIIF and state-of-the-art models are 

shown in the second row. The mean IOU and Pixel Accuracy are given for each generated 

mask. (d) Randomly chosen samples from the LYON19 challenge dataset (11). The top row 

shows the IHC image, and the bottom row shows the classified segmentation mask generated 

by DeepLIIF. In the mask, the blue color shows the boundary of negative cells, and the red 

color shows the boundary of positive cells.
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Figure 4. 
The t-SNE plot of tested IHC markers on DeepLIIF. The structure of the testing dataset 

is visualized by applying t-SNE to the image styles tested on DeepLIIF. The IHC protein 

markers in the tested datasets were embedded using t-SNE. Each point represents an IHC 

image of its corresponding marker. Randomly chosen example images of each marker are 

shown around the t-SNE plot. The black circle shows the cluster of training images. The 

distribution of data points shows that DeepLIIF is able to adapt to images with various 

resolutions, color and intensity distributions, and magnifications captured in different 

clinical settings, and successfully segment and classify the heterogeneous collection of 

testing sets covering eight different IHC markers.
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Figure 5. 
IHC quantification of four cancer type images taken from Protein Atlas IHC Ki67 dataset. 

In each row, a sample is shown along with the inferred modalities and the classified 

segmentation mask. The demographic information of the patient and the details about the 

staining, along with the manual protein score and the predicted score by DeepLIIF are 

reported next to each sample.
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Figure 6. 
Overview of DeepLIiF. The network consists of a generator and a discriminator component. 

It uses ResNet-9block generator for generating the modalities including Hematoxylin, mpIF 

DAPI, mpIF Lap2, and mpIF Ki67 and UNet512 generator for generating the segmentation 

mask. In the segmentation component, the generated masks from IHC, Hematoxylin, mpIF 

DAPI, and mpIF Lap2 representations are averaged with pre-defined weights to create 

the final segmentation mask. The discriminator component consists of the modalities 

discriminator module and segmentation discriminator module.
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