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Abstract

Mechanistic/data-driven hybrid modeling is a key approach when the mechanistic details of

the processes at hand are not sufficiently well understood, but also inferring a model purely

from data is too complex. By the integration of first principles into a data-driven approach,

hybrid modeling promises a feasible data demand alongside extrapolation. In this work, we

introduce a learning strategy for tree-structured hybrid models to perform a binary classifica-

tion task. Given a set of binary labeled data, the challenge is to use them to develop a model

that accurately assesses labels of new unlabeled data. Our strategy employs graph-theo-

retic methods to analyze the data and deduce a function that maps input features to output

labels. Our focus here is on data sets represented by binary features in which the label

assessment of unlabeled data points is always extrapolation. Our strategy shows the exis-

tence of small sets of data points within given binary data for which knowing the labels

allows for extrapolation to the entire valid input space. An implementation of our strategy

yields a notable reduction of training-data demand in a binary classification task compared

with different supervised machine learning algorithms. As an application, we have fitted a

tree-structured hybrid model to the vital status of a cohort of COVID-19 patients requiring

intensive-care unit treatment and mechanical ventilation. Our learning strategy yields the

existence of patient cohorts for whom knowing the vital status enables extrapolation to the

entire valid input space of the developed hybrid model.

Introduction

By learning from data, Machine Learning (ML) allows to model complex systems in which the

mechanisms controlling the system are poorly understood [1]. Such challenges appear particu-

larly in medical and biomedical contexts [2, 3]. Here, ML has become one of the most practica-

ble tools for building predictive models [4, 5]. However, the predictions obtained with ML

methods are only reliable within the convex hull of the given training data [6, 7].
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Extrapolation, i.e., accurate prediction beyond the convex hull of the given training data, is

conceptually impossible without further enhancement of the machinery [7–9].

Another drawback of ML methods is that they suffer from the curse of dimensionality

(COD) [10]. The COD refers to the high demand for training data, which is usually exponen-

tial in the complexity of the model [11, 12]. Towards breaking the COD, ML methods such as

DNNs have been developed for specific classes of input-output (i-o) functions [13, 14]. How-

ever, also DNNs cannot offer a generic solution for all classes of functions that need to be

approximated [15].

These drawbacks of pure ML methods hamper sufficient performance of predictive models

in medical and biomedical applications [16, 17]. In particular, attempts to develop diagnostic

and prognostic models for the individual patients suffering from Coronavirus disease 2019

(COVID-19) have shown a moderate performance alongside poor generalizability [18, 19].

The large number of potentially relevant features for prognosis and diagnosis of COVID-19

requires novel data analysis and predictive-model development methods [20]. The obtained

models should be capable of making reliable predictions not only for multi-dimensional fea-

ture spaces but also from data of biased or small cohorts of patients [19, 21].

The aforementioned problems can be tackled by integrating a priori available knowledge of

the system structure into ML learning processes, which is done in Structured Hybrid Models

(SHMs) [22, 23]. SHMs can be realized by modular neural networks [24] with given connec-

tions among input features and network modules: each module of the first layer represents a

known sub-process of the overall system and takes a subset of the input features as its input,

every other module reads inputs from previous layers to compute its (intermediate) output.

The final output modules then combine the precomputations to determine the overall output

of the system. Each module of the network is represented either via known physics-based

equations (white-boxes) or via an unknown black-box to be trained by ML methods. As

attested by the COD, the complexity of each black-box module, which is the number of exam-

ples needed to determine the input-output function of the module, scales exponentially with

the dimension of its input vectors [13]. By employing various black-box modules with fewer

input variables, the overall complexity of an SHM is usually much lower than the respective

complexity of pure ML methods where a single black-box deals with the entire input vector.

This way, SHMs can serve as a framework to overcome the conceptual drawbacks of ML.

Particularly in process modeling, for example in chemical engineering [25–27], input-

output relations are modeled as a composition of unknown black-box and known white-

box modules. In such a hybrid structure, the overall model maps input data in Rn to outputs in

R. The number of inputs for each black-box module in the hybrid structure is typically much

lower than the total number of inputs n to the network. It was shown in [22, 23] that all

unknown functions of the black-box modules in a tree-structured network can be uniquely

determined as long as the training data set is distributed (in a strong formal sense) around a d-
dimensional manifold in Rn with sufficient differentiability, where d is a bound on the number

of inputs to the black-box modules. In case d< n, the trained hybrid model can extrapolate

resulting in the reduction of training data demand towards breaking the COD.

However, the superiority of hybrid models in terms of data-demand reduction and extra-

polability as described in [22, 23] is based on the availability of densely distributed training

data on low-dimensional subsets of Rn. This property restricts applications of hybrid modeling

to cases where highly correlated input-data distributions are available around low-dimensional

manifolds within the input data space. In contrast to such controlled systems, observational

data [28], such as in clinical data repositories, reflect mostly uncontrolled systems where the

data distribution is not squeezed around low-dimensional manifolds. Moreover, observational

data are often discrete or even binary.

PLOS ONE A training strategy for hybrid models to break the curse of dimensionality

PLOS ONE | https://doi.org/10.1371/journal.pone.0274569 September 15, 2022 2 / 22

Protection Officer of the University Hospital RWTH

Aachen, the raw patient data must not be made

publicly available, since a total anonymisation

cannot be guaranteed. However, researchers who

are interested in the data, may send their informal

request to the Department of Intensive Care

Medicine (Email: oim@ukaachen.de) of the

University Hospital RWTH Aachen with a statement

which research questions they aim at and which

data are necessary for this purpose. Then, in a

bilateral process, a solution for the data exchange

can be found in compliance with legal and ethical

restrictions. The process of generating the

synthetic data used in this study is introduced in

the manuscript under the Data sources section.

Also, the schematic representation of the structure

of the synthetic data is presented in the S1

Appendix.

Funding: Moein E. Samadi’s contribution to this

work was partially performed as part of the

Helmholtz School for Data Science in Life, Earth

and Energy (HDS-LEE, https://www.hds-lee.de/)

and received funding from the Helmholtz

Association of German Research Centres (https://

www.helmholtz.de/). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. There

was no additional external funding received for this

study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0274569
mailto:oim@ukaachen.de
https://www.hds-lee.de/)
https://www.helmholtz.de/
https://www.helmholtz.de/


In this work, we focus on binary data in order to provide a systematic extension of the

hybrid models presented in [22, 23] towards hybrid models with randomly distributed training

data within a binary feature space. This is meaningful for three reasons: first, binary hybrid

models exhibit all characteristics regarding data-demand reduction and extrapolability of

generic hybrid models without the specific numerical challenges of training on continuous

data. Second, any monotonic discrete black-box function can be represented by a composition

of binary black-box functions. This sequence indicates the generalizability of learning strate-

gies on binary hybrid models to generic, discrete black-box-based models. Moreover, we

expect learning strategies derived from binary models can further be generalized to even con-

tinuous feature spaces because discrete grid-based functions can be interpreted as local

approximations for smooth continuous functions. Third, for binary data divided into training

and test sets, any label assessment of unlabeled data points in the test set is always extrapola-

tion, since any binary data point not contained in the training data lies outside the convex hull

of the training data. Hence, the high prediction accuracy of a hybrid model for the test data,

the out-of-sample forecast performance, is a direct indicator of the extrapolability of the hybrid

model.

In this paper, we study classification tasks for binary labeled data represented by binary fea-

tures. Given a set of data, the challenge is to use them to develop a model that accurately

assesses labels of new unlabeled data. We present a learning strategy to compute a function

that maps input features to output labels. We assume that the structure of the mapping

between features and labels is known a priori and fits an SHM with an underlying tree struc-

ture. Our strategy uses graph-theoretic methods to deduce labels of new data points and to

obtain a function that maps input features to output labels. It turns out that the classification

efficiency of our hybrid model outperforms various supervised ML algorithms, namely Deep

Neural Network (DNN), Support Vector Machine (SVM), Random Forest (RF), and Logistic

Regression (LR). Additionally, our method shows the existence of small sets of data points for

which knowing their labels allows for extrapolation to the entire feature space. Accordingly,

our algorithm promises a lower training-data demand than sole data-driven methods.

In an application of our strategy, we have fitted a tree-structured hybrid model to the vital

status of a cohort of COVID-19 patients requiring intensive-care unit treatment and mechani-

cal ventilation. Our learning strategy yields the existence of patient cohorts for whom knowing

the vital status enables extrapolation to the entire valid input space of the developed hybrid

model.

The ability of hybrid models to extrapolate can boost applications of ML in medical and

clinical research. In medical contexts, ML faces a variety of barriers. On the one hand, the

patient-specific disease-driving mechanisms are often widely unexplored [17]. On the other

hand, medical data repositories tend to be biased by specific patient cohorts and restricted in

size, especially when compared to the reported data demands in DNN applications. Moreover,

the pooling of clinical data from heterogeneous sources requires a high degree of administra-

tive effort due to data privacy regulations. As a consequence, pure ML in medicine is currently

focused on specific tasks such as time-series analysis and pattern recognition, where data is

accessible from wearable devices and medical imaging technologies [16]. Therefore for clinical

studies, the integration of knowledge and ML in a hybrid-model setting is essential, particu-

larly for the development of predictive models that can make reliable predictions even outside

the convex hull of the given data.

The paper is organized as follows. In the next section, we introduce tree-SHMs for binary

classification. Then we present our learning strategy, comprising the Conflict-Graph construc-
tion and the Label determination, and we explain the graph-theoretic machinery we use. For

the application, we then summarize the synthetic and COVID-19 data sources. Next, we
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discuss the classification efficiency and the training-data demand of our learning strategy on

both the synthetic and the COVID-19 data. The paper ends with a conclusion and suggestions

for future projects.

Material and methods

Model

This section introduces our hybrid model, which integrates available measurement data into a
priori knowledge about the system. The input to our model consists of data obtained from

measurements, e.g. physiological data. The data is represented as d-dimensional vectors for

some d 2 N, where each entry corresponds to one feature that is assumed to be binary. So the

input vectors are elements of {0, 1}d.

The general task is to learn an unknown function that assigns to each potential input vector

its label, which can again be a 0 or a 1, depending on whether the data point belongs to the first

or the second of the two classes that constitute the classification task. We use a given training-
data set of input data and associated labels to learn the model. The training-data set covers only

a small subset of the d-dimensional hypercube that contains all valid input vectors. From this

information, we need to draw conclusions to also predict labels of unlabeled new data points.

In an SHM, see Fig 1 for a schematic example, mechanistic understanding of the underlying

system is used to partially pre-determine the structure of a network which maps input variables

Fig 1. A tree-structured hybrid network. The network maps binary input variables x 2 {0, 1}9 to binary outputs y 2 {0, 1}. Three first-layer black-

box modules each have separate input variables, and a single black-box module processes the partial outputs of the first layer to compute the overall

output of the network, which can then be interpreted as a decision for one of the two considered classes.

https://doi.org/10.1371/journal.pone.0274569.g001
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to output values by combining several sub-computations performed inmodules, where each

module represents a separate sub-process within the overall system. In our setting, each net-

work module is considered a black-box and will be trained using the available measurement

data, up to redundant invariants [22, 23].

We furthermore assume that the hybrid network has a tree structure with two layers: in the

first layer, independent black-box modules operate on separate input variables to complete

sub-computations of the main classification. In the second layer, a black-box module processes

the outputs of the modules from the previous layer towards the overall output of the network.

Without loss of generality, we can assume that the entries of the input vectors are ordered

according to the modules: that is, when there are k first-layer black-box modules, then the

first first-layer black-box module has as its input the first n1 entries of the overall input, and for

i 2 {2, . . ., k}, the i-th module takes as input the ni entries of the overall input starting at posi-

tion
Pi� 1

j¼1

nj þ 1.

In the described setting, the overall i-o relation can be represented as a k-dimensional

orthotope (hyperrectangle), where k is the number of first-layer black-box modules of the net-

work. Each cell of the orthotope represents a binary input vector, holding the corresponding

output label of the vector (which is 0 or 1). Each axis of the orthotope corresponds to the possi-

ble inputs of one first-layer module and thus, the i-th axis has length 2ni .

An orthotope related to the network structure of Fig 1 is depicted in Fig 2. The network in

Fig 1 is tree-structured with three first-layer black-box modules. The number of input variables

for each module is 3. Therefore, the orthotope is a 3-dimensional hypercube with 23 elements

on each axis of the cube. So, altogether, the orthotope has 29 cells, one for each valid binary

input vector for the SHM. We equip each cell corresponding to a training-data point with a

label that indicates the correct classification of the data point. The task is now to determine the

i-o function, or, equivalently, to predict the labels for all cells in the orthotope.

Learning strategy

Here we present our learning strategy for SHMs which is to perform a binary classification

task for binary input data. Recall from the previous section that we assume 2-layer tree-shaped

SHMs whose first layer, as well as the output layer, consist of black-box modules. The training

strategy consists of two parts called the Conflict-Graph construction and the Label determina-
tion. Together, the two procedures serve to evaluate the effect of local modifications in the

input on the overall output of the SHM. For some intuition, we give a detailed description of

the two procedures first. We then provide the full algorithm in pseudocode.

We assume that our SHM has k first-layer black-box modules and denote for every i 2 {1,

. . ., k} by ni the number of inputs to the i-th module. For example, the SHM of Fig 1 has k = 3

first-layer black-box modules with n1 = n2 = n3 = 3. For a vector v 2 f0; 1gni , we call every vec-

tor x 2 {0, 1}d for which for all j 2 {1, . . ., ni} the
Pi� 1

r¼1

nr þ j
� �

-th component of x equals the j-

th component of v an i-extension of v. For example in the SHM of Fig 1, the 9-dimensional vec-

tor (0, 0, 0, 1, 1, 0, 1, 0, 1) is a 1-extension of v = (0, 0, 0). We call i-extensions v�, w� of vectors

v;w 2 f0; 1gni equivalent if v� and w� are component-wise equal except (possibly) for the com-

ponents with indices in
Pi� 1

r¼1

nr þ 1; . . . ;
Pi

r¼1

nr

� �

. For instance, v� = (0, 0, 0, 1, 1, 0, 1, 0, 1) and

w� = (1, 0, 0, 1, 1, 0, 1, 0, 1) are equivalent 1-extensions of v = (0, 0, 0) and w = (1, 0, 0) for the

SHM of Fig 1. The idea behind this definition is that we want to extend inputs from single

modules to inputs for the entire SHM.
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Step 1: Conflict-graph construction. In a binary classification setting, the i-o function of

the i-th interior black-box module can be studied via a conflict graph G(V, E), see Fig 3. Here,

the vertex set V corresponds to the set of all input vectors of the related black-box module.

More precisely, the set V consists of the elements in f0; 1g
ni , where ni is the number of input

bits to the module. The set E is defined as follows: there is an edge between vertices u and v
precisely if there exist equivalent i-extensions u� and v� of u and v, respectively, with different

output labels.

Our learning strategy translates the information given by the training data into a conflict

graph for every black-box module. For a graph G(V, E), the 2-coloring problem on G can

Fig 2. The orthotope for the network structure of Fig 1. The dimension of the orthotope is equal to the number of first-layer black-box modules of

the tree-structured hybrid network of Fig 1. Each cell of the orthotope, characterized by three coordinates, represents an input data point holding the

corresponding output label. Each intersection of a hyperplane with the orthotope holds input data with a constant input for a specific first-layer black-

box module. For example, the uppermost horizontal blue slice of the orthotope illustrates all input vectors whose last three entries are 1, 1, 1.

https://doi.org/10.1371/journal.pone.0274569.g002
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be phrased as the task to find a mapping f:V! {0, 1} such that adjacent vertices always have

distinct f-values. The partition of the vertex set into the two-color classes is unique if and

only if the graph G is connected, i.e., there is a path between any two vertices in the graph

[29]. By the definition of the edge set, the introduced conflict graphs must all be bipartite,

i.e., 2-colorable. Indeed, consider an edge connecting two vertices u and v in the conflict

graph for the i-th moduleMi. This means, by definition, that there are equivalent i-exten-

sions of u and v which have different overall outputs. Since the i-extensions are equivalent,

this change in the output can only be caused by different (intermediate) outputs ofMi on

u and v. Hence, assigning to every vertex in the conflict graph forMi the output ofMi on

the corresponding ni-dimensional 0–1-vector constitutes a valid choice for f, proving the

2-colorability.

Fig 3. A 2-colorable graph representing the i-o function of a black-box module. Vertices of the graph denote all inputs of the module. Different

colors of the vertices represent different outputs of the module. The graph has 8 = 23 vertices because the module takes three binary variables as inputs.

https://doi.org/10.1371/journal.pone.0274569.g003
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Suppose we are given a tree-SHM that maps binary input variables x 2 {0, 1}d to outputs

y 2 {0, 1} and has k first-layer black-box modules. For a set of training data vectors x with asso-

ciated labels y, the steps of the Conflict-graph construction are as follows:

For i 2 {1, . . ., k}, to construct the edges of the graph Gi of the i-th module, consider all

pairs of vertices v, w 2 V(Gi) (i.e., all elements in f0; 1g
ni) and insert an edge between v and w

precisely if there exist equivalent i-extensions v�, w� of v and w such that v� is labeled 0 and w�

is labeled 1.

The 2-coloring problem of Gi has an unambiguous solution. In other words, the partition

of the vertex set induced by the two colors is unique, if and only if Gi is a connected graph. In

that case, we can determine the internal i-o function f of the i-th first layer moduleMi up to a

permutation of 0 and 1 by starting in an arbitrary vertex and assigning to it the value, say, 0.

Then, by using a breadth-first-search, we can compute the partition of V(Gi) into two sets V0
i

and V1
i , where for j 2 {0, 1}, the set Vji contains all inputs x toMi with f(x) = j.

However, even if every graph Gi is connected, this only gives us information about the func-

tions computed by the first-layer modules, i.e., for the intermediate outputs. To obtain the

overall i-o function, we still need to combine this knowledge to compute the final outputs for

all possible inputs. In the second step of our strategy, we, therefore, focus on determining

actual output labels.

Step 2: Label determination. Having prepared the graphs Gi for all the modules, the

Label determination aims to determine the unknown output labels of specific input data points

by using the knowledge about the i-o functions of interior black-box modules acquired in Step

1. The determined labels for new input data points serve as new training data for Step 1 and

may reduce the number of connected components in the updated Gi, thus providing more

information about the i-o function of the black-box modules. The Label determination applies

the following well-known result due to Kőnig [30] to the bipartite graphs Gi(V, E).

Theorem. A graph G(V, E) is 2-colorable if and only if it has no cycles of odd length.
Building on this insight, the following procedure tries to determine the labels of input data

that are not yet labeled. Recall that for a tree-structured hybrid network with binary input vec-

tors and k first-layer black-box modules, we can use a k-dimensional orthotope with cell labels

to embody the i-o relation.

I. Let x be the lexicographically smallest d-dimensional binary vector for which the label has

not yet been determined.

II. For i 2 {1, . . ., k}, check if assigning label ‘0’/‘1’ to x creates a cycle of odd length in any of

the Gi (by the definition of their edge relation). If it does, assign to x the opposite label, so as

to maintain the 2-colorability of the graph by Kőnig’s Theorem.

III. If II was successful (i.e., a label was assigned) and there are still unlabeled input vectors, go

to Step 1. If II was not successful and x was not the vector 1d, i.e., not the lexicographically

largest vector, update x to the lexicographically next unlabeled input vector and repeat II.

Otherwise, terminate.

Fig 4 gives a schematic representation of the Label determination procedure. By labeling

previously unlabeled vectors, we expand the training data set for the Conflict-graph construc-

tion. Therefore, we can now repeat Step 1 and update the graphs Gi by inserting additional

edges according to the new information. This way, alternating between Step 1 and Step 2, the

procedure stops when we have filled the entire orthotope that states the labels for the possible

input vectors or reached a situation where we cannot deduce further labels for the empty cells.

The former case means that our learning strategy can extrapolate to the entire valid input
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space. In the latter case, however, additional training data points would be required to deter-

mine the labels of all unlabeled data points.

Algorithm 1 shows in pseudocode how the Conflict graph construction and the Label deter-

mination are combined to form our final algorithm.

Algorithm 1 The full training strategy in pseudocode.
Input: A list of pairs (x, ℓ) of distinct data points x 2 {0, 1}d and
binary labels ℓ 2 {0, 1}; integers ni for all i 2 {1, . . ., k} (for some

k) with
Pk

i¼1

ni ¼ d

Output: A partial mapping f:{0, 1}d ! {0, 1} representing the label
predictions that can be derived from the input data.
1: For every input (x, ℓ), set f(x) ℓ.
2: for i 2 {1, � � �, k} do
3: Initialize a graph Gi(Vi, Ei) with Vi ¼ f0; 1g

ni and Ei = ;.
4: end for
5: While f is not total do //[i.e., there are x where f(x) is
undefined]
6: for i 2 {1, � � �, k} do
7: for v, w 2 V(Gi) do
8: if there are equivalent i-extensions v�, w� of v, w such that f
(v�) = 0 and f(w�) = 1 then
9: Ei  Ei[{{v, w}}.
10: end if
11: end for
12: end for
13: u  false //u stores whether the following procedure
updates f
14: for x 2 {0, 1}d do
15: if f(x) is undefined then
16: for i 2 {1, � � �, k} do

Fig 4. Schematic representation of the Label determination procedure. The left figure shows an intersection of a hyperplane of constant inputs, say 0,

0, 0, for Module 2 with the orthotope of the network of Fig 1 (i.e., a “red slice”). The right figure represents the related conflict graph for Module 1. In

accordance with Kőnig’s theorem, adding the dashed line to the edge set breaks the bipartiteness of the graph. Since assigning label 0 to the input vector

(0, 0, 0, 0, 0, 0, 0, 0, 1) would imply the existence of an edge between (0, 0, 0) and (1, 0, 1) in the conflict graph, the label for the ‘?’ cell must be 1.

https://doi.org/10.1371/journal.pone.0274569.g004
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17: if setting f(x)  0 would create a cycle of odd length in Gi
(by updating the edge set as described in Lines 7–9) then
18: f(x)  1
19: u  true
20: else if setting f(x)  1 would create a cycle of odd length
in Gi then
21: f(x)  0
22: u  true
23: end if
24: end for
25: end if
26: end for
27: if u = false then
28: return f
29: end if
30: end while
31: return f

Data sources

Synthetic data. To benchmark our learning strategy, we generated 30 tree structures for

2-layered SHMs with binary inputs x 2 {0, 1}d, d 2 {8, 9, 10, 11, 12}, three black-box modules

in the first layer, and binary output labels y 2 {0, 1}. The details and the schematic representa-

tion of the tree structures used for generating the synthetic data are depicted in S1 Appendix.

Each structure was randomly constructed in a way that each first-layer black-box module

operates on 2–6 separate input entries and forwards the partial results to the black-box output

module.

We now describe how we obtained the labels for the synthetic data sets. For the associated

SHMH of each data set, we generated random i-o functions for the three first-layer black-

box modules and the output module. Then for each d-dimensional input to the network, we

computed the partial outputs of the first layer followed by the overall output of the output

layer, which we used as the label for the corresponding input vector.

COVID-19 data. This analysis was approved by the local ethical review board (EK 091/20;

Ethics Committee, Faculty of Medicine, RWTH Aachen, Aachen, Germany). The Ethics Com-

mittee waived the need to obtain Informed consent for the collection, analysis of the retrospec-

tively obtained, de-identified data as well as the publication of the results of the analysis. All

methods were carried out in accordance with relevant guidelines and regulations.

Concerning the COVID-19 data, the studied population consists of patients with confirmed

COVID-19 who had been admitted to the Intensive Care Unit (ICU) at University Hospital

RWTH Aachen. The analyzed cohorts consisted of severely ill patients requiring invasive

mechanical ventilation at least once throughout their ICU stay.

The clinical information of 63 adult patients (age�18 years) was collected between March

and the end of June 2020. The median age was 62 years (interquartile range 58–70 years), and

66.7% of the patients (n = 42) were male. 27 patients did not survive during their ICU treat-

ment, resulting in a mortality rate of 42.9%. The median length of stay in the ICU was 27.0

days (interquartile range 16.3—50.8 days). Table 1 presents the biometric and physiological

parameters of the studied cohort of COVID-19 patients on the ICU admission, including the

physiological parameters required for the sequential organ failure assessment score (SOFA

score [31]).

Almost all of the biometric and physiological patient information was collected as continu-

ous values in diverse ranges and scales. Since our learning strategy requires binary data, we

converted the initial continuous data into binary representations. As outlined in S2 Appendix,

PLOS ONE A training strategy for hybrid models to break the curse of dimensionality

PLOS ONE | https://doi.org/10.1371/journal.pone.0274569 September 15, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0274569


the first step of the data binarization was to use a decision-tree classifier to classify patients

according to their vital status. We used biometric information and physiological parameters

from the first seven days of the patients’ ICU stay as the attributes of the classification. S1

Table depicts the median and the interquartile range of the physiological parameters used in

the decision-tree classifier. In the second step of the data binarization, we binarized the most

important patient features obtained from the decision-tree classifier. The binarization thresh-

old for each feature is its related critical value in the decision tree classifier. Table 2 shows

these features and the critical values used for the binarization. Finally, we labeled the 5-dimen-

sional binarized clinical patient data based on a 0.75 threshold on the mortality ratio. The

obtained binary patient information and the associated mortality labels constitute the labeled

data set for testing our learning strategy.

Results and discussion

Classification efficiency in the synthetic data

The main advantage of hybrid models compared with data-driven ones is the ability to extrap-

olate, i.e., to accurately predict labels for data points outside the convex hull of the given train-

ing data. In binary data, the convex hull of the training data only contains the training data

Table 1. Biometric and physiological parameters of the studied COVID-19 patients on the ICU admission. Values

are represented as n (%) or median (interquartile-range).

Total Survivor Non-survivor

No. 63 (100) 36 (57) 27 (43)

Age (y) 62 (12) 60 (11.8) 66 (9.5)

Body mass index (BMI) 29.1 (5.9) 29.2 (4) 28.6 (11.5)

Male gender 42 (67) 26 (72) 16 (59)

Length of ICU stay (days) 27.0 (34.5) 34.8 (31.5) 17.6 (18.2)

Length of MV (days) 23.6 (30.6) 29.3 (31) 17.6 (17.9)

PaO2/FiO2 (mmHg) 92.4 (50.2) 99.9 (54.9) 88 (40.3)

Arterial pressure (mmHg) 56 (10.7) 56.6 (11.5) 54.5 (10)

Bilirubin 0.7 (0.5) 0.5 (0.4) 0.9 (1.1)

Platelets (×103/μl) 220 (153) 215 (129.2) 241.5 (138)

Creatinine 1.1 (1.4) 0.9 (0.8) 1.3 (1.7)

Urine output (ml/d) 780 (1057.5) 800 (1245) 630 (870)

https://doi.org/10.1371/journal.pone.0274569.t001

Table 2. Critical values for binarization of the most important COVID-19 patient features.

‘0’ ‘1’

Age (years) <60 �60

BMI-1 BMI < 26 BMI� 26

BMI-2 (BMI < 24.2)_(26� BMI < 32) (24.2� BMI < 26)_(BMI� 32)

Acc.�(Min‡. (
PaO2

FiO2
)) (mmHg) �298 <298

Acc.(Min.(Urine output)) (ml) <9584 �9584

� AccðxÞ ¼ S7

i¼1
1

7� iþ1
xi, where x is a sequence of 7 measurement values related to the first 7 days of ICU stay. The accumulation score sums up the values xi of the days,

with the days being weighted more heavily the closer they are to the respective point in time.
‡ A sequence of minimum values for each day of the ICU stay:Min(x) = [min(x1), . . ., min(x7)].

https://doi.org/10.1371/journal.pone.0274569.t002

PLOS ONE A training strategy for hybrid models to break the curse of dimensionality

PLOS ONE | https://doi.org/10.1371/journal.pone.0274569 September 15, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0274569.t001
https://doi.org/10.1371/journal.pone.0274569.t002
https://doi.org/10.1371/journal.pone.0274569


itself. So in order for a binary classification algorithm to be meaningful, the extrapolation abil-

ity is crucial.

We summarize the extrapolability of our learning strategy on the synthetic data. We con-

sider three different sizes Ntr of training-data sets containing 20%, 30%, and 40% of the whole

data sets. For each training-data size, we sampled for each of the 30 SHM structures and for

input dimensions d 2 {8, 9, 10, 11, 12} five training-data sets of according size from the 2d pos-

sible labeled data points. Then we executed our learning strategy and summarized the out-

comes with five measurement results: classification accuracy, recall, precision, and F1-score

[32]. Table 3 shows the results for the different training-data sizes Ntr.

For randomly chosen training-data sets containing at least 40% of the entire valid input

space, the average of the classification accuracy is close to 1. In particular, for training data

sizes Ntr of at least 40% of the entire valid input space, the median and the lower quartile of the

classification accuracy are 1, and the mean of the classification accuracy is above 0.99. Further-

more, there exist (randomly sampled) training-data sets with classification accuracy equal to 1

even with Ntr equal to 20% of the entire valid input space. So the tree structure of the SHM suf-

fices to guarantee the existence of small data sets with classification accuracy equal to 1. This

property, which cannot be observed in pure ML methods, underlines that hybrid models have

a high potential to reduce the training-data demand, see also [22, 23].

To compare the training data demand and classification efficiency of our method with

other ML classifiers, we performed the same classification problem on the same synthetic data

using different supervised learning methods, such as DNN, SVM, RF, and LR. We used grid-

search cross-validation [33] as a hyperparameter tuning method for SVM, RF, and LR. In par-

ticular, we employed 5-fold stratified cross-validation on shuffled training data. The perfor-

mances of the selected hyperparameters and trained models were then measured on a

dedicated evaluation set that was not used during the model selection step. For DNNs, we used

Keras Tuner [34, 35] hyperparameter optimization framework to optimize the hyperpara-

meters of DNNs for each data dimension. The details of the optimized hyperparameters of the

employed ML methods are shown in S3 Appendix.

As summarized in Table 4, the classification efficiency of our hybrid model notably outper-

forms the other ML models, especially for smaller training-data sizes Ntr. Fig 5 displays the

increase in the classification accuracy when adding training data is much quicker in our classi-

fier compared with the other models. In particular, the median of the classification accuracy of

our strategy for training data sizes Ntr of at least 20% of the entire valid input space approaches

1, whereas, for the DNN classifier, it is still 0.93 for training data-sizes equal to 40% of the

entire valid input space.

Table 3. Classification results of the hybrid model on the synthetic data.

Ntr Classification Result Accuracy Recall Precision F1-score

20% Median (IQR�) 0.98 (0.03) 0.99 (0.05) 1.00 (0.02) 0.99 (0.03)

Mean (SD‡) 0.93 (0.11) 0.93 (0.11) 0.97 (0.06) 0.95 (0.08)

30% Median (IQR) 1.00 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Mean (SD) 0.98 (0.05) 0.97 (0.05) 0.99 (0.01) 0.98 (0.03)

40% Median (IQR) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Mean (SD) 0.99 (0.02) 0.99 (0.02) 0.99 (0.00) 0.99 (0.01)

� Interquartile range
‡ Standard deviation

https://doi.org/10.1371/journal.pone.0274569.t003
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The superiority of our proposed methodology in the designed binary classification over the

other supervised ML methods is firstly due to the reduced complexity in the SHM. An SHM

employs various black-box modules with fewer input variables instead of a single black-

box that deals with the entire input vector. The overall complexity of an SHM employing

various black-box modules is usually much lower than an ML method, where a single black-

box deals with the entire input vector. Secondly, our method can extrapolate, which is not the

case for the other ML models. The extrapolability of our method boosts the classification per-

formance of our methodology. As one of the consequences of the Curse of Dimensionality, the

volume of the convex hull of D-dimensional data scales by 1/D! [36]. In an SHM, the union of

the convex hulls of the sub-processes modules covers the volume that the hybrid model can

make accurate predictions. As the volume of the union of the convex hulls of the sub-process

is notably larger than the convex hull of the original data, 1/d1! + 1/d2! + . . . + 1/dk!� 1/D!,

where d1 + d2 + . . . + dk = D, the binary classification performance of the hybrid classifier

should outperform the other ML classifiers using a single black-box, which only guarantees

faithful predictions inside the convex hull of the original data.

Statistical analysis on the synthetic data classification results

We set up a statistical test for comparing the hybrid model with the other ML classifiers

(DNN, SVM, LR, and RF) on the synthetic data. It has been shown that non-parametric tests

are suitable for statistical comparisons of classifiers since they do not assume normal distribu-

tions or homogeneity of variance in accuracies or any other measure for the evaluation of

classifiers [37]. In particular, the Friedman test with the corresponding post-hoc tests is recom-

mended for comparing more than two classifiers over multiple data sets [37], which is the case

in our problem.

The Friedman test is a non-parametric counterpart of the repeated-measures ANOVA [37,

38]. First, it separately ranks the algorithms for each data set according to their classification

performances. Then it determines whether or not there is a statistically significant difference

between the average ranks of the algorithms. The null-hypothesis H0 of the Friedman test

states that all the algorithms are equivalent and so their ranks are equal. The Friedman statistic

Table 4. The comparison of the median of the binary classification measurement results on the synthetic data.

Ntr Classifier Accuracy Recall Precision F1-score

20% Hybrid Model 0.93 0.93 0.97 0.95

Deep Neural Network 0.86 0.82 0.82 0.82

Support Vector Machine 0.78 0.67 0.72 0.68

Logistic Regression 0.72 0.55 0.61 0.56

Random Forest 0.79 0.63 0.74 0.66

30% Hybrid Model 0.98 0.97 0.99 0.98

Deep Neural Network 0.90 0.87 0.85 0.85

Support Vector Machine 0.80 0.71 0.75 0.72

Logistic Regression 0.72 0.58 0.63 0.58

Random Forest 0.81 0.67 0.77 0.70

40% Hybrid Model 0.99 0.99 0.99 0.99

Deep Neural Network 0.91 0.88 0.89 0.88

Support Vector Machine 0.82 0.75 0.77 0.76

Logistic Regression 0.72 0.57 0.63 0.58

Random Forest 0.82 0.72 0.78 0.74

https://doi.org/10.1371/journal.pone.0274569.t004
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can be approximated by the Chi-squared distribution when the number of data sets n or the

number of classifiers k is large enough (i.e. n> 15 or k> 4), which are the cases in our prob-

lem. For the significance level of α = 0.001 and the degree of freedom (the number of classifiers

that we are comparing minus one) of DF = 4 the Chi-squared value equals 18.467. It means: if

we calculate a Chi-squared value greater than the critical value of 18.467 in our test, then the

null-hypothesis is rejected in favor of the alternative hypothesis H1 that the algorithms are not

equivalent.

Table 5 shows the Friedman test results of comparing the five algorithms on 270 different

data sets of our synthetic data using Statistical Tests for Algorithms Comparison (STAC)

Python Library [39]. The resulted Friedman statistics or Chi-squared is 379.611 that rejects the

Fig 5. The distribution of classification accuracies for binary classification on the synthetic data. For each model and each sizeNtr of the training

data, we sampled 150 training data sets with input dimension d 2 {8, 9, 10, 11, 12} and visualized the measured performance as box plots.

https://doi.org/10.1371/journal.pone.0274569.g005

Table 5. The Friedman test with significance level of 0.001.

Friedman statistics P value Result

379.611 1.110 × 10−16 H0 is rejected

https://doi.org/10.1371/journal.pone.0274569.t005

PLOS ONE A training strategy for hybrid models to break the curse of dimensionality

PLOS ONE | https://doi.org/10.1371/journal.pone.0274569 September 15, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0274569.g005
https://doi.org/10.1371/journal.pone.0274569.t005
https://doi.org/10.1371/journal.pone.0274569


null-hypothesis. Furthermore, the ranking of the algorithms is presented in Table 6 based on

the average ranks of the algorithms over all data sets showing that our method is the best per-

forming algorithm.

We proceeded with the Holm method [40] as a post-hoc test to compare the ML classifiers

with the hybrid model as a control model. The null-hypothesis in this caseH0
0

states that the

control method is equivalent to the other algorithms (compared in pairs). The decision rule

for rejecting the null-hypothesis is defines as whether the adjusted P value by the Holm

method is lower than the significance level α = 0.001 or the test statistics z is greater than the

critical value of 3.090 (for α = 0.001). The z value for comparing the i-th and j-th classifier is

z¼ jRi � Rjj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkðkþ 1Þ=6n

p
, where Ri is the average rank of the i-th algorithm [37]. Table 7

shows the results of the post-hoc test using STAC Web Platform [39]. All the pairwise compar-

isons reject the null-hypothesis in favor of the alternative hypothesisH0
1

that the control

method, here the hybrid model, is not equivalent to the other algorithms.

We also investigated the influence of the dimensionality of the synthetic data set and the

noise intensity in the classification efficiency of our model and compared the results with the

other ML models. As the influences of the data dimensionality and the noise intensity in classi-

fication are highly dependent on the size of the training-data Ntr, we performed the investiga-

tion for a fixed size of the training data, N = 200 data points (or patients), in a way that it is

meaningful for clinical studies.

The detailed results of the influence of the data dimensionality and noise intensity in the

classification efficiency can be found in S4 Appendix, while visualization of the variation in

model performance across different algorithms can be drawn from Fig 6. The classification

efficiency of the hybrid model shows robustness against the increase of the data dimensional-

ity, while, as attested by the COD, the performance of the other supervised ML algorithms

notably suffers from the increase in the data dimension. Moreover, although adding noise to

data can cause undesirable consequences to the prior knowledge that a hybrid model is built

upon, the classification efficiency of the hybrid model outperforms other ML models even for

noisy data.

Lastly, we compared the time efficiency of our method with the other ML methods again

with a fixed number of N = 200 training data points. Fig 7 shows the average running time for

training the models and evaluating the predictions. The running time of the hybrid model is in

Table 6. The algorithms ranking.

Rank Average rank on all data sets Algorithm

1 1.372 Hybrid Model

2 2.281 Deep Neural Network

3 3.355 Random Forest

4 3.457 Support Vector Machine

5 4.533 Logistic Regression

https://doi.org/10.1371/journal.pone.0274569.t006

Table 7. Post-hoc test using the hybrid model as the control method.

Comparison z statistic Result

Hybrid Model vs Support Vector Machine 15.322 H0
0

is rejected

Hybrid Model vs Random Forest 14.574 H0
0

is rejected

Hybrid Model vs Logistic Regression 23.229 H0
0

is rejected

Hybrid Model vs Deep Neural Network 6.681 H0
0

is rejected

https://doi.org/10.1371/journal.pone.0274569.t007
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Fig 6. The influence of the dimensionality and the noise intensity of the synthetic data in the classification efficiency. The effect of data

dimensionality (left) and noise intensity (right) in the average of the classification accuracy for 150 experiments executed for each model and for

N = 200 data points.

https://doi.org/10.1371/journal.pone.0274569.g006

Fig 7. The running time efficiency. The comparison of the average running time of the examined methods for 150 experiments executed for each

model and for N = 200 data points.

https://doi.org/10.1371/journal.pone.0274569.g007
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the range of the other ML models even though the time needed for the hyperparameter optimi-

zation of the ML models is not considered.

Mortality estimation for cohorts of COVID-19 patients

To validate the potential applications of our strategy in life sciences, we studied the mortality

in a cohort of 63 severely ill COVID-19 patients requiring ICU treatment. First, we fitted an

SHM with an underlying tree structure to the COVID-19 data that maps the five binarized

patient features (see Table 2) to the corresponding vital status. As discussed in S1 Appendix,

the clinical and physiological information of the 63 patients was mapped to twenty different

5-dimensional binary representations out of the possible 25. Based on the knowledge about the

nature of the patient features in Table 2, we generated a hybrid network that consisted of two

first-layer black-box modules, see the Biometric and Physiology modules in Fig 8. The Biomet-

ric module operates on the binarized age and BMI attributes of the patients. The Physiology

module receives inputs related to the accumulation value of two physiological parameters,

namely PaO2/FiO2 and the urine output. Fig 8 also illustrates the associated orthotope of the

binarized COVID-19 data. The empty cells represent input data for which the label, i.e., the

Fig 8. The SHM and the associated orthotope for the COVID-19 data. The upper figure shows the hybrid network mapping five binarized patient

features to their vital status. The lower figure depicts the associated orthotope consisting of 20 cells with labels and 12 cells without a label.

https://doi.org/10.1371/journal.pone.0274569.g008
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vital status, is still to be determined. The i-o functions obtained from the interior black-

box modules of the COVID-19 hybrid network after training are shown in S1 Fig.

Fig 9 illustrates the results of our learning strategy to predict the vital status of the patients.

To cross-validate the results of our strategy, we partitioned the 20 available 5-dimensional

binary representations of the patient data into a training and a validation set. The test-data set

then consisted of the twelve unlabeled 5-dimensional binary representations of the patient

data and the validation set. The out-of-sample forecast performance was calculated for ran-

domly selected training data sets with 5� Ntr� 20 for the tree-structured SHM. The out-of-

sample forecast performance of an ML classifier is its test accuracy, which is the number of

data points for which the label has been predicted correctly divided by the total size of the test-

data set. Similarly, one can define the out-of-sample forecast performance of an SHM that per-

forms a classification task as the number of unlabeled data points for which the SHM com-

putes the right output divided by the total number of unlabeled valid inputs. The results on the

COVID-19 data confirm the existence of training-data sets constituting�40% of the entire

valid input space that has out-of-sample forecast performance equal to 1. Our method also

yields out-of-sample forecast performance equal to 1 for all tested (randomly chosen) training-

data sets of size at least 62% of the entire valid input space, which consists of the twenty differ-

ent 5-dimensional binary representations of the considered 63 patients. The filled orthotope

related to the COVID-19 hybrid network after training is shown in S2 Fig.

Fig 9. The out-of-sample forecast performance for the vital status of COVID-19 patients. The x-axis shows the percentage of the full input space

that was used as the training data. For each training-data set size, we randomly sampled 1000 training data sets and measured the forecast performance.

For randomly chosen training-data sets with a size of at least 56% of the entire valid input space, the median of the out-of-sample forecast performance

equals 1.

https://doi.org/10.1371/journal.pone.0274569.g009
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Conclusion

In this paper, we proposed a learning strategy for binary classification tasks in which the classi-

fication can be computed by a tree-structured network with binary input vectors. We designed

a structured hybrid model where the mechanistic knowledge about the system consists of the

tree structure of the network that computes the output. The learning strategy is described for

hybrid models with randomly distributed training data instead of densely distributed training

data on low-dimensional manifolds as assumed in [22, 23], and thereby it can be considered a

systematic extension of those works.

Compared with sole data-driven methods, our strategy promises a lower data demand since

fewer parameters needs to be trained. As another direct result of incorporating prior knowl-

edge into the modeling, it enables extrapolation. We evaluated our method by comparing its

classification performance on synthetic data with various supervised ML algorithms. The

numerical results testify to the lower data demand as well as the ability to extrapolate to the

entire valid input binary space of our model.

We also applied our strategy to construct a tree-structured hybrid network that predicts the

vital status of COVID-19 patients requiring intensive care-unit treatment and mechanical ven-

tilation. The results show that our strategy can capture the mapping between binarized clinical

patient information collected in the ICU stay and their vital status. As our application shows,

the proposed learning strategy for training hybrid predictive models in clinical studies has the

potential to extrapolate, i.e., make reliable predictions outside the convex hull of the given clin-

ical data. This property can boost applications of ML in medical and clinical research where

small-sized or biased clinical data sets occur.

There are two major limitations in this study that could be addressed in future research.

First, the general method introduced in this paper is limited to binary input data. We are

convinced that our method can be extended to continuous input data since the input to any

network is always specified within a finite precision and can therefore be discretized and binar-

ized. We plan to develop a proper data binarization step preparatory to the training step to

handle this limitation. Second, the study focused on tree-structured networks. In a non-tree

structured network, some input features are connected to more than one black-box module,

which limits the Conflict-Graph construction part of our training strategy. One way to over-

come this limitation is to omit those input features forming a non-tree structure and train the

model with the remaining features for all possible combinations of the omitted features. How-

ever, this approach is not efficient in terms of training data demand. The generalization of the

training strategy introduced in this paper to non-tree structured networks is a follow-up proj-

ect that seems to require a heuristic approach.

Supporting information

S1 Appendix. Schematic representation of the tree structures. Tree structured networks

mapping x 2 {0, 1}d, where d 2 {8, 9, 10, 11, 12}, to binary output labels y 2 {0, 1}.

(PDF)

S2 Appendix. COVID-19 data binarization. Conversion of the clinical and physiological

COVID-19 patient features to binary variables.

(PDF)

S3 Appendix. Hyperparameter optimization results. The optimized hyperparameters

resulted from grid-search cross-validation and Keras tuner for the supervised ML methods.

(PDF)
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S4 Appendix. The influence of the dimensionality and noise intensity of the synthetic data

on the classification efficiency. A comparison between the effect of data dimensionality and

noise intensity on the classification efficiency of the hybrid model and the other supervised

ML algorithm for the synthetic data.

(PDF)

S1 Fig. The i-o functions obtained of the interior black-box modules of the COVID-19

hybrid network after training. (Above:) An overview of the i-o function of the Biometric

module, the Physiology module, and the output modules of the COVID-19 hybrid network.

The circular and the radial axes represent the binary inputs to the module and mortality rates

for the considered 63 COVID-19 patients, respectively. The low mortality rates reflect noise in

the patient data. (Below:) The active cells of the orthotope related to each black-box module

are highlighted in blue.

(PDF)

S2 Fig. Filled orthotope of the COVID-19 hybrid network. The filled orthotope of the

COVID-19 network after performing the learning strategy. The black binary numbers repre-

sent the vital status in the original data, and the orange binary numbers display the predicted

vital status.

(PDF)

S1 Table. Physiological parameters used by the decision tree classifier of the COVID-19

patients’ vital status. The physiological parameters required for the SOFA score assessment.

The parameters were evaluated for the first 7 days of ICU stay.

(PDF)
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