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Background. Evidence describing the impact of diabetes mellitus (DM) on the recurrence and mutation rate of Mycobacterium 
tuberculosis (Mtb) is limited.

Methods. This study was nested in 3 cohort studies of tuberculosis (TB) patients with and without DM in India. Paired Mtb 
isolates recovered at baseline and treatment failure/recurrence underwent whole genome sequencing. We compared acquisition of 
single-nucleotide polymorphisms (SNPs), TB drug resistance mutations, and type of recurrence (endogenous reactivation [<8 SNPs] 
or exogenous reinfection [≥8 SNPs]) by DM status.

Results. Of 1633 enrolled in the 3 parent cohorts, 236 (14.5%) had microbiologically confirmed TB treatment failure/recur-
rence; 76 Mtb isolate pairs were available for sequencing (22 in TB-DM and 54 in TB-only). The SNP acquisition rate was overall was 
0.43 (95% confidence interval [CI], .25–.64) per 1 person-year (PY); 0.77 (95% CI, .40–1.35) per 1 PY, and 0.44 (95% CI, .19–.86) per 
1 PY at treatment failure and recurrence, respectively. Significant difference in SNP rates by DM status was seen at recurrence (0.21 
[95% CI, .04–.61]) per 1 PY for TB-only vs 1.28 (95% CI, .41–2.98) per 1 PY for TB-DM; P = .02). No significant difference in SNP 
rates by DM status was observed at treatment failure. Acquired TB drug resistance was seen in 4 of 18 (22%) in TB-DM vs 4 of 45 
(9%) in TB-only (P = .21). Thirteen (17%) participants had exogenous reinfection; the reinfection rate at recurrence was 25% (3/12) 
for TB-DM vs 17% (4/24) in TB-only (P = .66).

Conclusions. Considerable intrahost Mtb mutation rates were present at recurrence among patients with DM in India. One-
fourth of patients with DM had exogenous reinfection at recurrence.

Keywords. diabetes mellitus; drug resistance and recurrence; India; tuberculosis; whole genome sequencing.

Tuberculosis (TB) is one of the most lethal infectious disease 
globally. Despite the monomorphic population structure of the 
Mycobacterium tuberculosis (Mtb) pathogen [1, 2], TB disease 
presents with considerable clinical heterogeneity (eg, disease 
severity, treatment outcomes). Variable and adverse TB treat-
ment outcomes are likely the result of Mtb microevolution—the 
acquisition of mutations over time [3–5]. Previous studies es-
timate that the Mtb genome accumulates an average of 0.3–0.6 
single-nucleotide polymorphisms (SNPs) per year [6–9], which 
are in part due to stochastic mutations arising during bacte-
rial replication. Oxidative DNA damage is a key driver of Mtb 

mutations within the host, and different environments and im-
munologic stresses, such as human immunodeficiency virus 
(HIV) and diabetes mellitus (DM), may contribute to Mtb rep-
lication [2, 10–12]. DM increases the risk of TB and may ad-
versely impact TB treatment outcomes [13–15], but evidence 
describing the impact of DM on Mtb microevolution remains 
scarce.

DM is a known immune-altered state that is increasingly rec-
ognized as a comorbidity in the setting of TB and could have a 
significant impact on Mtb microevolution, including the acquisi-
tion of mutations conferring anti-TB drug resistance (similar to 
HIV), in high-burden settings [16–18]. To date, limited data sug-
gest that TB recurrence in the context of DM may be due to TB 
reactivation [19], but this evidence is limited by several factors, 
including small sample size, that the recurrence rates were not 
compared to TB patients without DM, and that the results remain 
unconfirmed by other studies in high-TB-prevalence settings.

To address this knowledge gap, we conducted a study nested 
within 3 large cohort studies among patients with pulmonary TB 
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with and without DM in India. Using whole genome sequencing 
(WGS) on Mtb strains among participants who had treatment 
failure or recurrence, we aimed to assess the impact of DM on 
the rate of mutation acquisition, including TB drug resistance, 
and type of recurrence-endogenous Mtb reactivation or exog-
enous Mtb reinfection, in India, a TB-DM epicenter [20, 21] 
where high TB prevalence persists due to high TB transmission 
rates.

MATERIALS AND METHODS

Study Design and Study Sites

The present study was nested within 3 large cohort studies 
among patients with new pulmonary TB with known DM 
status in India: Cohort for TB Research by the Indo-US 
Medical Partnership (C-TRIUMPh); Effects of Diabetes on 
TB Severity (EDOTS); and Impact of Diabetes Mellitus on TB 
Treatment Outcomes (TB-DM study) [20–23]. C-TRIUMPh 
and TB-DM recruited at Byramjee-Jeejeebhoy Government 
Medical College (BJGMC) in Pune and the National Institute 
for Research in Tuberculosis (NIRT) in Chennai; and EDOTS 
recruited at Professor M. Vishwanathan Diabetes Research 
Center (MVDRC) in Chennai. NIRT primarily enrolled parti-
cipants from semirural and rural populations, the BJGMC site 
recruited participants from semiurban and urban populations, 
and MVDRC recruited from 10 urban TB units. At entry, the 
parent studies obtained consent from all participants for the 
parent studies as well as to store Mtb isolates and conduct future 
procedures. Separate ethics committee approval was obtained 
from all 3 institutions and the Johns Hopkins University 
Institutional Review Board for this study.

Study Procedures

The study designs and procedures of the parent studies have 
been described elsewhere [21–23]. In brief, all 3 parent studies 
collected sputum at baseline for acid-fast bacilli (AFB) and 
mycobacteria growth indicator tube (MGIT) culture. All parti-
cipants received standard thrice-weekly anti-TB treatment via 
directly observed therapy. The regimen consisted of 450 mg 
(600  mg for those ≥60  kg body weight) rifampin, 600  mg 
isoniazid, 1200  mg ethambutol, and 1500  mg pyrazinamide 
during the intensive phase, followed by rifampin and isoniazid 
at the same doses during the continuation phase. Sputum AFB 
and MGIT culture were repeated at month 5/6 and if recurrent 
TB was suspected after completion of TB treatment. For the 
purposes of this study, TB treatment failure was defined as the 
presence of symptoms consistent with TB and positive culture 
at month 5 or 6. Recurrence was defined as the presence of 
new symptoms consistent with TB and positive culture after 
completion of 6 months of TB treatment and cure. DM was 
defined as hemoglobin A1c (HbA1c) ≥6.5%, fasting blood glu-
cose level of ≥126 mg/dL, random blood glucose >200 mg/dL,  

diabetes diagnosis by self-report, or current use of DM 
medication.

Whole Genome Sequencing

WGS was performed on Mtb strains isolated at baseline 
(screening or entry) and at treatment failure or recurrence. DNA 
was extracted from MGIT cultures using standardized proto-
cols. The paired sputum samples obtained from subculturing 
in Lowenstein-Jensen media were subjected to DNA extraction 
using a standardized protocol. In brief, Ultra-Deep Microbiome 
Prep kit (Molzym, Bremen, Germany) version 2.1 was used for 
removal of other DNA, lysis of pathogen, DNA purification, 
and DNA elution. We collected extracted DNA in elution tubes 
and preserved it at –20°C for shipment and sequencing. Isolated 
genomic DNA of individual Mtb strains was sequenced using 
the Illumina MiSeq sequencer as per manufacturer instruc-
tions (Illumina, San Diego, California) with 2 × 150-bp pair-
end reads and a minimum coverage of approximately 100-fold 
[24]. WGS was performed at Medgenome laboratories based 
in Bangalore, India. The WGS data analysis was performed 
using approaches similar to the methods described previously 
with some modifications [6, 7, 9]. In brief, the quality control 
of Illumina raw reads was examined by FastQC version 0.1.1.9 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), 
and reads were trimmed to remove low-quality bases (average 
quality per base <20) using Trimmomatic version 0.39 [24]. 
The filtered reads were then aligned to the H37Rv Reference 
Genome (GenBank accession number NC_000962) with the 
BWA-mem algorithm (version 0.7.17) [25]. The resulting SAM 
files were then sorted, converted to BAM format, and processed 
for duplicate removal with Picard (http://broadinstitute.github.
io/picard/) (version 2.24.0). The processed BAM files were 
then indexed with Samtools version 1.11 [26], followed by SNP 
and InDel calling using freebayes version 1.3.0 (github.com/
freebayes). As an additional quality check, the coverage of the 
genome was evaluated using Samtools and all genomes had a 
coverage >98% with a depth of at least 10 using the H37Rv ge-
nome as the reference.

To remove low-quality base calls, we filtered any base calls 
using the thresholds similar to a previous study [27]: variant 
depth on the forward and reverse strands >1 (SAF >1 and SAR 
>1), variant depth at each side of the site >1 (RPR >1 & RPL 
>1), mapping quality (MOM) >30, Phred-scaled base quality 
score (QUAL) >100, high-quality read depth (DP) >10, and 
QUAL/alternate allele observation count (AO) >10. Fixed 
SNPs were classified as positions where >90% of reads were the  
alternative allele (ALT), while heterogeneous SNPs were clas-
sified as positions where >10% and <90% of reads were ALT 
[28]. For heterogeneous SNP calling, a minimal 10 reads map-
ping to the ALT is required (AO ≥10). For paired isolates, a 
previously suggested allele frequency change ≥70% (ΔAF 
≥70%) was used as a cutoff to determine in-host evolution.  
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The variation annotation was performed using snpEff ver-
sion 4.3 [29]. Isolates with heterozygous SNPs at established 
lineage-specific sites were classified as mixed infections. The 
Mtb lineage was determined using a python script fast-lineage-
caller version 1.0 developed from the Farhat laboratory 
(https://github.com/farhat-lab/fast-lineage-caller), which used 
the freebayes vcf output as the as the input file and returned the 
lineage/sublineage calls. The program included 5 SNP schemes 
for Mtb [30, 31-34].

SNPs located at the mobile genetic elements, PE, PPE, and 
PE-PGRS gene regions that could potentially cause incorrect 
read alignment, were excluded in the SNP and phylogenetic 
analysis. Absolute number of accumulated SNPs was calculated. 
Recombination free core SNP alignment was generated and a 
maximum likelihood phylogenetic tree was inferred from the 
resulting SNP alignment in RAxML version 8.2.4 using a ge-
neral time-reversible model of nucleotide substitution and 4 
discrete gamma categories of rate heterogeneity (GTRGAMMA 
option). High confident mutations conferring drug resistance 
to isoniazid, rifampin, ethambutol, pyrazinamide, strepto-
mycin, levofloxacin, amikacin, and capreomycin were assessed 
using Mykrobe and TBProfiler using default settings [35, 36]. 
The Mykrobe and TBProfiler results were manually curated to 
check the consistency, and a combined resistance prediction 
was used.

Outcomes and Definitions

The outcomes were differences in SNPs and anti-TB drug 
resistance mutations among paired Mtb strains (isolated at 

baseline and treatment failure or recurrence) and type of re-
currence by DM status. The type of recurrence was classified 
as endogenous reactivation (<8 new SNPs at treatment failure 
or recurrence) or exogenous reinfection (≥8 new SNPs at re-
currence) [37]. Mtb lineage of isolated Mtb strains was also 
assigned.

Statistical Analysis

Participant characteristics and outcomes were summarized 
using descriptive statistics and compared by DM status using 
Fisher exact test. The rate of SNP acquisition per 1 person-
year (PY), with 95% exact Poisson confidence intervals (CIs), 
was calculated as the number of new SNPs among paired Mtb 
strains divided by the time interval (days) between Mtb iso-
lates. It was determined at treatment failure and recurrence and 
compared by DM status using Poisson regression. We excluded 
paired strains meeting definition of reinfection from SNP ac-
quisition rate calculation.

RESULTS

Among 1633 patients enrolled in the parent studies with new 
pulmonary TB, 236 (14.5%) had microbiologically confirmed 
TB treatment failure or recurrence (Figure 1). Of these, 84 of 
236 (35.6%) had paired Mtb isolates available (on January 2017) 
at baseline and treatment failure/recurrence and underwent 
WGS. Paired Mtb isolates from 76 of 84 (91%) patients (40 with 
treatment failure and 36 with recurrence) were evaluable and 
are included in this analysis; those excluded (n = 8) had either 

Figure 1. Study flowchart. Abbreviations: BJGMC JHU CRS, Byramjee-Jeejeebhoy Government Medical College–Johns Hopkins University Clinical Research Site; 
C-TRIUMPh, Cohort for Tuberculosis Research by the Indo-US Medical Partnership; EDOTS, Effects of Diabetes on TB Severity; MVDRC, Professor M. Vishwanathan Diabetes 
Research Center; NIRT, National Institute for Research in Tuberculosis; QC, quality control; TB, tuberculosis; TB-DM, Impact of Diabetes Mellitus on TB Treatment Outcomes.
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the presence of mixed infection (n = 2) or had failed quality 
control (n = 6).

Baseline characteristics are shown in Table 1. TB-DM and 
TB-only comprised 29% (n = 22) and 71% (n = 54) of the 
study population, respectively. The median HbA1c for TB-DM 
was 9.0% (interquartile range [IQR], 7.0%–10.4%) vs 5.7% 
(IQR, 5.5%–6.0%) for TB-only (P < .001). As shown in Figure 
2, baseline Mtb isolates had diverse lineages. The majority 
were Central Asia and East Africa Indian Ocean followed by 
European American and Beijing East Asia. Delhi Central Asia 
and East Africa Indian Ocean lineages predominated in Pune 
and Chennai, respectively.

Mutation Acquisition

Phylogenetic reconstruction of all 76 paired Mtb strains shows 
genetically distinct isolates by participant origin (Pune or 
Chennai) (Figure 3). Overall, 57 (84%) pairs acquired at least 1 
SNP at treatment failure or recurrence. After excluding 13 pairs 
with high SNP accumulation ranging from 21 to 1099 SNPs, 
the overall SNP acquisition rate was 0.43 (95% CI, .25–.64) per 
1 PY; 0.77 (95% CI, .40–1.35) per 1 PY at treatment failure, and 
0.44 (95% CI, .19–.86) per 1 PY at recurrence. The rate of SNP 
acquisition did not significantly differ by DM status at either 
treatment failure (0.61 [95% CI, .25–1.26] per 1 PY for TB-only 
vs 1.2 [95% CI, .39–2.80] per 1 PY for TB-DM; P = .27), but 

Table 1. Baseline Characteristics and Acquisition of Single-Nucleotide Polymorphisms Among Patients With Pulmonary Tuberculosis With Treatment 
Failure or Recurrence in India

Characteristic Overall (N = 76) Treatment Failure (n = 40) TB Recurrence (n = 36) 

Sex

  Female 14 (18) 10 (25) 4 (11)

  Male 62 (82) 30 (75) 32 (89)

Age, y, median (IQR) 38 (26–48) 38 (26–48) 38 (27–47)

BMI, kg/m2, median (IQR) 16 (15–19) 17 (15–19) 16 (14–19)

HIV 1 (1) 1 (3) 0

Smoker 29 (38) 15 (38) 14 (39)

Uses alcohol 44 (58) 21 (53) 23 (64)

Hemoglobin, g/dL, median (IQR) 12.0 (10.7–13.5) 11.5 (10.4–13.3) 12.5 (11.2–13.7)

HbA1c, %, median (IQR) 5.9 (5.6–6.7) 5.8 (5.6–6.3) 6.0 (5.6–7.3)

Diabetes mellitus

  Yes 22 (29) 10 (25) 12 (33)

  No 54 (71) 30 (75) 24 (67)

SNP acquisition excluding exogenous reinfection

  <1 SNP 58 (92) 32 (94) 26 (90)

  >2 SNP 5 (8) 2 (6) 3 (10)

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: BMI, body mass index; DM, diabetes mellitus; HbA1c, hemoglobin A1c; HIV, human immunodeficiency virus; IQR, interquartile range; SNP, single-nucleotide polymorphism; 
TB, tuberculosis.

Figure 2. Lineage of Mycobacterium tuberculosis strains isolated at baseline and tuberculosis treatment failure or recurrence in India.

771• CID 2022:75 (1 September) •Diabetes and TB Drug Mutations/Recurrence



differed significantly for recurrence (0.21 [95% CI, .04–.61] 
per 1 PY for TB-only vs 1.27 [95% CI, .41–2.98] per 1 PY for 
TB-DM; P = .02).

Acquisition of Drug Resistance

Twenty-one (28%) had resistance to ≥1 TB drug wither at base-
line or at treatment failure or recurrence (Table 2). Baseline 
Mtb isolates from 15 participants (2 with treatment failure and 
6 with recurrence) had resistance to ≥1 TB drug. Despite SNP 
accumulation among paired Mtb strains, TB drug resistance 
patterns remained unchanged for 13 (89%) paired isolates at 
treatment failure or recurrence. Of the remaining 8 pairs, ac-
quired TB drug resistance was more commonly seen among 
TB-DM participants than TB-only participants (4/18 [22%] in 
TB-DM vs 4/45 [9%] in TB-only; P = .21). At treatment failure, 
acquired drug resistance to isoniazid (katG), and ethionamide 
(ethA) was observed in 2 isolate pairs of TB-DM participants: 

Acquired resistance to fluoroquinolones (gyrA), capreomycin 
(rrs) in one pair and ethionamide (ethA) was observed in a 
TB-only participant (Table 2; Supplementary Materials). At re-
currence, a TB-DM participant acquired new TB drug resist-
ance mutations to multiple TB drugs (katG [isoniazid], rpoB 
[rifampicin], and pncA [pyrazinamide]), and 1 TB-DM par-
ticipant acquired resistance to ethionamide. In TB-only parti-
cipants, acquired resistance to isoniazid and streptomycin was 
observed in 1 pair each at recurrence (Table 2, Supplementary 
Materials). Due to the small number of TB-DM participants, 
the effect of DM on acquisition of drug resistance could not be 
assessed.

Exogenous Reinfection

Overall, 63 (83%) participants had paired Mtb strains with 
<8 SNP differences, indicating endogenous TB reactivation 
of TB at treatment failure or recurrence (Table 1, Figure 3). 
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The remaining 13 participants were categorized as having ex-
ogenous TB reinfection (6 at treatment failure and 7 at re-
currence) with SNP differences among paired Mtb strains 
ranging from 21 to 1099 (Table 3). Overall, exogenous re-
infections did not differ significantly among TB-DM when 
compared to TB-only (18% [4/22] vs 17% [9/54], respectively 
[n = 4/47]; P = .56). Exogenous reinfection rate at recur-
rence was 25% (3/12) for TB-DM vs 17% (4/24) for TB-only 
(P = .66).

DISCUSSION

The interaction between TB and DM has been recognized for 
decades. This nested cohort study of Mtb evolution among 
pulmonary TB patients (with and without DM) with treat-
ment failure or recurrence in India found high overall rates 
of SNP acquisition at recurrence among people with TB-DM. 
Accumulation of mutations conferring TB drug resistance 
to 1 or more TB drugs during and after TB treatment were 
more commonly seen among TB-DM participants. Although 

Table 2. Differences in Antituberculosis Drug Resistance Mutations Among Paired Mycobacterium tuberculosis Strains, According to Tuberculosis 
Treatment Outcome (n = 21)

Patient ID Origin 
Outcome 

Timing 

TB Drug Resistance Pattern, Mutation (TB Drug)

Baseline Follow-up 

Treatment failure

1 Pune Month 5 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

2 Pune Month 6 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

3 Pune Month 6 None Rrs (capreomycin, kanamycin, 
aminoglycosides, amikacin)

gyrA (fluoroquinolones, levofloxacin, 
ofloxacin, ciprofloxacin)

4 Pune Month 5 rpoB (rifampicin)
fabG1 (isoniazid, isoniazid)
pncA (pyrazinamide)

None

5 Pune Month 6 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

None

6 Pune Month 5 rpoB (rifampicin)
fabG1 (isoniazid, ethionamide)
pncA (pyrazinamide)

None

7a Chennai Month 5  None  katG (isoniazid)

8 Pune Month 5 ahpC (isoniazid) ahpC (isoniazid)

9a Pune Month 5 ethA (ethionamide) ethA (ethionamide)

10a Chennai Month 6 None ethA (ethionamide)

Recurrence

11 Pune Month 12 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

12 Pune Month 12 katG (isoniazid)
gyrB (fluoroquinolones, levofloxacin, 

moxifloxacin, ofloxacin, ciprofloxacin)
ethA (ethionamide)

katG (isoniazid)
gyrB (fluoroquinolones, levofloxacin, 

moxifloxacin, ofloxacin, ciprofloxacin)
ethA (ethionamide)

13 Pune Month 12 fabG1 (isoniazid) fabG1 (isoniazid)

14 Chennai Month 18 katG (isoniazid)
embB (ethambutol)

katG (isoniazid)
embB (ethambutol)

15a Chennai Month 18  None katG (isoniazid) 
pncA (pyrazinamide) 
rpoB (rifampin)

16a Pune Month 18 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

17 Pune Month 12 None  gid (streptomycin)
KatG (isoniazid)

18 Pune Month 18 gyrA (ciprofloxacin/moxifloxacin/ofloxacin, 
fluoroquinolones, levofloxacin)

None

19a Chennai Month 9 None ethA (ethionamide)

20a Chennai Month 7 ethA (ethionamide) ethA (ethionamide)

21 Chennai Month 7 ethA (ethionamide) ethA (ethionamide)

Abbreviations: ID, identification; TB, tuberculosis. 
aRepresents patients with TB and diabetes mellitus.
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recurrence events due to TB reactivation were common in our 
population, our analysis indicates that exogenous TB reinfec-
tion may be more common among patients with DM at recur-
rence compared to patients with TB alone. Overall, this study 
provides new evidence suggesting that comorbid DM may in-
crease the intrapatient Mtb mutation rate as well as the like-
lihood of exogenous TB reinfection in high TB-DM settings 
where TB transmission is high.

The overall intrapatient Mtb mutation rate of 1.2 SNPs/ge-
nome/year among people with TB-DM at recurrence is much 
higher than rates estimated by prior human and nonhuman pri-
mate studies at 0.3–0.6 SNPs/genome/year [6, 7]. Furthermore, 
compared to TB alone, the SNP accumulation rate was several-
fold higher among people with TB-DM. Furthermore, we ob-
served that 84% of paired Mtb strains accumulated 1 or more 
SNPs spanning TB treatment through 12 months after treat-
ment completion, which is relatively higher compared to prior 
studies. Although not statistically significant, acquisition of re-
sistance conferring mutations to 1 or more drugs was >2-fold 
higher among people with TB-DM. Multiple factors, including 
host immunity and pathogen factors, may play a role [2, 10–12]. 
Although rates of SNP acquisition during TB treatment were 
similar among participants with and without DM, patients with 
DM had close to 2-fold higher SNP accumulation after treat-
ment completion compared to patients with TB alone. We the-
orize that lower TB drug levels among patients with DM may 
have induced excessive oxidative DNA damage to Mtb strains, 
and could, in part, explain this finding [38, 39].

The majority of recurrence in our study population was due 
to endogenous TB reactivation. However, in contrast to a prior 
study from Mexico, we found that one-fourth of patients with 

DM had recurrence events due to exogenous Mtb reinfection 
at recurrence. Interestingly, although patients with DM in our 
study were more likely to have exogenous TB reinfection at 
recurrence, in contrast, exogenous reinfection causes the ma-
jority of recurrence among patients with HIV-TB coinfection 
[40, 41]. Both DM and HIV are immunosuppressed states and 
cause dysregulation of innate immune responses, which leads to 
high Mtb bacterial burden. However, our findings suggest that 
these immune-altered states may not be equal. Unlike HIV, DM 
adversely affects innate immune responses to TB followed by 
a hyperactive adaptive immune system, which likely provides 
some protection against exogenous reinfection after the first TB 
episode.

Acquired drug resistance was detected at both treatment 
failure and recurrence in our cohort. While 1 Mtb isolate pair 
acquired resistance to 2 key first-line anti-TB drugs, rifampin 
and pyrazinamide, 12 months after treatment completion, 
we observed that 7 more isolate pairs acquired resistance to 
both first- and second-line drugs—isoniazid, capreomycin, 
ethionamide, and fluoroquinolones—during and beyond TB 
treatment. While we did not observe primary drug resistance 
to anchor TB drugs, isoniazid and rifampin (a criterion for 
multidrug resistance), 4 baseline Mtb isolates were resistant to 
isoniazid and 5 were resistant to at least 1 first- or second-line 
TB drug. Notably, 4 isolate pairs had fluoroquinolone resist-
ance, a finding with a major repercussion—this effective drug 
may not be used for multidrug-resistant infections in these in-
dividuals or among the general population in the region if the 
fluoroquinolone-resistant strains are widespread.

Key strengths of our study include the utilization of WGS, 
which is known to identify the full spectrum of mutations, 

Table 3. Differences in Single-Nucleotide Polymorphisms and Lineage Among Paired Mycobacterium tuberculosis Strains Isolated From Participants 
With Exogenous Tuberculosis Reinfectiona, According to Diabetes Mellitus Status (n = 13)

Patient ID Participant Origin Outcome SNP Difference, No. 

Lineage

Baseline Outcome 

TB-only

1 Chennai Recurrence 522 East Africa Indian Ocean East Africa Indian Ocean

2 Chennai Failure 1092 Beijing East Africa European American

3 Pune Recurrence 186 Delhi Central Asia Delhi Central Asia

4 Pune Failure 267 Delhi Central Asia Delhi Central Asia

5 Pune Failure 1026 European American Delhi Central Asia

6 Pune Recurrence 1099 Delhi Central Asia European American

7 Pune Failure 24 Unknown Unknown

8 Pune Failure 155 Delhi Central Asia Delhi Central Asia

9 Pune Failure 1062 European American Delhi Central Asia

TB-DM

10 Chennai Recurrence 21 East Africa Indian Ocean East Africa Indian Ocean

11 Chennai Recurrence 21 East Africa Indian Ocean East Africa Indian Ocean

12 Chennai Recurrence 532 East Africa Indian Ocean East Africa Indian Ocean

13 Chennai Failure 503 East Africa Indian Ocean East Africa Indian Ocean

Abbreviations: DM, diabetes mellitus; ID, identification; SNP, single-nucleotide polymorphism; TB, tuberculosis.
aSNP difference >8 among paired Mycobacterium tuberculosis strains isolated at baseline and tuberculosis treatment outcome (treatment failure or recurrence).
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including mutations conferring drug resistance to all first-
and second-line TB drugs, as demonstrated in our study. 
Furthermore, we assessed and compared rates of SNP acquisi-
tion during and after TB treatment by DM status. A key limi-
tation, however, is that our small sample size was not powered 
to detect a small difference in the rate of acquisition of SNPs 
or drug resistance mutations. Nonetheless, to our knowledge, 
our sample size is among the largest to investigate and compare 
the effect of DM on Mtb mutation acquisition and recurrence. 
The self-reported medication adherence was >95%, so we could 
not assess the impact of adherence on mutation rates. In ad-
dition, our analysis did not account for within-host diversity 
(ie, by looking at colonies or serial isolates), which potentially 
introduces misclassification bias in assigning exogenous or en-
dogenous reinfection, but we attempted to look at heterogenous 
subpopulations informatically. Notably, the significant, diverse 
SNP differences (ranging between 21 and 1099) among paired 
Mtb strains implies that reinfection is the appropriate classifica-
tion [42]. We did not analyze highly polymorphic regions of the 
genome, for example, PPE/PGRS. The difference in mutation 
rates between TB-DM and TB-only could be due to differential 
replication that we could not account for. Finally, distinguishing 
between within-host evolution and mixed infection may be dif-
ficult with closely related strains. Our phylogenetic tree analysis 
suggests that Mtb strains circulating in geographic regions are 
quite similar. Therefore, categorizing strains with small SNP dif-
ferences as reactivation may underestimate the reinfection rate.

In conclusion, our study provides genomic insights on the 
heterologous evolution of Mtb strains during and after comple-
tion of TB treatment among immunocompetent (TB-only) and 
immune-altered hosts (TB-DM) in an epicenter of TB and DM. 
Importantly, TB drug resistance can emerge during TB treat-
ment and beyond, and reactivation of TB is a major cause of TB 
recurrence, yet exogenous reinfection should be considered at 
recurrence among people with DM. Future work should con-
firm our study findings.
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