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Abstract

Motivation: Genome sequencing experiments have revolutionized molecular biology by allowing researchers to
identify important DNA-encoded elements genome wide. Regions where these elements are found appear as peaks
in the analog signal of an assay’s coverage track, and despite the ease with which humans can visually categorize
these patterns, the size of many genomes necessitates algorithmic implementations. Commonly used methods
focus on statistical tests to classify peaks, discounting that the background signal does not completely follow any
known probability distribution and reducing the information-dense peak shapes to simply maximum height. Deep
learning has been shown to be highly accurate for many pattern recognition tasks, on par or even exceeding human
capabilities, providing an opportunity to reimagine and improve peak calling.

Results: We present the peak calling framework LanceOtron, which combines deep learning for recognizing peak
shape with multifaceted enrichment calculations for assessing significance. In benchmarking ATAC-seq, ChlP-seq
and DNase-seq, LanceOtron outperforms long-standing, gold-standard peak callers through its improved selectivity
and near-perfect sensitivity.

Availability and implementation: A fully featured web application is freely available from LanceOtron.molbiol.ox.ac.
uk, command line interface via python is pip installable from PyPI at https://pypi.org/project/lanceotron/, and source

code and benchmarking tests are available at https://github.com/LHentges/LanceOtron.

Contact: stephen.taylor@imm.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic elements such as enhancers, promoters and boundary ele-
ments dictate gene expression in a cell-type-specific manner (Klein
and Hainer, 2020), and the high-resolution maps of these elements
are composed of integrated data from genome sequencing experi-
ments. The accurate extraction of biologically meaningful data from
such assays provides the foundations of current functional genomics
research and is critical to understanding gene regulation in health
and disease. Genome sequencing experiments like ATAC-seq, ChIP-
seq and DNase-seq are processed in a similar fashion: enriched
DNA fragments are sequenced, aligned to the genome, and areas
enriched for these fragments are recorded. These data appear as
tracks of analog signal across genomic coordinates and increases in
fragment density at true-positive biological events are called ‘peaks’
because of the characteristic pattern of fragments produced in these
areas. Besides these regions, enrichment also occurs due to biases
and noise in the experimental procedures (Park, 2009) or systematic
mapping errors common to areas of low complexity (Amemiya
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et al., 2019). Creating algorithms that can distinguish peaks from
such experimental and computational noise and are robust across
methodologies, sequencing depth, diverse tissue types and chromo-
somal structure has remained a challenge.

Traditionally, real peaks are distinguished from noise using stat-
istical tests that compare enrichment from the region to the back-
ground, which is assumed to consist of a signal generated randomly.
Peak callers simplify the complex analog signal of a region into a
single value (maximum height) that is used with a distribution to
calculate a P-value. While the Poisson distribution models this better
than other distributions (Thomas ez al., 2017), the background is in
fact non-random (Wilbanks and Facciotti, 2010), appearing at
increased levels in areas of open chromatin (Auerbach er al., 2009),
at sites with inherent sequence bias and over regions of varying copy
number (Vega et al., 2009). This must be considered when reviewing
significance from statistical peak callers, as misclassification will
occur at a higher rate than the P-value suggests. Relying solely on
these significance scores may lead to high false-positive rates, but
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also leaves room for potential false negatives, with the ratios of these
errors depending on the parameters selected. Exacerbating these
issues, default settings are routinely used which reduces accuracy
nearly 10% on average compared to tuned parameters (Hocking
et al., 2017). With these tools, errors may be reduced by using
matched negative controls (also known as input tracks) to calculate
the level of background noise, though this increases the time and
costs of the experiment. While peak callers such as MACS2 (Zhang
et al., 2008) do not strictly require negative control tracks, forgoing
them may sacrifice performance (Stanton et al., 2017). Input tracks
do control for some experimental bias but are still sensitive to chro-
matin activity (Auerbach et al., 2009), making statistical tests more
prone to false negatives. Critically, this may cause the exclusion of
peaks found in the most active areas of the genome, such as tran-
scription start sites (TSSs) or promoters.

To address the well-known problems of peak callers, analysis pipe-
lines employing quality control steps are common. The Encyclopedia
of DNA Elements (ENCODE) consortium hosts numerous chromatin
profiling assay datasets (Davis et al, 2018; ENCODE Project
Consortium, 2012) and has developed a robust set of guidelines includ-
ing recommendations for input controls, sequencing depth, library
complexity and exclusion list regions where mapping errors are more
prone to occur (Landt et al., 2012). Multiple replicates are encouraged,
and procedures exist for combining peak calls for the most efficient re-
duction in error such as using Irreproducible Discovery Rate (IDR; Li
et al., 2011). Although these extensive measures greatly improve the re-
producibility of peak calls, high-throughput visual inspection showed
numerous erroneous peak calls remain (Sergeant et al., 2021). This
may also be linked to quality control, which is typically limited to
uploading the significant regions and coverage track to a genome
browser such as UCSC (Kent, 2002) or IGV (Robinson et al., 2011)
and manually scanning.

Though extremely time-consuming when done at scale, research-
ers have been shown to effectively judge the quality of peaks using a
genome browser. Rye et al. (2011) measured peak caller perform-
ance by creating a dataset of visually verified peak calls using the
UCSC genome browser, and inadvertently measured the perform-
ance of the humans in the process. They found that transcription
factor motifs, known to be associated with true biological signals,
were recovered more often from the manually labeled peaks than
from the peak callers. Amazingly they also found that 80% of the
software’s false positives could be detected even without an input
control track, because the human peak callers could identify that
these regions ‘lacked the expected visual appearance of a typical
ChIP-seq peak’. Furthermore, while classifying regions by eye is
seemingly dependent on an individual, Hocking ez al. (2017) demon-
strated a high consistency across labelers when judging peaks.
Visual inspection can be a credible method for peak calling, though
to do so comprehensively for an entire human genome would be
nearly impossible.

Convolutional neural networks (CNNs), a class of deep learning
algorithms, have been extremely successful in many general pattern
detection tasks including voice recognition and image classification
(LeCun et al., 2015). These techniques are being applied in biology
as well, especially in genomics where there is an overabundance of
data available for training and analysis (Wainberg et al., 2018).
Tools such as DeepSea (Zhou and Troyanskaya, 2015) and Bassett
(Kelley et al., 2016) take genomic sequences as input and can predict
regulatory genomic features with high accuracy. Proof of principle
studies has also shown promise for applying these techniques to
peak calling (Hocking et al., 2017; Oh et al., 2020).

Here, we present LanceOtron, a production-ready peak caller
utilizing deep learning and deployed with a graphical user interface
for integrated quality control. Complementing this, we also provide
a command line interface installable from PyPI for pipeline use.
LanceOtron improves upon current tools by calculating a multitude
of enrichment metrics for each region being assessed and combines
these with a CNN trained to recognize the characteristic shape of
peaks. This model was trained with open chromatin, transcription
factor and chromatin modification ChIP-seq data and achieves both
high sensitivity and selectivity. Our user-friendly web tool has

comprehensive filtering capabilities, built-in genome browser and
automatically generated interactive charts.

2 Materials and methods

2.1 Training data

Included in the training data were punctate peaks from transcription
factor ChIP-seq, broader peaks from H3K27ac and H3K4me3 his-
tone ChIP-seq, and mixed types from ATAC-seq and DNase-seq.
Training data were selected from ENCODE (Supplementary
Material S1.1) then processed (Supplementary Material S1.2),
resulting in 38 unique biosample types, 9 unique transcription factor
ChIP-seq targets plus 2 histone ChIP-seq targets (Supplementary
Table S1). These varying experiment types were included in a singu-
lar dataset to create a large collection of samples covering a breadth
of peak shapes for the model to learn from (Supplementary Material
$1.3). Candidate peaks were generated from these tracks
(Supplementary Material S1.4) and labeled by visual inspection
(Supplementary Material S1.5). Ultimately 16 990 regions were
used for training: 8503 noise regions plus 8463 peaks.

2.2 Deep learning framework

LanceOtron’s peak scoring algorithm is a wide and deep neural net-
work (Cheng et al., 2016) combining a CNN with local enrichment
measurements. For an indicated region, a base pair resolution view
of 2 kb of signal is encoded and input into LanceOtron’s CNN. The
CNN then uses the relationship between the number of overlapping
reads and their relative positions at all 2000 points, returning a
shape score. Enrichment measurements are also taken from the max-
imum number of overlapping reads in a peak compared to its
surroundings—chromosome-wide as well as 10-100kb regions in
10-kb increments. The measurements are then used in a logistic re-
gression model, which produces an enrichment score. Finally, a
multilayer perceptron combines the outputs from the CNN and lo-
gistic regression models, as well as the 11 local enrichment measure-
ments directly, to produce an overall peak quality metric called Peak
Score. The comprehensive Peak Score metric is the probability of the
assessed region’s signal arising from a biological event (Fig. 1).

The CNN’s design structure and hyperparameter selection were
optimized using a brute force method, whereby over 5000 models were
trained and tested. In addition, a specialized process for CNN training
was used to maintain the independent performance of both the CNN
and logistic regression models (Supplementary Material S2).

2.3 Lanceotron modules

Depending on the analysis to be carried out, LanceOtron’s model is
employed using one of three main modules, each taking a coverage file
as input and returning enriched regions with associated scores as output.

1. Find and Score Peaks, which first labels enriched regions as can-
didate peaks, then scores them using LanceOtron’s deep learning
model.

2. Find and Score Peaks with Inputs performs the same function as
the first module but additionally calculates the P-values of
regions based on enrichment compared to a separate input con-
trol track (Supplementary Material S3).

3. Score Peaks, which does not find candidate peaks, but rather the
neural network scores genomic locations provided as an add-
itional file.

2.4 Candidate peak selection

To optimize resources, only enriched regions of the genome are
assessed by the deep learning model. Because of the difficulty in
determining a singular definition of enrichment, our candidate peak
calling algorithm allows for various ways for a region to be consid-
ered enriched, with the aim of generating an overcomplete set of all
possible areas of interest to present to the neural network for
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Fig. 1. LanceOtron model overview. An indicated region has local enrichments calculated against background from 10 to 100kb areas in 10kb increments, plus whole
chromosome (left). The enrichment values are used as inputs for a logistic regression model. Signal from the central 2 kb is fed into a CNN (right). The output from the CNN,
logistic regression model and local enrichment values are all input into a multilayer perceptron (bottom), which produces the overall peak score for a given region

assessment. Signal is smoothed by calculating the rolling mean over
five different window sizes, 100, 200, 400, 800 and 1600 bp. Next
any coordinate where the signal is greater than fold*mean-chromo-
some-signal (across five different fold enrichments: 2, 4, 8, 16 and
32) is marked as enriched. Each of the 25 permutations of window
size and fold threshold is considered a different definition of enrich-
ment. The number of enrichments is tracked at each coordinate,
forming a genome-wide map and regions with five or more concur-
ring definitions of enrichment are further evaluated. If the region’s
size is between 50bp and 2kb, it is considered a candidate peak.
Regions smaller than 50 bp are discarded, and regions above 2 kb
are recursively increased by an additional required enrichment defin-
ition until the region size is between 50 bp and 2 kb, or the region is
considered enriched under all 25 definitions.

2.5 Graphical interface
A graphical web-based interface was developed to complement the
candidate peak calling algorithm and improve quality control. The
LanceOtron candidate peak calling algorithm was designed to iden-
tify all potentially enriched regions, score these using machine learn-
ing and return the complete dataset in a manner that can be
examined and queried in its entirety—interface design and user ex-
perience decisions were made with this in mind, focusing on com-
prehensive filtering options and data exploration capabilities.
LanceOtron extracts genomic data from a bigwig track, which
allows for peak calling and visualization to be accomplished in a single
step. The LanceOtron web tool is built on the powerful MLV genome
visualization software (Sergeant et al., 2021), which offers important
quality control features. LanceOtron’s output is automatically dis-
played in a genome browser with an interactive BED file, allowing for
quick navigation to the areas identified by the candidate peak calling
algorithm. Thumbnail images of the regions can be created and dis-
played in a dedicated panel, allowing hundreds or even thousands of
regions to be quickly and easily scanned. In addition, the clustering/
dimensionality reduction unsupervised machine learning techniques

PCA (Jolliffe and Cadima, 2016), t-SNE (van der Maaten and Hinton,
2008) and UMAP (Mclnnes et al., 2018) are included. Here, the entir-
ety of the peak call is mapped to an interactive chart, organized across
two dimensions by peak shape, where users can quickly highlight and
scan subsets of their data. This allows for rapid assessment of data
quality, structure and the appropriateness of the output of the algo-
rithm for the current dataset. Users have full access to metadata and
can even create their own interactive charts and displays based on any
of the columns of information, giving the ability to sort and filter
results en masse (Supplementary Videos S1 and S2).

The same quality control features offered by the LanceOtron web
tool can be extended for use with other tools, publications or databases
using the Score Peaks module. This uploads data from an outside
source and uses LanceOtron’s neural network to assess peak quality,
concatenating the LanceOtron results to the original data. Using this re-
analysis capability, we have found that publicly available peak calls,
even following the strictest guidelines, may contain large numbers of
low-quality peaks. For example, LanceOtron was used to reanalyze
peaks calls from ENCODE ChlIP-seq for H3K27ac from 22Rv1 pros-
tate cancer epithelial cells (ENCSR391NPE). As part of the ENCODE
IDR pipeline, two biological replicates were independently peak called
and only peaks present in both were included. Using LanceOtron’s
deep learning-based scoring, clustering and visualization tools, it is
clear that many very low-quality peaks remain in the datasets despite
requiring independent calls. Roughly, 33% (15 162 of 46 030) of the
ENCODE-identified peaks had a ~10% probability of arising from a
biological event using LanceOtron’s model; large numbers of similarly
low-quality peaks can be identified in many other public data sets
based on statistical peak calling approaches (LanceOtron 22Rv1

H3K27ac project)(Fig. 2).

2.6 Peak caller benchmarking

2.6.1 Simulated data
Simulated data were created using the software ChIPs (Zheng et al.,
2021). Parameters were estimated from ENCODE CTCF data
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Fig. 2. Assessing peak calls made from other tools with LanceOtron. Peak calls
retrieved from ENCODE are visualized using an interactive t-SNE plot in
LanceOtron’s web tool (LanceOtron 22Rv1l H3K27ac project). Screen captures
from the image panel display thumbnails of high (top right) and low (bottom right)
quality peaks as measured by LanceOtron’s Peak Score metric. In this experiment,
roughly 33% (15 162 of 46 030) of the ENCODE-identified peaks had a <10%
probability of arising from a biological event according to LanceOtron’s model

(ENCSR692ILH) to produce paired-end FASTQ files, which were
aligned with Bowtie2 (Langmead and Salzberg, 2012) on default set-
tings. The aligned tracks were converted to bigwig format and peak
called using LanceOtron. To determine the effect of peak size, po-
tential enriched regions were placed every 10 kb across human gen-
ome hg38, increasing in size from 100 bp to 20 kb, with a step size
of 100 bp and a read depth of 50 million (M) reads. To explore the
effects of replicates and sequencing depth, three replicates (using dif-
ferent seed numbers) were generated at five different read depths:
5M, 10M, 20M, 50M and 100M. Potential sites of enrichment were
found by peak calling the original CTCF dataset with LanceOtron.
Intersections between datasets and Jaccard similarity coefficients
were calculated using BEDTools (Quinlan and Hall, 2010).

2.6.2 Labeled datasets

Benchmarking datasets were created to compare LanceOtron to
MACS2, using each peak caller with default settings, with and with-
out input tracks when available. Datasets were obtained from
ENCODE (Supplementary Table S2) and explicitly not used in
LanceOtron’s training data. Chromosomes were shuffled (mito-
chondrial and alternative mapping chromosomes were excluded),
and 1Mb was labeled for peaks or noise; regions that were not
clearly either were excluded. For CTCF (ENCSR692ILH), H3K27ac
(ENCSR131DVD) and H3K4me3 (ENCSRS579SNM) ChIP-seq
datasets, 10 chromosomes each were labeled in this manner for a
total of 122 labels (55 positive peaks and 67 noise regions), 101
labels (45 positive peaks and 56 noise regions) and 224 labels (129
positive peaks and 95 noise regions), respectively. For ATAC-seq
(ENCSR422SUG) and DNase-seq (ENCSRO00ELW), 3 chromo-
somes each were labeled, resulting in 196 ATAC labels (101 positive
peaks and 95 noise regions) and 224 DNase labels (114 positive
peaks and 110 noise regions).

We also tested published datasets from Oh et al. (2020), who
annotated peaks and noise for H3K27ac ChIP-seq in GM12878 cells
and H3K4me3 in K562 cells for their prototype CNN-based peak
caller. While their tool for labeling data and in-lab model making
can still be found on GitHub, their published model is currently

unavailable. We therefore compared performance against CNN-
peaks by using the same datasets along with their labeled regions.

2.6.3 Biological indicators

Though great efforts were employed to label megabases of the gen-
ome in numerous tracks, this still represents a small fraction of a
complete human genome. To ensure that the performance measured
from the labeled datasets extended genome wide, we assessed vari-
ous biological indicators associated with the experiments being
analyzed.

Transcription factor motif analysis was carried out by taking the
top 5000 peaks from both LanceOtron and MACS2 (using input
tracks), finding those regions which intersect, then using MEME
(Bailey et al., 2015) to discover motifs de novo. The MEME module
FIMO (Grant et al., 2011) was then used to match motifs from the
peak calls produced from the different callers.

Additionally, because the transcription factor CTCF is often
associated with promoters and enhancers (Holwerda and de Laat,
2013), we used GenoSTAN annotations (Zacher et al., 2017) for
these elements to intersect with the peaks called. Visualizing the
average coverage for regions unique to the different peak callers was
carried out using deepTools (Ramirez et al., 2014), finding the cen-
ters of the regions and mapping the average coverage plus or minus
1kb for the peak call.

TSSs were also used as markers associated with H3K27ac and
H3K4me3 binding, as well as open chromatin—these annotations
were obtained from RefTSS (Abugessaisa et al., 2019). We analyzed
the top 5000 peaks called from each peak caller, normalizing the
regions’ size to 1kb. This has the added benefit of being resilient to
peak caller parameter changes, as the top peaks identified are un-
likely to change based on parameters.

For open chromatin, we used additional published annotations
from Tarbell and Liu (Tarbell and Liu, 2019), whereby they defined
active areas of the genome. These were again intersected with the
peak calls.

3 Results

3.1 Benchmarking LanceOtron

3.1.1 Simulated data

Simulated data showed LanceOtron was able to accurately identify
peaks in broadly enriched regions (Supplementary Fig. S1A), though
it tended to break them apart in multiple peaks—especially for peaks
larger than 1 kb (Supplementary Fig. S1B). Protein complexes active-
ly tracking along chromatin, such as the histone marks H3K36me3,
H3K79me2, represent very different biological processes with dis-
tinct distributions of signals. For calling the start and end positions
of large enrichment blocks produced by these processes, we recom-
mend using a broad peak caller.

When comparing multiple replicates across varying sequencing
depths, a strong correlation was detected between replicates in a
read-depth  dependent manner (Supplementary Fig. S1C).
Additionally, performance at sequencing depths of 10 million reads
was greatly improved over 5 million reads, with some additional im-
provement at 20 million reads and plateauing at greater depths
(Supplementary Fig. S1D).

3.1.2 Labeled experimental data

We compared peak calls from transcription factor ChIP-seq, histone
ChIP-seq and the open chromatin assays ATAC-seq and DNase-seq.
Average peak size varied considerably from dataset to dataset
(Supplementary Fig. S2A), with MACS2 having the smallest mean
peak size, MACS2 with input having the largest, and LanceOtron
with input and LanceOtron having the second and third largest size,
respectively (Supplementary Fig. S2B). While LanceOtron with in-
put identified important biological features at a high rate, it did so
covering the smallest number of base pairs in its peak calls
(Supplementary Fig. S2C). Increasing stringency beyond MACS2’s
default settings did improve F1 overall performance, but at the cost
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of sensitivity, and was still outperformed by LanceOtron on every
dataset tested; using MACS2’s broad option reduced performance
over default, but using MACS2 in combination with LanceOtron
(via the Score Peaks module) improved performance (Supplementary
Fig. S3). The best overall performance was achieved using
LanceOtron with Input—for a numerical listing of performance
benchmarks for the labeled datasets see Supplementary Table S3.

3.1.3 Transcription factor ChIP-seq

Transcription factor ChIP-seq was assessed using CTCF in spleen
primary cells. When no input control track was used, both
LanceOtron and MACS2 achieved perfect sensitivity, detecting all
labeled peaks in the dataset, but MACS2 had far lower selectivity
and overall F1 score. With input, LanceOtron outperformed
MACS2 in precision, recall/sensitivity, selectivity and F1 score.
Comparing across peak call types, LanceOtron without input actu-
ally achieved higher scores than MACS2 with input across all met-
rics, though the highest F1 score for this dataset was obtained when
LanceOtron was used with an input track (LanceOtron spleen
CTCF projects: without input; with input) (Fig. 3A).

Motif analysis was also carried out for this dataset. LanceOtron
called fewer peaks with motifs than MACS2 but called fewer peaks
in total, resulting in a larger percentage of the overall peak call con-
taining motifs: 86.3% for LanceOtron versus 74.0% % for MACS2;
with input LanceOtron found 90.4% versus MACS2 with 89.8%
(Fig. 3B). This trend was also seen when performing motif enrich-
ment analysis on other transcription factors, with LanceOtron gen-
erally finding a larger percentage of peaks with motifs
(Supplementary Table S4).

We further investigated the differences between LanceOtron
with input and MACS2 with input peak calls, finding 1470
LanceOtron only and 2465 MACS2 only regions. We additionally
found 89.8% of peaks exclusively called with LanceOtron over-
lapped with promoters or enhancers compared to just 46.7% of
MACS2 only peak calls (Fig. 3C). When visualizing the top enriched
regions called exclusively by each peak caller, LanceOtron’s peaks

A Peak caller performance comparison B
Transcription factor (CTCF) ChIRseq

10 —
motif
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have strikingly more signal than MACS2 (Fig. 3D). This was also
seen when inspecting the average signal of the exclusive peak calls;
MACS2 only regions were found in areas with less surrounding sig-
nal, containing peaks which were narrower and with very low en-
richment compared to LanceOtron only peaks. It seems that the
MACS2-only regions are a sporadic sampling of the numerous peaks
close to noise found throughout the genome; however the peaks that
MACS2 missed are relatively strongly enriched. These missing peaks
are excluded by MACS2 because of the increase in control signal,
however, some increased signal from the control track is expected
when the region is found in areas of open chromatin (Auerbach
et al., 2009), which can be seen associated with the LanceOtron
only peaks (Fig. 3E). This is further exemplified by when peak call-
ing the transcription factor SRF in GM12878 cells, an element
known to bind with other cofactors at TSSs. Here, LanceOtron
peaks were found to intersect TSSs more often than MACS2 peaks
(35.4% of the peak call versus 20.4% when using input for both
peak callers; Supplementary Table S5). Of the peaks MACS2
missed, 1211 were found within 1kb of TSSs (LanceOtron
GM12878 SRF with input), and are most prominently associated
with genes involved in cell cycle, DNA replication, DNA repair and
metabolism of RNA (Supplementary Fig. S4)—genes which are
closely related to SRF’s function (Onuh and Qiu, 2021).

3.1.4 Histone ChIP-seq

Histone ChIP-seq was assessed using H3K27ac in HAP-1 cells and
H3K4me3 in MG63 cells. For H3K27ac, the top sensitivity was
achieved with three peak calls: LanceOtron, both with and without
input, and MACS2 without input. LanceOtron outperformed
MACS?2 in the remaining metrics of precision, selectivity and F1
score. The same performance was achieved both with and without
input for the LanceOtron peak calls, highlighting the power of its
deep neural network (LanceOtron HAP-1 H3K27ac projects: with-
out input; with input; Fig. 4A). In the H3K4me3 dataset, specificity
was equal between LanceOtron and MACS2 with input, and
LanceOtron outperformed MACS2 across all peak call types for the

Peak call intersection

no motif
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Fig. 3. Benchmarking LanceOtron against MACS2 for peak calling transcription factor ChIP-seq. (A) Model performance metrics using labeled genomic regions of an
ENCODE CTCF ChlIP-seq dataset. (B) Comparing the number of motifs contained in peak calls generated from LanceOtron and MACS2. (C) Venn diagram of peak calls
from LanceOtron and MACS2; regions that did not intersect were assessed for overlap with promotors or enhancers. (D) Thumbnail images from the most highly enriched
regions called exclusively by either LanceOtron (top) or MACS2 (bottom). (E) Average coverage of the regions called exclusively by either LanceOtron (top) or MACS2 (bot-

tom) for CTCF experimental track, control track and DNase-seq open chromatin track
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Fig. 4. Benchmarking LanceOtron against MACS2 for peak calling histone ChIP-seq. (A) Model performance metrics using 10 Mb of labeled genomic regions of ENCODE
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remaining metrics (LanceOtron MG63 H3K4me3 projects: without
input; with input; Fig. 4B).

We also tested LanceOtron’s performance against published
datasets for H3K27ac ChIP-seq in GM 12878 cells and H3K4me3
in K562 cells. LanceOtron achieved the highest overall Fl-score
for both histone datasets, besting CNN-peaks as well as MACS2,
HOMER (Heinz et al., 2010), SICER (Zang et al., 2009) and
ENCODE’s IDR method. These results were consistent with our
in-house labeled data, with legacy peak callers performing slightly
better on sensitivity, and LanceOtron outperforming on selectiv-
ity and F1 score [LanceOtron GM12878 H3K27ac project
(Fig. 4C); LanceOtron K562 H3K4me3 project (Fig. 4D)].

To further investigate the histone mark ChIP-seq peak calls, we
counted the number of TSSs overlapping with the peak calls. For
H3K27ac, LanceOtron performance was very similar with and with-
out input, increasing from 2806 to 2812 peaks when the input track
was included. Both LanceOtron peak calls had more overlap with
TSSs than MACS2, which had 2428 and 2607 with input. We
observed similar results for the H3K4me3 data, with LanceOtron
finding 3472 peaks intersecting TSSs, increasing slightly to 3501
with input control. MACS2 had better performance without input,
though not reaching LanceOtron levels, at 3318 and decreasing
down to 2491 with input (Table 1).

3.1.5 ATAC-seq and DNase-seq

ATAC-seq assessment was carried out using the MCF-7 cell line.
LanceOtron outperformed MACS2 across all metrics (LanceOtron
MCEF-7 ATAC-seq project; Fig. SA). Results were similar for our in-
house DNase-seq data in the A549 cell line. MACS2 outperformed
LanceOtron for recall/sensitivity but had a very high false-positive rate.
Consequently, LanceOtron outperformed MACS2 on precision, sensi-
tivity and F1 score (LanceOtron A549 DNase-seq project; Fig. 5B). As
with the histone datasets, we also intersected the top 5000 peaks with
TSSs. LanceOtron’s top peaks had just under double the number of
intersections with TSSs compared with MACS2 for DNase-seq (2164
versus 1133) and just over double for ATAC-seq peaks (2218 versus
1096; Table 1).

We also compared peak calling performance on GM12878 cells for
ATAC-seq (ENCFF576DMC) and DNase-seq (ENCSRO0O0EMT)
using outside published annotations (Tarbell and Liu, 2019). The num-
ber of peaks called for these datasets was considerably different from
each peak caller. For ATAC-seq, 60 962 peaks were called using
LanceOtron and 127 304 peaks for MACS2; DNase-seq, 25 183 peaks
were called using LanceOtron and 85 607 peaks for MACS2. For both
ATAC-seq and DNase-seq, a higher percentage of the LanceOtron
peak call intersected the annotations than MACS2 (ATAC-seq: 12.6%
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Table 1. LanceOtron and MACS2 peak call comparison for TSSs and for active regions in open chromatin

LanceOtron

MACS2 LanceOtron with input  MACS2 with input

% top H3K27ac ChIP-seq in HAP-1 peaks overlapping
TSSs (count)

% top H3K4me3 ChIP-seq in MG63 peaks overlapping
TSSs (count)

% top ATAC-seq in MCF-7 peaks overlapping TSSs
(count)

% top DNase-seq in A549 peaks overlapping TSSs (count)

% ATAC-seq peaks in active regions (count)

% DNase-seq peaks in active regions (count)

56.1% (2806/5000) 48.6% (2428/5000)

69.4% (3472/5000) 66.4% (3318/5000)

56.2% (2812/5000)  52.1% (2607/5000)

70.0% (3501/5000)  49.8% (2491/5000)

44.4% (2218/5000) 21.9% (1096/5000)

43.3% (2164/5000) 22.7% (1133/5000)
12.6% (628/5000)
12.1% (607/5000)

7.5% (377/5000)
9.5% (477/5000)

Percentages and counts of peaks intersecting TSSs are given for 5000 regions of LanceOtron and MACS2 peak calls, selected for being most enriched (highest

g-value or peak score for LanceOtron and MACS2, respectively). Percentages and counts are also shown for open chromatin peaks found in active areas of the

genome.
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Fig. 5. Benchmarking LanceOtron against MACS2 for open chromatin. (A) Model performance metrics using labeled genomic regions of an ENCODE ATAC-seq dataset in

MCF-7 cell line and (B) DNase-seq in A549 cell line

versus 7.5%; DNase-seq: 12.1% versus 9.5 %; LanceOtron GM 12878
projects: ATAC-seq; DNase-seq; Table 1).

4 Discussion

LanceOtron is a deep learning-based peak caller for genomic signal
analysis, with a full user-friendly interface designed for interrogation
of large datasets. In our performance comparison, it outperformed
the current gold standard algorithm, MACS2, in each of our experi-
ments, and when expanded out to published benchmarks it also sur-
passed CNN-Peaks, HOMER, SICER and even ENCODE’s IDR
process for measuring consistency across replicated peaks in mul-
tiple samples. LanceOtron’s CNN, trained on open chromatin, tran-
scription factor and chromatin modification data, learns the shape
of the signal and uses this in combination with enrichment calcula-
tions to identify biologically relevant regions. Traditional peak call-
ers return only those regions which cross a high statistical threshold.
When using LanceOtron’s candidate peak calling algorithm how-
ever, all enriched regions above a relatively low threshold are
returned, along with their associated Peak Scores, P-values, heights,
widths and other properties. This makes LanceOtron akin to an
automated annotation tool, returning a greater breadth of data
about the experiment. Peak calls can be quickly and accurately
made using LanceOtron’s Peak Score. This summary metric predicts
peak or noise classifications at high probabilities, making it largely
invariant to parameter changes (88% of candidate peaks were
assigned Peak Scores of less than 0.1 or greater than 0.9;
Supplementary Fig. S5). Ultra-refined peak calls can also easily be

made using LanceOtron’s comprehensive visualization, filtering and
data handling to generate output datasets with defined
characteristics.

LanceOtron peaks were shown to be enriched for the CTCF
binding motif at a higher percentage than MACS2. Furthermore,
peaks uniquely identified by LanceOtron were enriched for
enhancers or promoters, providing additional biological evidence
that the differences in peaks called by LanceOtron are actually
improvements over traditional analysis. Experiments such as these
producing punctate peaks are perhaps the best-suited datasets for
statistical peak callers. This means they should make fewer errors,
especially concerning false negatives, however, in our testing some
real peaks appeared to be absent from the MACS2 dataset.
Inspection of the DNase-seq track made it clear that many of the
regions missed by MACS2 were in regions of open chromatin. These
areas sonicate more readily (Auerbach et al., 2009) and are known
to have increased signal in input tracks, however, this increase in
control signal did not preclude these regions from being recognized
using LanceOtron as it did for MACS2. The loss of these regions in
the MACS2 analysis is likely due to a combination of its reliance on
the signal in the input tracks to judge peak quality, and its high P-
value threshold used to better reduce false positives genome wide,
which it does at the cost of sensitivity in active regions of the gen-
ome. As an example, when analyzing ChIP-seq for the SRF protein
over gene promoters, MACS2 showed a substantial loss of genes
(1211 peaks within 1kb of TSSs) known to be linked with SRF’s
function.

MACS2 performance was strongly affected by input track avail-
ability: for the experiments tested with the input track present and
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absent, the mean percentage change of the performance metrics be-
tween track types was 7.5% for MACS2. This is in contrast to
LanceOtron, which maintained performance without an input track,
with a mean percentage change of 1.3%; LanceOtron without input
even achieved higher overall F1 scores than MACS2 with input for
every dataset where this comparison was available (Supplementary
Table S3). The inclusion of input tracks may behave as a double-
edged sword for MACS2, as this improved performance may limit
the ability to detect peaks in the most active areas of the genome
(such as TSSs), as it did with SRF ChIP-seq.

Perhaps the natural choice of tool to benchmark LanceOtron
against was CNN-Peaks, however, the majority of our performance
reviews focused on MACS2. This was because the published model
from CNN-Peaks was no longer available, and MACS2 represented
the next highest performing tool. ENCODE’s processing pipeline
was another top performer, however, this method also uses the
MACS2 algorithm. ENCODE employs post-processing after peak
calling (which in theory could be used with any tool, not exclusively
MACS2), but even without these additional steps, LanceOtron
achieved a higher F1-score. In many ways, MACS2’s enduring popu-
larity is linked to its ease of use: it works as expected according to
its documentation, installs easily across a range of systems and
continues to be well supported by its developers. This gives it an ad-
vantage over proof-of-principle methods like CNN-Peaks or even
well-established data processing pipelines such as ENCODE’s.
Inspired by this, we made LanceOtron available as both a web tool
and a command line tool available from PyPI, installable by typing a
single line of code in the terminal (pip install lanceotron) from most
any computer running a recent version of Python.

The average time to perform a peak call on the 13 datasets
benchmarked here was just over an hour (mean time 67 min, stand-
ard deviation 11 min) within a web browser—this includes the time
taken to generate the interactive charts and upload the coverage
track into the genome browser. The speed that LanceOtron can
carry out analysis, requiring only a basic bigwig track and using a
web interface, has obvious benefits for routine use and is even ap-
plicable as part of a manuscript review process. While a session of
data is often provided during review, this is seldom utilized due to
time constraints, bioinformatic complexity and potentially the need
of high-performance computing facilities. LanceOtron remedies this,
providing a convenient outlet for group leaders, bench biologists
and bioinformaticians alike to visualize and assess datasets from in-
ternal or external sources. In addition, peak calls made with
LanceOtron can easily be made public for assessment by reviewers
and colleagues directly, as they have been here. LanceOtron can
even be applied to datasets that have already been analyzed by other
methods; re-calling MACS2 datasets with LanceOtron’s Score Peaks
model improved performance on every dataset benchmarked here
(Supplementary Fig. S3 and Table S3).

A strength of using supervised machine learning approaches is that
analysis can improve as more training data is added to the model; as
our user base grows, we can refine our peak calls even further. Our
focus to date has been on the most commonly used experiments where
we believed there was the greatest potential for improvement.
However, unlike hardwired statistical algorithms, CNN-based algo-
rithms can easily be trained to deal with new signal types and distribu-
tions not covered in the original training sets. The same architecture
can potentially be used to learn different types of genomics data, for ex-
ample CAGE TSS signals or methylomics which are currently challeng-
ing to extract signal from noise; exemplifying this, LanceOtron has
even been adapted for analyzing base pair resolution chromosome con-
formation capture (Hua et al., 2021).

In summary, LanceOtron is a powerful peak caller and analysis
tool for use across a wide range of epigenetic marks. Testing with
numerous datasets and data types, LanceOtron outperformed the in-
dustry standard MACS2 as well as other tools published as best in
class. It is designed to accommodate current workflows as a visual-
ization, annotation, filtering and peak calling tool, leveraging a
powerful deep learning neural network to use peak shape informa-
tion alongside enrichment data.
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