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Abstract

The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. 

The resulting abasic sites can undergo β-elimination of the 3’-phosphoryl group to generate 

a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3’-terminus. The 

work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione 

rapidly adds to the alkenal group on the 3’-terminus of an AP-derived strand break. The resulting 

glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at 

an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is 

reversible but, in the presence of physiological concentrations of glutathione, the adduct persists 

for days. Biochemical experiments provided evidence that the 3’-phosphodiesterase activity of 

the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar 

remnant from an AP-derived strand break to generate the 3’OH residue required for repair via base 

excision or single-strand break repair pathways. The results suggest that a previously unrecognized 

3’glutathionylated sugar remnant – and not the canonical α,β-unsaturated aldehyde end group – 
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may be the true strand cleavage product arising from β-elimination at an abasic site in cellular 

DNA. This work introduces the 3’glutathionylated cleavage product as the major blocking group 

that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision 

repair or single-strand break repair pathways.

Graphical Abstract

INTRODUCTION

The sequence of nucleobases in DNA provides the genetic information that guides the 

operation of living organisms.1–2 Stability of the genetic material is critical for life, yet 

cellular DNA is constantly subject to unavoidable chemical modification involving reactions 

with water, reactive oxygen species, and various electrophilic metabolites.3–5 Cellular 

repair systems evolved to correct the resulting DNA damage,6 but some lesions inevitably 

evade repair, with important biological consequences including mutation, cancer, aging, and 

neurodegeneration.7–11

There are many different types of endogenous DNA damage,3–5, 12–13 but single-strand 

breaks are among the most common unavoidable lesions.14–16 Unrepaired strand breaks 

are cytotoxic because they can lead to double-strand breaks and replication fork collapse 

in dividing cells.17–20 The biological significance of single-strand breaks is highlighted 

by the fact that hereditary defects in proteins that repair these lesions cause various 

neurodegenerative diseases.14, 16, 21–27

A variety of processes can give rise to DNA strand breaks including the attack of 

radicals on the deoxyribose-phosphate backbone,28–29 the excision of misincorporated 

ribonucleotides by RNase H2,30–31 and stalled topoisomerase-DNA complexes.32 Abasic 

(apurinic/apyrimidinic, AP) sites arising from spontaneous33 or enzyme-catalyzed34–35 

hydrolysis of the glycosidic bonds in DNA are another source of strand breaks in cells 

(Scheme 1). The acidic character of the α-protons36 in the ring-opened aldehyde form of the 

AP site37 enables spontaneous strand cleavage via β-elimination of the 3’-phosphate residue 

(Scheme 1).38–40 Low molecular weight cellular polyamines41–42 and amine residues of 

DNA-binding and DNA-repair proteins can catalyze strand scission at AP sites.34, 43–55 
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This process proceeds via a covalent mechanism involving conversion of the AP aldehyde 

to an iminium ion,44, 47, 56–60 in which the α-protons are more acidic than those of the 

corresponding aldehyde.61–64

Earlier biochemical studies showed that spontaneous and enzyme-catalyzed β-elimination 

at an AP site in DNA initially generates a strand break with 5’-phosphoryl (5’P) and 

3’-trans-phospho-α,β-unsaturated aldehyde (3’trans-PUA) end groups at the nick (Scheme 

1).45–46, 65 As an aside, the 3’-sugar remnant generated by β-elimination is often incorrectly 

drawn as the cis-isomer.4, 34, 66–67 The early results led to the widespread belief that 

the 3’trans-PUA strand cleavage product must be present in cellular DNA. For example, 

most reviews of base excision repair (BER) describe the 3’trans-PUA end group as the 

intermediate that must be “cleaned” from the 3’-end of an AP-derived strand break to 

enable repair synthesis.34, 68 However, two facts suggest that 3’trans-PUA may not be the 

ultimate cleavage product resulting from β-elimination at AP sites in cellular DNA. First, 

cells contain high concentrations (0.5-10 mM) of the thiol-containing tripeptide, glutathione 

(GSH)69–70 and, second, conjugate addition of GSH to α,β-unsaturated aldehydes under 

physiological conditions is kinetically and thermodynamically favorable.71–74 Together, 

these facts suggested to us that the true product generated by β-elimination at an AP site in 
cellular DNA may be a strand break with a 3’-glutathionylated sugar remnant rather than the 

canonical 3’trans-PUA cleavage product (Scheme 1).

In the work reported here, we characterized the formation and properties of a previously 

uncharacterized glutathionylated DNA-cleavage product generated when β-elimination at 

an AP site occurs in the presence of the biological thiol, GSH. We provide evidence 

that conjugate addition of GSH to the initial trans-α,β-unsaturated aldehyde cleavage 

product (3’trans-PUA) generates the 3-glutathionyl-2,3-dideoxyribose end group (3’GS-

ddR, Scheme 1) rapidly and in high yield. In fact, this 3’glutathionylated end group is 

the only major product observed when cleavage of an AP site occurs in the presence 

of GSH. Formation of the 3’GS-ddR strand cleavage product is reversible but, in the 

presence of physiological concentrations of GSH, the adduct is stable for days. Our work 

suggests that the previously unrecognized 3’gluathionylated cleavage product may be an 

important blocking group that must be trimmed to enable repair of AP-derived strand 

breaks via the base excision repair (BER) or single-strand break repair (SSBR) pathways. 

Along these lines, we present the results of biochemical experiments showing that the 

3’-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can 

remove the 3’GS-ddR adduct to provide the 3’OH end group required for repair synthesis in 

BER or SSBR.

EXPERIMENTAL PROCEDURES

Material and Methods.

Oligonucleotides were purchased from Integrated DNA Technologies (IDT, Coralville, 

IA), Eurofins Genomics (Louisville, KY) and Sigma-Aldrich (St. Louis, MO). Uracil 

DNA glycosylase (UDG), human apurinic/apyrimidinic endonuclease (APE1), endonuclease 

III (Endo III, Nth), formamidopyrimidine DNA glycosylase (Fpg) were purchased from 

New England Biolabs (Ipswich, MA). Acrylamide/bis-acrylamide 19:1 (40% solution, 
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electrophoresis grade) was purchased from Fisher Scientific (Waltham, MA). Glutathione, 

sodium borohydride, buffers, DTT and other chemical reagents were obtained from Sigma-

Aldrich (St. Louis, MO). Stock solutions of spermine and glutathione were neutralized 

before use. Deuterated DMSO-d6 was purchased from Cambridge Isotope Laboratories. The 
1H NMR spectra were obtained using 600 MHz spectrometer, while 13C NMR spectra was 

obtained on the same instrument at 151 MHz. The chemical shift values (δ) are reported 

in ppm versus residual DMSO (δ = 2.50 ppm and 39.51 ppm for 1H and 13C NMR, 

respectively). The 1H spectra are reported as follows δ (multiplicity, coupling constant 

J, number of protons). The pH of buffers was adjusted to the reported values at 24 °C. 

DMBAA (dimethylbutylammonium acetate) solutions used in the ESI-MS experiments was 

prepared as follows: a stock solution of N,N-dimethylbutyl amine (7.125 M) was diluted to 

100 mM with water and adjusted to pH 7.1 with glacial acetic acid.

Generation of 3’GS-ddR cleavage product by spermine-mediated cleavage of an AP site in 
the presence of GSH.

The 2’-deoxyuridine (dU)-containing oligonucleotide labeled with a 1,1′-diethyl-2,2′-
dicarbocyanine (Cy5) fluorophore on the 5’-end was annealed to its unlabeled 

complementary strand (1 equiv) by heating to 95 °C for 5 min in HEPES buffer pH 7.4 

(100 mM containing 200 mM NaCl), followed by cooling slowly to room temperature. The 

dU-containing duplex (1 nmol) was incubated for 2 h at 37 °C with uracil DNA glycosylase 

(UDG, 0.8 unit/μL, final concentration) in HEPES buffer (100 mM, pH to 7.4) containing 

NaCl (200 mM). The DNA was ethanol precipitated75 and redissolved in HEPES buffer 

(100 mM, pH 7.4) containing NaCl (200 mM), GSH (5 mM), and spermine (5 mM), 

followed by incubation for 1 h at 37 °C. Samples were ethanol precipitated before gel 

electrophoretic analysis then redissolved in formamide loading buffer, loaded onto a 0.4 mm 

thick, denaturing 20% polyacrylamide gel (containing 7 M urea), and electrophoresed for 

15 h at 500 V. (Interestingly, we’ve noticed that the 3’GS-ddR and 3’transPUA cleavage 

products may not be well resolved on a 20% polyacrylamide gel containing only 4 M 

urea). The labeled products resolved by electrophoresis were quantitatively visualized by 

fluorescence imaging.

Generation of 3’GS-ddR cleavage product by heat-induced cleavage of an AP site in the 
presence of GSH.

The AP-containing duplex in HEPES buffer (100 mM, pH 7.4 containing 200 mM NaCl) 

was heated at 85 °C for 30 min. In the absence of GSH, this generates a mixture of 

3’trans-PUA and 3’-phosphoryl cleavage products. In the presence of GSH (5 mM), this 

process generated a mixture of the 3’GS-ddR cleavage product and intact AP-containing 

oligodeoxynucleotide.

Time course experiments measuring the stability of the 3’GS-ddR end group in DNA under 
various conditions.

The 3’GS-ddR cleavage product was prepared by treatment of the AP-containing duplex 

with spermine as described above. The DNA was ethanol precipitated and redissolved in 

the desired buffer. Aliquots of the reaction mixture (5 μL) were removed at prescribed time 

points and stored at −20 °C prior to gel electrophoretic analysis as described above.
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Removal of 3’GS-ddR end group by APE1.

The 3’GS-ddR cleavage product was prepared by treatment of the AP-containing duplex 

with spermine as described above. The DNA was ethanol precipitated and redissolved in 

Tris-acetate buffer (pH 7.9, 20 mM) containing potassium acetate (50 mM), magnesium 

acetate (10 mM), DTT (1 mM) and APE1 (0.8 unit/μL, 26 nM, final concentration). Aliquots 

(5 μL) of the reaction mixture were removed at prescribed time points and stored at −20 

°C prior to gel electrophoretic analysis as described above. The 3’dR cleavage generated by 

the AP-lyase action of Endo III54, 76–77 was employed as a “canonical” 3’-blocking group 

for comparison. Toward this end, the AP-containing duplex was treated with Endo III (0.5 

unit/μL, 28 nM, final concentration) in a buffer composed of Tris-HCl (20 mM, pH 8) EDTA 

(1 mM), and DTT (1 mM) for 2 h at 37 °C. The DNA was then ethanol precipitated and 

redissolved in the appropriate buffer for the subsequent APE1 trimming experiments shown 

in the Supporting Information.

Treatment of 3’GS-ddR cleavage product with Fpg.

The GS-ddR cleavage product was incubated at 37 °C with formamidopyrimidine DNA 

glycosylase (Fpg, 1.5 unit/μL, 2.6 μM) in Tris-HCl buffer (40 mM, pH 7.4) containing 

MgCl2 (10 mM) and BSA (0.2 μg/μL). Aliquots were removed at prescribed times and 

stored frozen at −20 °C until gel electrophoretic analysis as described above.

Synthesis of N5-((2R)-1-((carboxymethyl)amino)-1-oxo-3-(((2R)-1,2,5-trihydroxypentan-3-
yl)thio)propan-2-yl)-L-glutamine (3).

The compound (S,E)-4,5-dihydroxypent-2-enal 1 (25 mg, 0.22 mmol) prepared as described 

in our previous work78 was dissolved in water (4 mL) containing potassium carbonate (71 

mg, 0.52 mmol) and glutathione (79 mg, 26 mmol). The reaction mixture was stirred for 8 h, 

followed by addition of sodium borohydride (40 mg, 1.1 mmol) and stirring for an additional 

2 h at 24 °C. The product was purified by preparative HPLC using a C18 column (250 mm, 

5 μm, 10 mm) eluted with acetonitrile-water (2% acetonitrile for 6 min, followed by 15% 

acetonitrile from 6 to 15 min, and 90% acetonitrile for 4 min at a flow rate of 4 mL/min). 

Lyophilization of the collected material afforded 3 (60.4 mg, 66% yield) as a white solid: 
1H NMR (600 MHz, DMSO) δ (diastereomers) 8.28 (td, J = 5.3, 2.0 Hz, 2H), 4.42 (dddd, 

J = 15.8, 9.6, 8.4, 4.7 Hz, 1H), 3.86 (t, J = 6.4 Hz, 1H), 3.81 – 3.67 (m, 2H), 3.60 – 3.52 

(m, 2H), 3.52 – 3.33 (m, 3H), 3.00 – 2.77 (m, 2H), 2.74 – 2.61 (m, 1H), 2.42 – 2.27 (m, 

2H), 2.09 – 1.93 (m, 2H), 1.91 – 1.75 (m, 1H), 1.71 – 1.36 (m, 1H). 13C NMR (151 MHz, 

DMSO) δ (diastereomers) 171.2, 170.9, 170.8, 170.7, 74.5 (73.7), 63.4, 58.7 (58.5), 53.0 

(52.7), 51.9, 45.9 (45.4), 40.8, 35.7 (33.3), 33.5 (33.0), 30.8, 26.1. HRMS (ESI, [M+H]+) 

m/z calcd for C15H28N3O9S: 426.1541; found 426.1537.

ESI-QTOF-LC-MS analysis of AP-derived cleavage products.

Samples for mass spectrometric analysis were prepared using 5 nmol of the AP-containing 

oligonucleotide. The glutathionylated cleavage product was generated by spermine-mediated 

cleavage of the AP-containing oligonucleotide in the presence of GSH as described above. 

LC-MS data were acquired on an Agilent Technologies 6520A Accurate Mass QTOF. 

Samples were analyzed according to the protocol of Studzinska and Buszewski, with 
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slight modifications as outlined.79 Sample was injected onto a C8 trap column (Michrom 

Bioresources Captrap) at a flow rate of 5 μL/min of 10 mM DMBAA pH 7.1 over 4 min. 

and separated by isocratic elution (either 80% or 42.5% methanol, 15 mM DMBAA, pH 7.1) 

at a flow rate of 0.4 μL/min on a 10 cm × 75 μm C8 analytical column (fused silica packed 

with Michrom Bioresources C8, 3.5 μm particles). Following the 4-min sample loading 

to trap column, separation on the trap/analytical columns continued for 16 min, under 

isocratic elution conditions. Total run time was 20 min. Mass spectra were acquired using 

the following parameters: negative-ion mode; VCap 2500 V; mass range 290-3200 m/z; 

0.63 spectra/second; fragmentor at 300 V (250 V for IDT oligo); internal MS recalibration 

was achieved using the K/Na adducted Hexakis 1221 Chip Cube High Mass Reference 

compound (m/z 1279.99). Samples were loaded in sequence as follows: blank (10 mM 

DMBAA), sample, and blank. Multiply-charged DNA peaks were deconvoluted using the 

maximum entropy algorithm in Qualitative Analysis software (version B.07.00 Agilent 

Technologies) with the following parameters: adduct = proton-loss; m/z range = 600-1500 

m/z; mass range = expected mass ±2 kDa; peak height to calculate mass = 25%. The m/z 

values reported are neutral deconvoluted masses.

LC-MS/MS/MS Analysis of the 3’GS-ddR Strand Cleavage Product.

A 30-μL solution containing oligodeoxynucleotides (200 pmol), sodium acetate (30 mM, 

pH 5.6), ZnCl2 (10 mM) and nuclease P1 (1 unit), was incubated at 37 °C overnight. To 

the mixture were subsequently added calf intestinal phosphatase (1 unit), phosphodiesterase 

I (0.01 unit), 4 μL of Tris-HCl (0.5 M, pH 8.9), and water to make the total volume of 

the solution 40 μL. The digestion mixture was incubated at 37 °C for 2 h. The enzymes in 

the digestion mixture were subsequently removed by chloroform extraction. The resulting 

aqueous layer was dried, reconstituted in doubly distilled water to give a solution of 

approximately 1 pmol/μL, and subjected to LC-MS/MS/MS analysis.

A 0.5 × 250 mm Zorbax SBC18 column (particle size, 5 μm, Agilent) was used for the 

separation of the nucleoside mixture arising from the above-mentioned enzymatic digestion, 

and the flow rate was 8.0 μL/min, which was delivered by an Agilent 1200 capillary HPLC 

pump (Agilent Technologies). A solution of 2 mM ammonium bicarbonate (pH 7.0) in water 

(solution A) and methanol (solution B) were used as mobile phases, and a gradient of 30 min 

0-50% B was employed for the separation. The effluent from the LC column was directed 

to an LTQ linear ion-trap mass spectrometer (Thermo Fisher Scientific), which was set up in 

the positive-ion mode for monitoring the fragmentation of singly protonated ([M+H]+) ion 

of the glutathione-conjugated sugar remnant in the positive-ion mode. We also acquired the 

MS/MS/MS for the further fragmentations of the [M − H2O + H]+ ion (m/z 406) observed 

in MS/MS for the [M + H]+ ion (m/z 424) of the unreduced crosslink remnant, and the 

fragment ion arising from the neutral loss of a glutamic acid moiety (m/z 297) observed in 

MS/MS for the [M + H]+ ion (m/z 426) of the reduced crosslink remnant.
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RESULTS AND DISCUSSION

Identification of a Novel DNA-Cleavage Product Arising from β-Elimination at an Abasic 
Site in the Presence of the Biological Thiol Glutathione.

We generated a 35-nucleotide DNA duplex containing a single AP site at a defined location 

by treatment of the corresponding 2’-deoxyuridine-containing duplex with the enzyme uracil 

DNA glycosylase (UDG).80–83 The 2’-deoxyuridine-containing strand and the resulting 

AP-containing strand in the duplex were labeled on the 5’-end with a fluorescent Cy5 group 

to enable quantitative detection of the products generated under various conditions.84 The 

labeled products were resolved by electrophoresis on a denaturing 20% polyacrylamide gel 

and visualized by fluorescence imaging. Successful installation of the AP site in the duplex 

was confirmed by treatment of the duplex with NaOH (200 mM, 90 °C, 5 min) to induce 

cleavage of the AP-containing strand, with corresponding generation of fast-migrating DNA 

fragments bearing 3’P and 3’trans-PUA end groups via sequential α,β-and γ,δ-elimination 

reactions (Figure 1, lane 2).54

In experiments designed to examine the formation of glutathionylated cleavage products, we 

induced cleavage of the AP-containing duplex using either heat (85 °C, 30 min) or spermine 

(5 mM, 37 °C, 1 h) in pH 7.4 HEPES buffer (100 mM) containing NaCl (200 mM). It 

may be important to note that spermine is a biologically-relevant polyamine present at a 

concentration of 0.5-5 mM in cells.98–99 Cationic polyamines are associated with chromatin 

in the nucleus.99,85 In the absence of GSH, these cleavage conditions generated mixtures of 

the fast-migrating 3’P and 3’trans-PUA fragments (Figure 1, lanes 3 and 5).42, 53–54, 86–87 

Importantly, a different product was generated when cleavage of the AP site was carried out 

in the presence of a physiologically relevant69–70 concentration of GSH (5 mM, Figure 1, 

lanes 4 and 6).

We suspected that the new product resulted from conjugate addition of GSH to the α,β-

unsaturated aldehyde sugar remnant on the 3’-terminus of the AP-derived strand break 

(Scheme 1). This type of thiol addition can be termed a 1,4-addition or thia-Michael-type 

reaction. Previous work provided evidence that thiols can add to the 3’trans-PUA group 

to generate cleavage products with altered gel mobility.53, 88 However, in earlier studies, 

the structure and properties of these products were not well characterized53–54, 65, 88 and, 

to the best of our knowledge, the reaction of glutathione with AP-derived strand cleavage 

products has not been reported previously. The glutathionylated cleavage product (3’GS-

ddR) generated in our experiments migrated more slowly than the 3’trans-PUA product in 

the denaturing gel, due to the large size of the GSH-tripeptide appended to the 3’-end of the 

cleavage fragment (Figure 1, lanes 4 and 6).

When spermine-catalyzed cleavage of the AP-containing duplex was conducted in the 

presence of GSH (5 mM), the 3’GS-ddR cleavage product completely supplanted the 

3’trans-PUA cleavage product (compare lanes 5 and 6 in Figure 1). Addition of GSH to 

the 3’trans-PUA cleavage product was fast, giving complete conversion to the 3’GS-ddR 

product in less than 5 min at 37 °C in pH 7.4 buffer (Figure S2). Capture of the trans-α,β-

unsaturated aldehyde sugar remnant by GSH prevented δ-elimination of the sugar remnant 

to give the 3’P product (compare lanes 5 and 6 in Figure 1).
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We employed nanospray LC-ESI-TOF-MS to further characterize the product formed by 

spermine-induced cleavage of the AP site in the presence of GSH at 37 °C. To facilitate 

mass spectrometric characterization we employed a smaller, unlabeled 25 nucleotide AP-

containing duplex (Figure S3). The major signals observed in the mass spectrum (Figure S3) 

were consistent with that expected for the 3’GS-ddR and 3’P cleavage products (shown in 

Scheme 1).

Taken together, the results described above provided evidence for a previously 

uncharacterized, glutathionylated DNA cleavage product generated when β-elimination at 

an AP site takes place in the presence of the biological thiol GSH. The evidence indicates 

that conjugate addition of GSH to the initial α,β-unsaturated aldehyde group generated on 

the 3’-terminus of an AP-derived strand break produces the 3’GS-ddR adduct rapidly and in 

high yield.

Characterization of the 3’GS-ddR Strand Cleavage Product Using LC-MS/MS/MS.

We employed LC-MS/MS/MS analysis to further characterize the 3’GS-ddR cleavage 

product generated in duplex DNA. The 35-nucleotide duplex containing the 3’GS-ddR 

cleavage product was generated by treatment of the AP-containing duplex with spermine 

in the presence of GSH and the resulting DNA digested using a three-enzyme cocktail 

consisting of nuclease P1, alkaline phosphatase, and phosphodiesterase I. Selected-ion 

chromatograms from the LC-MS/MS/MS analysis of the digests were obtained using 

previously reported conditions.89–91 We observed an early-eluting peak displaying the m/z 
424➔406➔308 transitions corresponding to the neutral loss of water and 2-deoxyribose 

from the expected GS-ddR adduct (Figure 2, Scheme 2). Further cleavage of the m/z 308 ion 

produced characteristic92 glutathione fragments at m/z 179 and 162 (inset, Figure 2).

We then used chemical synthesis to prepare a standard corresponding to the anticipated 

structure of the GS-ddR cleavage product detected in the LC-MS/MS/MS analysis of the 

DNA digest described above. The authentic standard was prepared by reaction of GSH 

with (S,E)-4,5-dihydroxypent-2-enal (1) in water (Scheme 3). The NMR and high-resolution 

mass spectral analysis of the resulting product were consistent with the nucleosidic GS-ddR 

product 2 (Scheme 3). The absence of alkene and aldehyde resonances in the proton NMR 

matched our expectation that conjugate addition of GSH would give a product with the 

sugar residue predominantly in ring-closed forms.73 However, the NMR spectra were too 

complex for detailed assignment of all resonances because the material exists as a mixture 

of up to eight isomers due to R/S stereocenters at C1 and C3 and equilibrating pyranose 

and furanose forms of the sugar residue. Fortunately, the material could be characterized 

following treatment with NaBH4.65, 73 Hydride reduction of the ring-opened aldehyde to the 

corresponding alcohol dramatically simplified the NMR spectra due to eradication of the 

stereocenter at C1 and the associated possibility for pyranose and furanose isomers.73, 93–94 

The 1D-NMR, 2D-NMR, and high-resolution mass spectral analyses of the reduced product 

were consistent with a diastereomeric mixture of the glutathione conjugate 3 (Scheme 3, 

Table S1 and Figure S4).

We found that the LC-MS/MS/MS properties of the synthetic standard 2 mirrored those 

of the actual glutathionylated cleavage product formed in duplex DNA (Figure 2). 
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Overall, the LC-MS/MS analyses provided additional evidence for the structure of the 

3’-glutathionylated cleavage product arising from β-elimination at an AP site in the presence 

of GSH and provide a method that can be applied to the detection of the 3’GS-ddR cleavage 

product in cellular DNA.

Chemical Stability of the 3’GS-ddR Adduct.

Chemical precedents indicate that conjugate addition of thiols to α,β-unsaturated ketones 

and aldehydes can be a reversible reaction.54, 71, 87, 95–97 Therefore, it was important to 

determine the inherent chemical stability of the 3’GS-ddR lesion in DNA. We generated the 

3’GS-ddR cleavage product by treatment of the 35 nucleotide AP-containing duplex with 

spermine in the presence of GSH, followed by ethanol precipitation of the DNA. The DNA 

was redissolved in pH 7.4 HEPES buffer (100 mM) containing 200 mM NaCl (no GSH) and 

the stability of the 3’GS-ddR cleavage product monitored over the course of 48 h at 37 °C 

using gel electrophoretic analysis (Figure 3). Under these conditions, the 3’GS-ddR cleavage 

product displayed considerable stability, disappearing with a half-life of approximately 13 

h. The data indicated that the 3’GS-ddR group decomposes via β-elimination of GSH 

(a retro-thia-Michael reaction) to regenerate the 3’trans-PUA end group, followed by γ,δ-

elimination of the unsaturated sugar remnant to give the 3’P end group. The stability of 

the 3’GS-ddR end group was similar in neutral Tris buffer (pH 7.4, 10 mM) containing 

NaCl (100 mM), decomposing with a half-life of approximately 16 h (Figure S5). On the 

other hand, in basic Tris buffer (pH 8.0, 10 mM, containing 100 mM NaCl) the stability 

of the 3’GS-ddR end group was substantially decreased, with a half-life for elimination of 

approximately 4 h (Figure S5). This result is consistent with literature indicating that the 

rates of retro-thia-Michael reactions are higher under basic conditions.95–96

The 3’GS-ddR adduct was significantly less stable in the presence of a physiological 

concentration98–99 of spermine (1 mM), disappearing with a half-life of about 6 h (Figures 

3B and S6). Again, the gel electrophoretic evidence indicates that the 3’GS-ddR group 

decomposes via sequential β- and δ-elimination reactions to generate the 3’trans-PUA and 

3’P cleavage products, respectively. Spermine catalyzes these elimination reactions via the 

formation of iminium ion intermediates that increase the acidity of the α- and γ-protons 

(Scheme 4).42, 54, 57, 61–64, 87

We found that the 3’GS-ddR end group was dramatically stabilized by the inclusion of 

GSH in the assay buffers. In a pH 7.4 buffer containing 5 mM GSH, 75% of the 3’GS-ddR 

cleavage product remained intact after 2.5 days (60 h, Figures 3B and S7) whereas, in the 

absence of GSH, the 3’GS-ddR group had completely reverted to 3’trans-PUA after 2 days. 

Similarly, inclusion of GSH in the assay buffer stabilized the 3’GS-ddR end group against 

spermine-catalyzed elimination, with more than 75% of the 3’GS-ddR cleavage product 

remaining intact after 2.5 days (60 h), compared to a half-life of 6 h in the presence of 

spermine, but without GSH present (Figures 3B and S8).

GSH shifts the equilibria shown in Scheme 4 toward the GSH-added structures. The 

resulting decrease in the equilibrium levels of the 3’trans-PUA β-elimination product, in 

turn, depresses the rate of δ-elimination leading to the 3’P product. The cell nucleus is rich 

in amines48, 98–99 and GSH.100 Our results demonstrating the stability of the 3’GS-ddR 
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adduct in the presence of both GSH and spermine suggest that the glutathionylated cleavage 

product may persist in DNA for extended periods of time under physiological conditions.

The 3’-Phosphodiesterase Activity of APE1 Trims the 3’GS-ddR End Group from a DNA 
Strand Break.

Sugar remnants on the ends of DNA strand breaks must be “trimmed” or “cleaned” to 

enable repair via the BER or SSBR pathways.14–15, 34, 68 End-cleaning reactions ultimately 

must generate a 3’OH group that serves as a substrate for a gap-filling repair synthesis by 

polymerases such as pol β, δ, or ε.14–15, 68, 101 A number of different enzymes have the 

capacity to remove repair-blocking groups on the 3’-terminus of strand breaks.14–15, 68, 101 

For example, APE1 and APE2 may play major roles in 3’-end cleaning.102–108

We found that APE1 removes the 3’GS-ddR end group from a strand break in duplex DNA 

with a half-life of approximately 40 min (at an enzyme concentration of 26 nM, Figure 4). 

The gel mobility of the resulting product was consistent with generation of the 3’OH end 

group via the 3’-phosphodiesterase activity of the enzyme. At longer incubation times, a 

product one nucleotide shorter was generated by the 3’-exonuclease activity of the enzyme 

(this product is marked “exo” on Figure 4).102, 109–111

For comparison, we determined the ability of APE1 to remove of the 3’-sugar remnant 

produced by the AP lyase action of Endo III.54, 76–77, 112 We found that APE1 removes 

this canonical 3’-blocking group with a half-life of approximately 2 h (at an enzyme 

concentration of 26 nM, Figure S10). Overall, the results show that APE1 can trim the 3’GS-

ddR group from a strand break in duplex DNA and that the rate of this process is comparable 

to that observed for the removal of a 3’-blocking characterized previously.54, 66, 76

The Lyase Activity of the Base Excision Repair Enzyme Fpg Does Not Remove the 3’GS-
ddR End Group.

Active site amine residues in some DNA glycosylases such as NEIL1, NEIL2 and Fpg 

have the capacity to catalyze sequential β- and δ-elimination reactions on AP sites in 

DNA.52, 113–116 These β- and δ-lyase reactions are chemically analogous to the spermine-

catalyzed β- and δ-elimination reactions shown in Scheme 2. The δ-lyase activity of these 

enzymes eliminates the 3’trans-PUA sugar remnant from DNA, leaving a 3’-phosphoryl 

group that is subsequently trimmed by polynucleotide kinase phosphatase (PNPK) in 

eukaryotes, Xth/exonuclease III in bacteria, or ZDP 3’-exonuclease in Arabidopsis to 

generate the 3’OH terminus required for repair synthesis.66, 117–119 This enzymatic repair 

sequence evades the requirement for DNA incision by APE and, accordingly, has been 

termed APE-independent BER.66

Here we examined whether the lyase activity of the base excision repair glycosylase Fpg has 

the capacity to catalyze removal of the 3’GS-ddR end group from a DNA strand break. We 

found that Fpg fails to remove the 3’GS-ddR end group from DNA (Figure S11). A control 

reaction showed that the lyase activity of enzyme was active under the assay conditions, as 

the AP-containing duplex was cleanly converted to the expected 3’P cleavage product.
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DISCUSSION AND CONCLUSIONS

AP sites are abundant lesions in cellular DNA67, 120 as a result of spontaneous33 and 

enzyme-catalyzed34–35 depurination and depyrimidination. In the cellular environment, 

AP sites in DNA have the potential to generate strand breaks with an electrophilic 

trans-α,β-unsaturated aldehyde sugar remnant on the 3’-terminus (3’trans-PUA, Scheme 

1).34, 41–48, 50–51, 53, 65, 70, 98 The work reported here was inspired by our suspicion that 

the 3’trans-PUA cleavage product is not likely to persist in the cellular environment. This 

expectation was founded in precedents from chemical toxicology and drug metabolism 

showing that GSH readily undergoes conjugate 1,4-addition to low molecular weight α,β-

unsaturated aldehydes such as 4-hydroxy-2(E)-nonenal, crotonaldehyde, and acrolein.71–74 

Similarly, thiols add to the α,β-unsaturated butenolide generated by elimination of the 

3’-phosphate from 2-ribonolactone lesions in DNA.121 We believed that the same type of 

reaction should be expected for the α,β-unsaturated aldehyde group on the 3’-end of an 

AP-derived DNA strand break. Indeed, Bailly and Verly reported in 1988 that various thiols 

add to AP-derived strand cleavage products.53 Although reactions with GSH were not part 

of their work, Bailly and Verly further suggested that the addition of biological thiols to AP-

derived cleavage products might influence cellular DNA repair processes.53 Surprisingly, 

these observations seem to have been completely overlooked in the ensuing 30+ years. 

Instead, the 3’PUA cleavage product has been shown in myriad articles and reviews 

describing cellular generation, cleavage, and repair of AP sites, without recognition that 

cellular thiols might react with the α,β-unsaturated aldehyde residue in this product.4, 34, 67

Our results provide evidence that GSH reacts rapidly and completely with the α,β-

unsaturated aldehyde residue on the 3’-terminus of an AP-derived strand break. Our data 

is consistent with the fast rates and favorable equilibrium constants measured previously for 

the conjugate addition of GSH to low molecular weight α,β-unsaturated aldehydes such as 

4-hydroxy-2(E)-nonenal in neutral aqueous buffers.71 In fact, the glutathionylated cleavage 

product 3’GS-ddR is the only major cleavage product observed when β-elimination at an AP 

site occurs in the presence of GSH. Formation of the glutathionylated cleavage product is 

reversible but, in the presence of physiological concentrations of GSH, the adduct persists 

for days. Our results strongly suggest that the ultimate product generated by β-elimination at 

a DNA AP site in the cellular environment may be a strand break with a 3’-glutathionylated 

sugar remnant rather than the canonical 3’trans-PUA cleavage product (Scheme 1). This 

further suggests that the glutathionylated 3’-blocking group should be included in BER and 

SSBR pathways depicting the repair of strand breaks derived from β-elimination at AP site 

in cellular DNA.

It will be interesting to directly assess the presence of glutathionylated AP-derived strand 

breaks in cellular DNA. The LC-MS/MS/MS method reported here provides a platform for 

such experiments. Carell and coworkers previously reported the use of LC-MS/MS methods 

to detect the 3’trans-PUA cleavage product at levels of 1.7 lesions per 106 nucleotides in 

the DNA of cultured human stem cells, but the possibility of a glutathionylated PUA adduct 

was not considered in their work.67 Given that various DNA-binding and DNA-damaging 

agents can readily access their target sites in nucleosomal DNA and chromatin,122 it seems 

likely that GSH will be able to react with the 3’PUA cleavage product in cellular DNA. With 
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regard to analytical strategies aimed at detection of the 3’GS-ddR adduct, our work (Figure 

S5) suggests that it may be critical to stabilize the lesion via borohydride reduction or oxime 

derivatization in order to prevent its reversion to the 3’PUA product in the pH 8 Tris buffers 

that are commonly used123 for cell lysis and DNA extraction. We will report the results of 

such analytical studies in due course.

The GSH reaction described here could have a functional role in mitigating the toxicity 

of AP-derived strand breaks. This is analogous to the detoxification of genotoxic, low 

molecular weight α,β-unsaturated aldehydes such as acrolein and 4-hydroxy-2(E)-nonenal 

by conjugate addition of glutathione.72–73, 124–128 The α,β-unsaturated aldehyde generated 

at AP-derived strand breaks is highly electrophilic and can generate DNA-DNA interstrand 

cross-links via conjugate addition of nucleobases on the opposing strand.57, 76 Conjugate 

addition of GSH to the α,β-unsaturated aldehyde residue in the 3’trans-PUA end group 

prevents this type of reaction, thus mitigating the toxicities associated with the formation of 

difficult-to-repair interstrand DNA cross-links. There are a handful of examples where GSH 

quenches other electrophilic intermediates generated within DNA.129–131

Finally, the chemical stability of the 3’GS-ddR cleavage product under physiological 

conditions makes it interesting to consider how this previously unidentified 3’-blocking 

group might be removed by cellular enzymes to enable repair of AP-derived single-strand 

breaks. We found that APE1 cleans the 3’GS-ddR from the 3’-end of an AP-derived strand 

break in duplex DNA to generate the 3’OH group required for repair synthesis by DNA 

polymerases. The glutathionylated end group is substantially larger than other 3’-blocking 

groups for which trimming by APE1 has been characterized, but a recent crystal structure 

of the enzyme removing a 3’-phosphoglycolate group from a DNA strand break suggests 

that the GSH tripeptide likely can extend from the active site without encountering steric 

hindrance.103

It is important to recognize that proteins other than APE1 have the potential to remove 

the 3’GS-ddR blocking group from a DNA strand break, including APE2,106 MRE11,132 

XPF-ERCC1/RECQ1,133–135 and TDP1.136 TDP1 is a good candidate for trimming the 

GSH tripeptide from the 3’-end of a strand break, as this enzyme has the capacity to 

remove peptide adducts derived from stalled topoisomerase (TOP1) complexes attached to 

the 3’-terminus of a DNA strand break. Indeed, experiments in human cells suggest that 

TDP1 plays a role in the repair of DNA strand breaks derived from β-elimination at AP 

sites.137 Similarly, biochemical experiments have shown that the endonuclease activity of 

XPF-ERCC1 endonuclease can trim a tyrosine-DNA adduct from the 3’-end of a DNA 

strand break.138 It is possible that other proteins involved in the resolution of DNA-protein 

cross-links could contribute to the repair of the DNA-peptide linkage in the 3’GS-ddR 

lesion.139

In future studies designed to investigate the repair of AP-derived strand breaks, it will 

be important consider that the true product generated by β-elimination at an AP site in 

cellular DNA may be a 3’-glutathionylated strand break, rather than the canonical 3’trans-

PUA cleavage product. It remains uncertain whether formation of the GS-ddR adduct may 

enhance or impede the rate at which AP-derived strand breaks are repaired, relative to the 
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3’PUA end group. Further study will be required to determine which repair proteins are 

most important in trimming the glutathionylated sugar remnant from the 3’-terminus of an 

AP-derived strand break to enable repair synthesis via the BER and SSBR pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gel electrophoretic evidence for generation of a novel glutathione-DNA adduct arising 
from β-elimination at an AP site in the presence of GSH.
These experiments employed the 5’-Cy5-labeled DNA duplex shown in the Figure. Labeled 

DNA fragments were resolved by denaturing 20% polyacrylamide gel electrophoresis and 

visualized by fluorescence imaging. Lane 1: the AP-containing duplex. Lane 2: Treatment 

of the AP-containing duplex with NaOH (200 mM, 90 °C, 5 min) generated the 3’P 

cleavage product. Lane 3: heat treatment of the AP-containing duplex (85 °C, 30 min, in 

HEPES buffer (100 mM, pH 7.4) containing 200 mM NaCl) generated a mixture of the 

uncleaved AP-containing DNA oligomer and the 3’trans-PUA cleavage product. Lane 4: 
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heat treatment of the AP-containing duplex (85 °C, 30 min, in 100 mM HEPES buffer 

pH 7.4, containing 200 mM NaCl) in the presence of GSH (5 mM) gave a mixture of the 

uncleaved AP-containing DNA oligomer and the 3’GS-ddR cleavage product, with only 

traces of an “apparent” 3’trans-PUA cleavage product remaining. In fact, we suspect that this 

unreacted material may be a small amount of the 3’dR product that is a known side product 

resulting from thermolysis of AP-containing DNA.86 Lane 5: treatment of the AP-containing 

duplex with spermine (5 mM) in HEPES buffer (100 mM, pH 7.4) containing NaCl (200 

mM) at 37 °C for 1 h generated a mixture of the 3’trans-PUA and 3’P cleavage products. 

Lane 6: treatment of the AP-containing duplex with spermine (Sp, 5 mM) and GSH (5 mM) 

in HEPES buffer (100 mM, pH 7.4) containing NaCl (200 mM) at 37 °C for 1 h generated 

3’GS-ddR cleavage product accompanied by a trace of the 3’trans-PUA cleavage product 

(note: the 3’P product is not generated in the presence of GSH). A control experiment 

showed that treatment of the AP-containing duplex with GSH alone, in the absence of heat 

or spermine, did not result in the generation of significant amounts of cleavage products 

(Figure S1).
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Figure 2. LC-MS/MS/MS analysis of the 3’GS-ddR cleavage product.
Panel A: Selected-ion chromatogram monitoring the m/z 424➔406➔308 transition in the 

digest of a DNA duplex prepared by spermine-mediated strand cleavage of an AP-containing 

duplex in the presence of GSH. Panel B: Selected-ion chromatogram monitoring the m/z 
424➔406➔308 transition of the synthetic standard of the GS-ddR adduct (2) prepared as 

shown in Scheme 3.
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Figure 3. The 3’GS-ddR cleavage product is stable in pH 7.4 buffer.
Labeled DNA fragments were resolved by denaturing 20% polyacrylamide gel 

electrophoresis and visualized by fluorescence imaging. The 3’GS-ddR cleavage product 

was generated by treatment of the AP-containing duplex with spermine (5 mM) and GSH 

(5 mM) in HEPES buffer (pH 7.4, 100 mM) containing NaCl (200 mM) for 1 h at 37 °C. 

The DNA was isolated by ethanol precipitation, redissolved in HEPES buffer (100 mM, 

pH 7.4) containing 200 mM NaCl (no spermine) and the stability of the 3’GS-ddR product 

analyzed by gel electrophoresis. Panel A. Lane 1: the AP-containing duplex containing a 
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small amount of the fast-migrating 3’trans-PUA cleavage product. Lane 2: Treatment of 

the AP-containing duplex with NaOH (200 mM, 90 °C, 5 min) generated the 3’P cleavage 

product. Lane 3: treatment of the AP-containing duplex with spermine (5 mM) in HEPES 

buffer (100 mM, pH 7.4) containing 200 mM NaCl generated a mixture of the 3’trans-PUA 

and 3’P cleavage products. Lanes 4-14: incubation of the 3’GS-ddR in HEPES buffer (100 

mM, pH 7.4) containing 200 mM NaCl for 0 h, 1 h, 2 h, 4 h, 7 h, 11 h, 16 h, 22 h, 29 

h, 37 h, 48 h. The 3’GS-ddR cleavage product, under these conditions, decomposes slowly 

(t1/2 = 13 h) via β-elimination to generate the 3’trans-PUA product that, in turn, undergoes 

δ-elimination to generate the 3’P product. Panel B. The plot shows the remaining fraction of 

3’GS-ddR in the absence of spermine or GSH, in the presence of GSH, in the presence of 

spermine, and in the presence of spermine and GSH.
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Figure 4. The 3’GS-ddR end product can be trimmed by the 3’-phosphodiesterase activity of 
APE1.
These experiments employed the 5’-Cy5-labeled duplex shown in Figure 1. Labeled 

DNA fragments were resolved by denaturing 20% polyacrylamide gel electrophoresis and 

visualized by fluorescence imaging. Panel A. Lane 1: the AP-containing duplex. Lane 2: 

Treatment of the AP-containing duplex with NaOH (200 mM, 37 °C, 20 min) generated a 

mixture of the 3’trans-PUA and the 3’P cleavage products. Lane 3: size marker for the 3’OH 

cleavage product generated by the action of APE1 on the AP-containing duplex. The AP-

containing duplex was incubated with APE1 (0.8 unit/μL, 26 nM) in Tris-acetate (20 mM, 
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pH 7.9) containing magnesium acetate (10 mM), potassium acetate (50 mM), glutathione (5 

mM), and dithiothreitol (1 mM) at 37 °C for 2 h to give the 3’OH cleavage product. Lane 

4: a no-enzyme control in which the 3’GS-ddR cleavage product was incubated for 2 h in 

the APE1 assay buffer (Figure S9, provides a 12 h timecourse showing stability of the 3’GS-

ddR end group in the assay buffer, without enzyme). Lanes 5-14: The 3’GS-ddR cleavage 

product was incubated at 37 °C with APE1 (0.8 unit/μL, 26 nM) in Tris-acetate (20 mM, 

pH 7.9) containing magnesium acetate (10 mM), potassium acetate (50 mM), glutathione 

(5 mM), and dithiothreitol (1 mM) and aliquots were removed at 10 min, 20 min, 40 min, 

1 h, 2 h, 3 h, 4.5 h, 6 h, 9 h, 12 h, and 15 h and frozen until gel electrophoretic analysis. 

The 3’-phosphodiesterase activity of the APE1 removes the 3’GS-ddR end group with a 

half-life of approximately 40 min to give the 3’OH product. Subsequent 3’-exonuclease 

activity of APE1 generates the product that is shorter by one nucleotide, labeled “exo” on 

the gel image. Panel B. Shows a plot of remaining 3’GS-ddR end group as a function of time 

measured from the gel electrophoretic analysis.
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Scheme 1. Strand cleavage involving β-elimination at an AP site in DNA in the presence of the 
biological thiol glutathione generates a glutathione adduct via conjugate addition of glutathione 
to the initial 3’trans-PUA cleavage product.
The resulting 3’GS-ddR adduct is referred to as a singular species in the text but, in fact, has 

the potential to exist as four distinct diastereomers. The work described here does not define 

the stereoisomeric nature of the adduct. In this Scheme, the black and red ribbons represent 

DNA strands and P represents a phosphodiester linkage or a terminal phosphoryl group.
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Scheme 2. 
Fragmentation of GS-ddR adduct in LC-MS/MS/MS experiments.
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Scheme 3. 
Chemical synthesis of a structurally-defined standard corresponding to the GS-ddR adduct 

detected in the LC-MS/MS analysis of the DNA digest (Figure 2A). The sugar residue in 

2 is shown in the furanose form, but exists as an equilibrating mixture of furanose and 

pyranose isomers.93–94
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Scheme 4. The 3’GS-ddR adduct can decompose via β-elimination of glutathione to regenerate 
3’trans-PUA that, in turn, undergoes δ-elimination to give the 3’P end product.
The β-elimination reaction is slow in the absence of an amine catalyst, occurring with a 

t1/2 of 14 h (pH 7.4, 37 °C). For brevity, spermine is abbreviated as a simple dialkylamine 

and glutathione is abbreviated as GSH (the actual structures of spermine and glutathione 

are shown in Figure 1). The elimination of GSH is catalyzed by spermine via formation of 

iminium ion intermediates, in which the α- and γ-protons have increased acidity compared 

to the parent α,β-unsaturated aldehyde of the 3’trans-PUA end group. The amine-catalyzed 

process occurs with a half-life of 4 h (pH 7.4, 37 °C, 1 mM spermine). The black ribbons 

represent DNA strands and P represents a phosphodiester linkage or a terminal phosphoryl 

group.
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