Skip to main content
. 2022 Sep 15;12:15498. doi: 10.1038/s41598-022-18936-9

Table 2.

Comparison of proposed framework with the existing CNN models.

Models Accuracy % F1-score Precision MCC Recall AUC-PR AUC-ROC
AlexNet 92.86 0.6807 0.9960 0.5874 0.5171 0.9041 0.9685
VGG16 94.72 0.9146 0.9552 0.839 0.8772 0.9321 0.9816
Inceptionv3 94.89 0.8055 0.9920 0.7091 0.6780 0.8972 0.9860
VGG19 95.38 0.8353 0.9902 0.7429 0.7223 0.9088 0.9739
Resnet50 95.62 0.8282 0.9971 0.7379 0.7082 0.9432 0.9848
Shufflenet 95.93 0.8491 0.9949 0.7621 0.7404 0.9541 0.9901
DenseNet201 96.17 0.8685 0.9917 0.7856 0.7726 0.9471 0.9884
Xception 96.57 0.9342 0.9737 0.8651 0.9074 0.9527 0.9882
GoolgeNet 96.72 0.8934 0.9917 0.8195 0.8128 0.9469 0.9881
Proposed iMDA 97.93 0.9394 0.9864 0.8796 0.8873 0.9731 0.9938