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Batch effects removal for microbiome data
via conditional quantile regression

Wodan Ling 1, Jiuyao Lu2, Ni Zhao 2 , Anju Lulla3, Anna M. Plantinga 4,
Weijia Fu5, Angela Zhang1,5, Hongjiao Liu 1,5, Hoseung Song1, Zhigang Li 6,
Jun Chen7, Timothy W. Randolph 1, Wei Li A. Koay8,9, James R. White10,
Lenore J. Launer 11, Anthony A. Fodor12, Katie A. Meyer3 & Michael C. Wu1,5

Batch effects in microbiome data arise from differential processing of speci-
mens and can lead to spurious findings and obscure true signals. Strategies
designed for genomic data to mitigate batch effects usually fail to address the
zero-inflated andover-dispersedmicrobiomedata.Most strategies tailored for
microbiome data are restricted to association testing or specialized study
designs, failing to allow other analytic goals or general designs. Here, we
develop the Conditional Quantile Regression (ConQuR) approach to remove
microbiomebatch effects using a two-part quantile regressionmodel. ConQuR
is a comprehensive method that accommodates the complex distributions of
microbial read counts by non-parametric modeling, and it generates batch-
removed zero-inflated read counts that can be used in and benefit usual sub-
sequent analyses. We apply ConQuR to simulated and real microbiome data-
sets and demonstrate its advantages in removing batch effects while
preserving the signals of interest.

Advances in 16S rRNA1 and full metagenome2 sequencing technologies
have enabled large-scale human microbiome profiling studies invol-
ving hundreds to thousands of individuals. The large sample sizes of
these studies and the rich availability of metadata promise a compre-
hensive understanding of the role of microorganisms in health and
disease. These studies have already revealed associations between
bacterial taxa andbothdiseases and exposures, such as obesity3, type 2
diabetes4, bacterial vaginosis5, antibiotics6, and environmental
pollutants7. However, although large-scale studies facilitate more
robust and powerful analyses, they are often subject to serious batch

effects—systematic variation in the data originating from differential
handling and processing of specimens8. Many large studies include
samples collected across times or locations and processed in different
runs. In a more extreme situation, several studies may be pooled
together for integrative analysis, with inter-study heterogeneity
introducing even more severe variation. These batch effects pose
serious challenges to analysis and can lead to excessive false positive
discoveries, obscure true associations between microbes and clinical
variables, and hinder prediction modeling and biomarker develop-
ment. Unfortunately, despite the importance of batch effects,
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relatively little research has been done on mitigating batch effects for
microbiome data.

Batch effects are not unique to microbiome data9, and standard
tools have been developed for other genomic technologies, with the
most commonly applied approach being ComBat10. However, ComBat
and related methods that remove genomic batch effects assume con-
tinuous, normally distributed outcomes. Extensions for count data
exist11, but even these make restrictive distributional assumptions.
Microbiome data are usually highly zero-inflated, over-dispersed, and
heterogeneous with complex distributions. Thus, methods from the
other contexts cannot adequately address these issues. At the same
time, the limited work on batch effects correction tailored for micro-
biome data12–14 can only be used for batch adjustment in association
testing or require specific types of controls/spike-ins. These approaches
fail to enable other common analytic goals such as visualization or to
accommodate more general study designs. Recently, MMUPHin15

extended ComBat tomicrobiome analysis by considering zero inflation.
But ultimately, it assumes the data to be zero-inflated Gaussian, which is
only appropriate for certain transformations of relative abundance data
(i.e., taxon counts normalized by each sample’s library size). Therefore,
more flexible approaches are needed.

In this paper, we propose the conditional quantile regression
(ConQuR) approach, a comprehensive microbiome batch effects
removal tool. Here, batch removal refers to disentangling the batch
effects that could otherwise contaminate the signal of key variables and
generating batch-free data that are suitable for any subsequent analyses,
while batch adjustment means including batch ID as a covariate in
testing. Thus, ConQuR works directly on taxonomic read counts and
generates corrected read counts that enable all of the usualmicrobiome
analyses (visualization, association analysis, prediction, etc.) with few
restrictions. ConQuR assumes that for each microorganism, samples
share the same conditional distribution if they have identical intrinsic
characteristics (with the same values for key variables and important
covariates, e.g., clinical, demographic, genetic, and other features),
regardless of in which batch they were processed. This does not mean
the samples have identical observed values, but they share the same
distribution for that microbe. Then operationally, for each taxon and
each sample, ConQuR non-parametrically models the underlying dis-
tribution of the observed value, adjusting for key variables and covari-
ates, and removes the batch effects relative to a chosen reference batch.

ConQuR is fundamentally different from quantile normalization,
the widely used approach to align gene expression data. ConQuR allows
the underlying taxon abundance distribution to differ across taxa and
models the conditional distributions dependent on metadata, while
quantile normalization assumes all taxa are homogeneous and makes
the empirical marginal distribution identical to a reference batch.
Moreover, ConQuR is fundamentally different from genomic batch
removal methods. Instead of using parametric models, ConQuR uses a
composite non-parametric model to correct the entire complex condi-
tional distribution of microbial read counts, robustly and thoroughly,
while maintaining the zero-inflated integer nature of microbiome data.
In particular, we use quantile regression for counts16,17 tomodel the read
counts among samples for which the microbe is present, and separately
model the presence–absence status of the microbe by logistic regres-
sion. Quantile regression is non-parametric and directly models per-
centiles of the outcome, such as the median and quartiles. ConQuR is
therefore robust to microbiome data characteristics and able to correct
higher-order batch effects beyond the mean and variance differences.
With zeros explicitly modeled by logistic regression, ConQuR can also
address batch variation affecting the presence–absence status of
microbes.

To systematically evaluate ConQuR, we conduct simulation studies
based on a real vaginal microbiome dataset and examine three large
microbiome datasets with different types of batch effects. The real data
examples include a gut microbiome study of cardiovascular diseases

with moderate batch differences between samples sequenced across
several runs, an integrated dataset suffering from more substantial
“batch” effects as it comprises different HIV gut microbiome studies,
and an oral microbiome study in which batch variation is similar in size
to the key variable’s effect. By visual and numerical comparisons, we
demonstrate that ConQuR thoroughly removes the batch effects and
preserves the effects of key variables (continuous, binary, and poly-
tomous) in both association testing and prediction. All usual data
transformations and analyses can be conducted on the corrected read
count data with minimal regard for the batches.

Results
Overview of ConQuR
The central objective of ConQuR is to remove batch effects while
preserving real signals in associations in either direction (explaining
microbiome variability with the key variable, or vice versa). This is
done on a taxon-by-taxon and sample-by-sample basis using a two-
step procedure (Fig. 1a). First, in the regression-step, we regress out
the batch effects using a non-parametric extension of the two-part
model18 for zero-inflated count outcomes. Specifically, a logistic
model determines the likelihood of the taxon’s presence, and quan-
tile regression models percentiles of the read count distribution
given the taxon is present. The explanatory variables include batch
ID, key variables, and scientifically relevant covariates. Accordingly,
we can robustly estimate the entire original distribution of the taxon
count for each sample, and also estimate the batch-free distribution
by subtracting the fitted batch effects relative to a chosen reference
batch from both the logistic and quantile parts. Note that we fit the
two-part model using all samples for a particular taxon, but due to
differences in sample characteristics, the conditional distributions
are sample-specific. Second, in the matching-step (Fig. 1b), we locate
the sample’s observed count in the estimated original distribution,
and then pick the value at the samepercentile in the estimated batch-
free distribution as the corrected measurement. We repeat this two-
step correction for each sample and then each taxon. A second ver-
sion, ConQuR-libsize, directly incorporates library size in the two-
part model; thus, in the situation where between-batch library size
differences are of interest, the corresponding library size variability
is preserved. Both versions are described in more detail in the
“Methods” section.

The modeling and estimation framework of ConQuR has four
advantages. First, as it directly estimates every conditional percentile
without specific assumptions, the complex microbial count distribution
is robustly and comprehensively captured. It is more reliable (robust
and flexible) than a parametric model, such as negative binomial or
Gaussian, which requires the read counts to follow a specific shape.
Second, the compositemodel of logistic and quantile regressions allows
heterogeneous associations between the zero-inflated, over-dispersed
microbial counts and traits, i.e., batch effects do not need to be uniform
across the range of the taxon’s abundance. Consequently, the batch
effects removal is thorough, mitigating mean, variance, and higher-
order batch effects. Finally, as the framework handles zero inflation, it
calibrates unwanted presence–absence differences among batches,
recovering non-zero counts for under-sampled observations and for-
cing those over-sampled to be zero.

Evaluation on simulated data
We simulated data based on MOMS-PI19, a real vaginal microbiome
dataset from the integrative Human Microbiome Project20, available
from the HMP2Data package21. After pre-processing, the starting data
contain 233 taxa from 270 samples. On top of the intrinsic hetero-
geneity in the starting data, we simulated 2 conditions (Condition
1 vs. 0) and 2 batches (Batch 1 vs. 0) from a joint Bernoulli distribution
with pCondition = 0.5, pBatch = 0.5, and odds ratio (OR) = 1.25. Thus, Con-
dition is confounded by Batch. We then considered 3 scenarios:
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A. Null: Condition fold change (FC) = 16, Batch FC= 1
B. Condition Effect > Batch Effect: Condition FC = 64, Batch FC = 4
C. Condition Effect < Batch Effect: Condition FC = 4, Batch FC = 64

To further challenge ConQuR, we considered Scenarios D, E, and
F, which add systematic differences in library size between batches to
Scenarios A, B, and C, respectively. Specifically, the probability that a

sample belongs to Batch 1 is pBatch =
1

1 + exp �libsizesð Þ, where libsizes is the
standardized library size (libsize) of each sample in the starting data.
Therefore, pBatch is sample-specific and batch effects contain library
size variability.

A recurring objective in microbiome studies is association testing
for individual taxa. Thus, we chose 20 taxa ranging from the most to
the least abundant to be differentially abundant (DA) between
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Condition 1 and 0, with the direction of association varying between
taxa. Since batch effects affect the entire microbial profile, half of the
taxawere set to have increased abundance in Batch 1 (relative to Batch
0) and the other half had decreased abundance in Batch 1.

Next, we mimicked ALDEx222 to simulate taxa read counts. Speci-
fically, for sample i, we added 0.5 to its observed count vector in the
starting data (to make sure unobserved taxa can also be drawn with
minimal probabilities) and used this as the parameter vector to generate
relative abundances from a Dirichlet distribution. We then multiplied
the simulated relative abundances by libsizei to generate the initial read
counts. Then, if sample i belonged to Condition 1, we divided the initial
counts of negatively associated taxa by Condition FC, andmultiplied the
initial counts of positively associated taxa by Condition FC0

i, calculated
to maintain libsizei. Finally, if sample i belonged to Batch 1, we divided
the counts of taxa with decreased abundance by Batch FC, and multi-
plied the counts of taxa with increased abundance by Batch FC0

i. Addi-
tional simulation details, workflow, and data visualization are in
Supp. Fig. 3.

We assessed ConQuR from three perspectives: (1) how well the
batch effects are removed and condition effects are preserved, (2) the
ability of corrected read counts to predict Condition, and (3) the false
discovery rate (FDR) and sensitivity of subsequent individual-taxon
association analysis for Condition. For (1), we examined the variability
of the microbiome data explained by Batch and Condition using
PERMANOVA23 R2. Note that as a measure of multivariate correlation,
there is no easy interpretation of PERMANOVA R2; nonetheless, it is a
reliable metric to quantify the proportion of variability in microbiome
data (assessed by a certain distance matrix) explained by a particular
variable. For (2), random forest was chosen to allow for flexible and
non-linear modeling. Five-fold cross-validation on the area under the
receiver operating characteristic curve (ROC-AUC) was used to evalu-
ate the accuracy. As this analysis merely used prediction accuracy as a
complementary metric of evaluation (rather than aiming to evaluate a
predictive model), we applied ConQuR to the combined training and
testing sets for simplicity. Note that whereas PERMANOVA R2 reflects
variability in the taxa explained by Batch and Condition, the ROC-AUC
reflects the proportion of Condition explained by taxa. For (3), to
evaluate in a general and conservative setting, we used ordinary linear
regression of taxon relative abundance on Condition, with FDR con-
trolled by the Benjamini–Hochberg (BH) procedure at α =0.05.Within
the taxa table, we computed the observed FDR false positives

positive calls

� �
and

compared it to the nominal value 0.05, and we evaluated the sensi-
tivity true positives

total positives =
true positives

20

� �
.

We repeated the simulation 500 times for each scenario and
compared ConQuR with ComBat-seq11 (designed for RNA-seq count
data), MMUPHin15 (for microbiome count or relative abundance data)
and Percentile12 (for case-control studies with microbiome relative
abundance data; wemultiplied its output by libsize and rounded to be
consistent with the others’ outputs) as competing methods.

Figure 2a shows that across all the scenarios, ConQuR reduced the
batch variability the most, achieving the lowest Batch PERMANOVA R2

in either Bray-Curtis dissimilarity on the raw count or Euclidean dis-
similarity on the corresponding centered log-ratio (CLR)24,25 trans-
formed relative abundance (Aitchison dissimilarity). At the same time,

it usually preserved the effects of Condition. In terms of the predictive
metric, ConQuR also performed the best in maintaining or amplifying
the condition signal (Fig. 2b). Collectively, ConQuR outperformed the
competing methods in preserving condition effects while thoroughly
removing batch effects, enabling more reliable community-level
association testing (by PERMANOVA or MiRKAT26, a generalization of
PERMANOVA) and more accurate prediction. Its advantages are most
noticeable when batch effects are larger than condition effects (Sce-
nario C and F). ConQuR-libsize demonstrated similar merits.

In the association analysis, ConQuR is the only method that con-
trolled FDR around 0.05 across all the scenarios (Fig. 2c). At the same
time, it achieved sensitivity comparable to the other approaches.
Percentile appeared to bemost powerful, but it could not control FDR
and might not be valid. ConQuR-libsize could not control FDR when
batch effects were larger than condition effects (Scenario C and F) or
batch effects contained library size variability (Scenario E and F).
Assessmentwith nominal FDR cutoffs 0.01 and0.1 further confirms the
findings (Supp. Fig. 4).

To sumup, ConQuRoutperforms existing approaches in reducing
batch effects and maintaining key signals, especially when batch
effects are profound. Moreover, under all circumstances, it controls
FDR in subsequent association analysis while achieving satisfactory
sensitivity. ConQuR-libsize demonstrates similar or improved perfor-
mance compared to existing approaches, but it may be inferior to
ConQuR in some cases as it ignores the complexity coming from
library size variability.

Application to a single large-scale epidemiology study
In what follows, we assess ConQuR using real data.We first apply it to
a study containing traditional batch variation: samples are collected
under one protocol but handled in different batches. The Coronary
Artery Risk Development in Young Adults (CARDIA) Study27 enrolled
young adults in 1985–86, with the aim of elucidating the develop-
ment of cardiovascular disease (CVD) risk factors across adulthood. A
variety of clinical risk factors related to CVD were collected, includ-
ing blood pressure (BP). Basic demographic measures such as age,
gender, and race were also collected. At the Year 30 follow-up
examination (2015–16), stool samples were collected and processed
forDNAextraction and library preparation across four batches. Then,
the 16S rRNA marker gene (V3-V4) was sequenced by Illumina tech-
nology (MiSeq 2x300) over 7 runs (~96 samples/run), two from each
of the first three DNA extraction batches, and the last run from the
fourth batch. Thus, at the finest level, data were generated across 7
batches. Following sequencing, forward reads were processed
through the DADA228 pipeline for quality control and derivation of
amplicon sequence variants (ASVs), and taxonomy was assigned
using the Silva reference database29. The data were aggregated to the
genus level, and lineages with zero reads across all samples were
excluded.

Batch ID (Batches 0 to 6) indicates in which of the seven
sequencing runs each sample was included. Systolic blood pressure
(SBP) was the primary variable of interest (SBP > 120 is considered a
case for Percentile). Covariates considered for adjustment included
gender (Male = 0, Female = 1) and race (White = 0, Black = 1). With

Fig. 1 | Illustrationof theConQuRalgorithm.Plots are basedon real observations
of Butyricimonas in the CARDIA study. a Two-step procedure. I. regression-step: (1)
Use all available samples to fit the two-part quantile regressionmodel; (2) For each
sample, estimate the original likelihood of the taxon being present and the original
distribution (by estimating a fine grid of percentiles) given the taxon is present. The
two parts jointly determines the zero-inflated, over-dispersed conditional quantile
function (the inverse of conditional distribution function) of the taxon count Q̂

o
. In

the same manner, estimate the batch-free conditional quantile distribution Q̂
c
. II.

Matching-step: locate the observed read count in Q̂
o
, and pick the value at the same

location of Q̂
c
as the corrected read count. Repeat the procedure for each sample

and then each taxon. b Three scenarios ofmatching. Left panel: Sample A has a less
sparse and less outlying estimated batch-free distribution compared to the original
one, so its observed measurement of zero is corrected to be a non-zero number.
Middle panel: Sample B has a sparser and more outlying estimated batch-free
distribution than the original one, so its observed non-zero count, located at a
lower percentile of the original distribution, is corrected to be zero. Right panel:
Sample C has a slightly less sparse and less outlying estimated batch-free dis-
tribution than the original one, so its observed non-zero count, located at a
middle percentile of the original distribution, is corrected to be a smaller non-
zero count.
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missingness filtered out, the final processed data included 375 genera
and 633 samples (Supp. Tab. 1). We aimed to remove the effects of
other batches relative to Batch 3, assuming that SBP, gender, and race
could jointly describe the conditional distribution for each sample of
each taxon’s abundance.

We first demonstrated the efficacy of ConQuR through visualiza-
tion: PCoA plots with colors representing batch IDs. We used Bray-
Curtis, Aitchison, and GUniFrac dissimilarities (a compromise between
unweighted and weighted UniFrac distances, computed based on
relative abundance). As Fig. 3a shows, for all three dissimilarities, the

Fig. 2 | Evaluation on the simulated data. There are 6 simulation scenarios with 2
conditions and 2 batches, based on the starting data processed from the MOMS-PI
study. Simulation scenarios are: A. Condition FC = 16, Batch FC= 1 (Null), B. Con-
dition FC = 64, Batch FC = 4 (Condition Effect > Batch Effect), C. Condition FC= 4,
Batch FC= 64 (Condition Effect < Batch Effect), where Condition and Batch are
simulated from joint Bernoulli distribution with pCondition = 0.5, pBatch = 0.5, and
OR= 1.25; Scenarios D, E, F are similar to Scenarios A, B, C, respectively, but
pBatch =

1
1 + exp �libsizesð Þ, making batch variability incorporate library size variability. In

the followingplots, the scenarios are arrangedon thex-axiswith theorder A,D, B, E,
C, F because the two Nulls are allocated together, followed by Condition Effect >
Batch Effect, and then Condition Effect < Batch Effect. Color and the name of the

corresponding method are shown on the right within the graph. a Average pro-
portions of data variability explained by Batch and Condition, quantified by PER-
MANOVA R2 in either Bray-Curtis or Aitchison dissimilarity. Lower batch variability
with preserved or increased condition variability is preferred. b Average cross-
validated area under the receiver operating characteristic curve (ROC-AUC) of
predicting Condition from the taxa read counts via random forest. Higher ROC-
AUC indicates a better prediction combining sensitivity and specificity. c The
average false discovery rate (FDR, solid line) and sensitivity (dashed line) of asso-
ciation analysis between taxa relative abundance and Condition. Approaches with
FDR attained around the nominal level 0.05 are valid, and among the valid
approaches, higher sensitivity is preferred.
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uncorrecteddata exhibited significant differences amongbatches, and
ConQuR performed a thorough correction in both the mean (cen-
troids) and dispersion (sizes of ellipses). Specifically, in the raw count
scale (by Bray-Curtis dissimilarity), ConQuR centered themeans of the
seven batches to the same point. As can be seen from the 95% con-
fidence ellipse (an ellipse connects the 95% percentile of points for
each batch in the bivariate plot), ConQuR not only equalized the
amount of variability across batches but also removed their higher-
order effects (angles of the ellipses now are aligned). ConQuR-libsize
and the competing methods cannot remove the batch effects as
thoroughly as ConQuR. In the relative abundance scale (by Aitchison
or GUniFrac dissimilarities), ConQuR also successfully aligned the
different batches. However, its advantage over the others was not as
substantial as in the raw count scale. This is because ConQuR-libsize
and the competing methods either include library size as an offset or
work directly on transformations of relative abundance. We also
examined ConQuR on common and rare genera separately, showing
that compared to competing approaches, ConQuRperformed the best
on moderate to common taxa (i.e., those present in more than 50% of
samples) and demonstrated comparable correction on the rare ones
(Supp. Fig. 5).

We then numerically evaluated ConQuR by PERMANOVA23 R2 and
the predictive metric. As Fig. 3b shows, ConQuR induced the largest
reduction in the microbiome data variability that can be explained by
batch yet maintained the variability that can be explained by SBP, in
either the count or relative abundance scale. ComBat-seq showed
similar reduction in batch effects in the relative abundance scale but
failed to keep the explanatory power of SBP. ConQuR-libsize was not
advantageous as ConQuR, but still outperformed the competing
methods. Next, we used boxplots to summarize the cross-validated
root of mean squared error (RMSE) for predicting SBP from the taxa
read counts. ConQuR and ConQuR-libsize systematically lowered the
RMSE, amplifying the predictive signal of SBP in the microbial pro-
files (Fig. 3c).

For the association analysis, at FDR α = 0.05, linear regression
(adjusting for gender and race) did not find genera associated with
SBP in the original, ComBat-seq, or Percentile corrected data.
In contrast, Anaerovoracaceae_Family_XIII_UCG-001 (adjusted
p value = 0.0012, also identified by MMUPHin) and Hydro-
genoanaerobacterium (adjusted p value = 0.0422, also identified by
ConQuR-libsize) were detected to be DA in the ConQuR-corrected
data. For adolescents, change in Family_XIII_UCG-001’s relative
abundance is positively related to changes in triglycerides, serum
cholesterol, and low-density lipoprotein cholesterol30, which are
factors closely associated with hypertension31,32. Also, it is DA
between control and coronary artery disease (CAD) patients33,
where the strong link between hypertension and CAD has been
shown34,35. Hydrogenoanaerobacterium is a crucial contributor to
modeling the change of BP in studying the effect of fasting on high
BP in metabolic syndrome patients36. Supported by the biological
findings, we confirm that ConQuR helps to peel off the confounding
batch effects, maintain the true signals and lead to meaningful
discoveries.

Application to integration of multiple individual studies
We further consider the performance of ConQuR in the context of
vertical data integration where interest is in combining multiple indi-
vidual studies. We applied it to data from the HIV re-analysis con-
sortium (HIVRC)37. Raw 16S rRNA gene sequencing data from distinct
studies were processed through a common pipeline—Resphera
Insight38. Details of data pre-processing and taxonomic assignment are
published elsewhere37. We focused on the data aggregated to genus
level. HIV status (Negative = 0, Positive = 1) was regarded as the pri-
mary metadata, while age, gender (Male = 0, Female = 1) and BMI were
considered as covariates. Retaining complete cases only, we obtained

the final data that consist of 606 genera for 572 individuals from
10 studies (Supp. Tab. 2) and regarded Study 0 as the reference batch.

Here, the batch effects are between studies and are much more
extreme since the studies had varying experimental designs and
sequencing protocols (Supp. Tab. 2 of ref. 37). Measured by PERMA-
NOVAR2, the study ID explains 30.39% of the data variability, while the
traditional batch effects in CARDIA only contribute 5.66%. We also
observed substantial imbalance, sparsity, and heterogeneity in the
microbial profiles, as they are unlikely to be fully matched across
studies. Comparing Supp. Tab. 2 to Supp. Tab. 1, we see that only 65
out of the 606 genera are present in all studies, while the ratio is 183/
375 in CARDIA. Library size ranges also differ greatly across studies,
e.g., samples have 185–1000 reads in Study 6, whereas the library size
was rarefied to 20,000 reads in Studies 0 and 8. Note that we inten-
tionally kept the samples with minimal library sizes to show ConQuR’s
capability to handle the outliers. Correcting such heterogenous
microbiome data is more challenging than correcting the CARDIA
data. The imbalance in metadata (sample sizes and characteristics,
Supp. Tab. 2) also adds to the difficulty of batch effects removal.

Visually, we see that ConQuR considerably removed the study
variation in the raw count (by Bray-Curtis dissimilarity, Fig. 4a). The
means of the 10 studies (centroids) came almost together, and the
dispersions and higher-order features (sizes and angles of the con-
fidence ellipses) are much more aligned. In the relative abundance
scale (byAitchisondissimilarity), thoughConQuRdid not demonstrate
perfect correction, it still made the 10 studies substantially more har-
monized—brought the means closer and amplified the dispersions of
the minimally variable studies, e.g., Study 6, making their variance
comparable to the others. We did not conduct the analysis on GUni-
Frac dissimilarity because the phylogenetic tree for the pooled HIVRC
data was not available to us. ConQuR-libsize performed better than
existing methods, but not as well as ConQuR. As before, ConQuR
demonstrated more thorough correction on genera with more than
50% prevalence, and was non-inferior on rare genera, compared to the
other methods (Supp. Fig. 6).

Numerically, although ConQuR did not make perfect correction
of batch effects as on the traditional batch sequencing microbiome
data, it maintained its effectiveness in terms of the proportion of
unwanted variation eliminated. For theCARDIAdata,ConQuR reduced
batch effects by 98%, from 5.66% to 0.10%. For the HIVRC data, Con-
QuR again mitigated 94% of study-to-study variation, from 30.39% to
1.94%, while keeping the importance of HIV status (0.59% vs. 0.57% in
the original data, Fig. 4b). On the relative abundance scale, ConQuR
still performed the best. Percentile showed slightly more batch
reduction on the relative abundance scale, but it failed to preserve the
variability explainedbyHIV status.ConQuR-libsizewas thefirst runner-
up in removing batch effects but also did not do well in preserving the
key signals. In terms of predicting HIV status, ConQuR boosted the
ROC-AUC from 0.75 (from the uncorrected data) to 0.92 and ConQuR-
libsize achieved 0.84, while the competing methods failed to enlarge
the predictive signal of HIV status in the microbial profiles (Fig. 4c).
Overall, ConQuR is robust to different types of batch effects
and demonstrated thorough mitigation of batch variation while
maintaining signals of interest, even when the batches are highly
heterogeneous.

No DA genera between control and HIV+ patient was found in the
original data (adjusting for age, gender, and BMI). Acidaminococcus
(adjusted p value = 0.0159) was identified in the ConQuR-corrected
data only, which has been shown to increase in HIV+ patients39. Again,
the finding confirms that ConQuR can disentangle signals from the
unwanted variation and lead to meaningful discoveries.

Application to a single study with a large key variable effect size
In both the CARDIA and the HIVRC studies, the batch effects are large
compared to the effects of interest (a continuous and a binary variable,
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respectively). We then applied ConQuR to the Men and Women
Offering Understanding of Throat HPV (MOUTH) study40. In this
dataset, the key variable, cigarette smoking (CIG) status, explains
comparable amount of data variability as the batch, and has three
levels (Never smoker = 0, Former smoker = 1, Current smoker = 2). For
the Percentilemethod, CIG status = 1 or 2 are both considered as cases.

Details about study design, saliva sample collection, and the 16S
rRNA sequencing can be found elsewhere40. The data were processed
through theQIIME241 pipeline.We focusedon thegenus-level data, and
considered oral HPV status (Negative = 0, Positive = 1), race (White = 0,
Black = 1, Others = 2) and sexual orientation (Heterosexual = 0,
Homosexual = 1, Others = 2) as covariates. Thefinal data consists of 247
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genera on 486 individuals from 7 batches (Supp. Tab. 3). We regarded
Batch 0 as the reference batch.

Visually, the original MOUTH data does not suffer from serious
batch variation. All the batch removal methods further improve the
homogeneity of the microbial profiles, while ConQuR did noticeably
the best job in unifying the means, dispersions, and higher-order fea-
tures of the 7 batches, in terms of any dissimilarly (Fig. 5a). Similarly,
ConQuR demonstrated improved performance on moderate to

common taxa, and comparable correction on rare taxa, as compared
to the other approaches (Supp. Fig. 7).

Numerically, batch ID and CIG status explain comparable
proportions of the original data variability (Fig. 5b). ConQuR out-
performed all the other methods in mitigating the batch variation and
increasing the explanatory power of CIG status, in either raw count or
relative abundance scale. ConQuR-libsize was the first runner-up,
undoubtedly improved from the existing approaches. The cross-

Fig. 3 | Evaluation on the CARDIA data. a PCoA plots clustered by batch ID
(corresponding colors are shown at the bottom within the graph), based on Bray-
Curtis dissimilarity on raw count data (top panel), Aitchison dissimilarity on the
corresponding relative abundance data (middle panel), and GUniFrac dissimilarity
on the corresponding relative abundance data (bottom panel). Each point repre-
sents a sample and each ellipse represents a batch, with the centroid indicating the
mean. As an ellipse connects the 95% percentile of points for each batch, the size of
the ellipse indicates thedispersion, and the angle indicates higher-order features of
the batch. Better alignment of the ellipses is preferred. b Proportions of data

variability explained by batch ID and systolic blood pressure (SBP), quantified by
PERMANOVA R2 in either Bray-Curtis or Aitchison dissimilarities. Lower variability
explained by batch ID with preserved or increased variability explained by SBP is
preferred. c Cross-validated root of mean squared error (RMSE) of predicting SBP
based on the taxa read counts via random forest, where n = 5 folds of cross-
validation. Lower values indicate stronger predictive signals of SBP in themicrobial
profiles. Definitions of the boxplot elements: the center line indicates median, the
box limits are upper and lower quartiles, whiskers are the 1.5 interquartile range,
and points beyond the whiskers are outliers.

Fig. 4 | Evaluation on the HIVRC data. a PCoA plots clustered by study ID (cor-
responding colors are shown at the bottomwithin the graph), based on Bray-Curtis
dissimilarity on raw count data (top panel) and Aitchison dissimilarity on the cor-
responding relative abundance data (bottom panel). Each point represents a
sample and each ellipse represents a batch, with the centroid indicating the mean.
As an ellipse connects the 95% percentile of points for each batch, the size of the
ellipse indicates the dispersion, and the angle indicates higher-order features of the

batch. Better alignment of the ellipses is preferred.b Proportions of data variability
explained by study ID and HIV status, quantified by PERMANOVA R2 in either Bray-
Curtis or Aitchison dissimilarities. Lower variability explained by study ID with
preserved or increased variability explained by HIV status is preferred. c Cross-
validated area under the receiver operating characteristic curve (ROC-AUC) of
predictingHIV status basedon the taxa read counts via random forest. Higher ROC-
AUC indicates stronger predictive signal of HIV status in the microbial profiles.
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validated cross-entropy of predicting CIG status from the taxa read
counts show that ConQuR and ConQuR-libsize were effective in
boosting the predictive signal of the polytomous variable in the
microbial profiles (Fig. 5c).

No DA genera associated with CIG status were found in the ori-
ginal, ComBat-seq,MMUPHin, Percentile, or ConQuR-libsize corrected
data (adjusting for HPV status, race, and sexual orientation). In the

ConQuR-corrected data, Coprococcus and 1–68 (Tissierellaceae)
(adjusted p values < 0.0001, =0.0071) were identified, where Copro-
coccus has been shown to be significantly decreased by active
smoking42.

In short, ConQuR demonstrates better performance than the
existingmethods, for either traditional batch sequencing or integrated
data, regardless of the effect size and data type of the key variables.
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Discussion
Batch effects removal is a challenging task for microbiome data.
Approaches designed for genomic data make strong parametric
assumptions, which may be inadequate to address the complex dis-
tribution of microbiome data. On the other hand, most methods tai-
lored toward microbiome data are restricted to association testing or
specialized study designs (such as case-control studies), failing to
produce a corrected read count table for other kinds of subsequent
analyses under more general designs. The most recently developed
method assumes a special parametric distribution, which is only
appropriate for certain microbiome data transformations.

We present ConQuR, a robust approach to thoroughly remove
unwanted batch variation in microbiome data and generate corrected
taxa read count tables. It is based on a two-part quantile regression
framework, simultaneously handling the complex read count dis-
tribution by quantile regression and the presence–absence status of
microbes by logistic regression. ConQuR is most suited for situations
inwhich themicrobiomedata areprocessed fromhighlyheterogenous
batches and follow irregular distributions. If interest is only in asso-
ciation analysis, it may be sufficient to use existing microbiome batch
adjustment approaches. However, ConQuR represents a powerful
option—creating batch-removed taxonomic read counts for more
general analyses beyond association, including visualization, predic-
tion, etc.We also provide an alternative ConQuR-libsize, incorporating
library size as a covariate and an offset in the logistic and quantile
regression parts, respectively. The two versions address different
needs: ConQuR views the variability from library size as part of the
batch effects and mitigates it in the procedure, while ConQuR-libsize
explicitly separates it during batch removal and focuses more on the
relative measure. We recommend ConQuR as the default as this paper
focuses on taxonomic read counts, inwhichbetween-batch library size
differences are usually considered nuisance variability.

We applied ConQuR to realistic simulated data with two condi-
tions and two batches, as well as to three real microbiome datasets,
with the first from a single cardiovascular study with modest batch
effects; the second from an integrated analysis—sparser, more irre-
gular, and containing more prominent study variation; and the third
from a single oral microbiome study with batch and key variable
effects of comparable magnitude. Moreover, the key variables inves-
tigated in real examples include continuous, binary, and polytomous
variables. Visually and numerically, ConQuR demonstrated rigorous
performance in correcting the mean, variance, and higher-order batch
effects. At the same time, it preserves the effects of key variables in
both association and prediction analyses. Finally, ConQuR facilitates
relevant biological discoveries about associations with individual taxa,
with the simulation confirming that it helps control FDR and maintain
satisfactory sensitivity. The principal advantage of ConQuR lies in its
ability to address the complex distributional attributes of microbiome
data due to its non-parametric nature, robust to over-dispersion and
heterogeneity, and its capability to handle zero inflation. All standard
subsequent analyses can benefit from it with minimal regard for bat-
ches. Note that we only examined 16S rRNA data in the paper. How-
ever, methodologically, ConQuR can also be extended and applied to
full metagenome data, which is one of our future directions.

Despite the advantages of ConQuR, it has several limitations
which are shared by most existing batch removal procedures. First,
comprehensive metadata is required to estimate the conditional dis-
tributions of read counts accurately. Second, ConQuR uses the meta-
data twice, in both the correction and subsequent analyses,
theoretically leading to over-optimism in association analysis43. How-
ever, in practice, this bias is modest relative to the batch effects, and
the inclusion of metadata is often helpful for estimating conditional
distributions when the taxon is uncommon or imbalanced among
batches. Third, ConQuR cannot work if batch completely confounds
the key variable. Finally, the performance of all methods depends on
the ability to accurately estimate the batch effects, and thus, all
methods suffer in the presence of too many small batches (limited
information for estimation) and small numbers of sequences/library
sizes (poor data quality).

In addition to the shared limitations, our results show that Con-
QuR is imperfect for low-frequency taxa. This is because quantile
regression cannot provide stable estimates with few non-zero read
counts, especially at extreme percentiles. In fact, no methods work
very well for those very rare taxa. However, ConQuR still performs
better than no correction and improves as sample size increases.
Consequently, as microbiome profiling studies continue to increase in
size, necessarily inducing more batch effects, the performance of
ConQuR will only continue to improve.

Methods
ConQuR: the conditional quantile regression approach
Notation. Suppose we have microbiome data from n samples
sequenced in B batches. For each sample, the read counts of J taxa are
summarized. We therefore have an n× J table Y, where the entry Y ij

denotes the read count of the j-th taxon in the i-th sample. Note thatY ij

is a zero-inflated count variable, and we treat it as the outcome in the
proposed regression framework. Besides the batch variable Bi, which
is expanded as B� 1 dummy variables from the batch ID (the one
excluded is the reference batch), each sample has a set of character-
istics Zi. Zi includes the key variables of interest in subsequent ana-
lyses, important biomedical, demographic, genomic and other
information based onprior knowledge, and the intercept. Note thatwe
require the key variables to be included, but do not denote them
separately from other covariates when presenting the method,
because they play similar roles in the batch effects removal procedure.
The concatenated p-dimension covariates are denoted by
Xi = ðZT

i ,B
T
i Þ

T
. Theproposedmethod is taxonspecific, sowehenceforth

omit the subscript j for a simpler presentation.

Regression-step. One broadly used framework for zero-inflated out-
comes is the two-part18 or hurdle44 model. It separately models the
chance that the taxon is present in a sample and the mean of its
abundance given it is present. We employ the same strategy, and first
assume that the probability of observing a non-zero Y i,π = PðYi >0∣XiÞ,
follows a logistic regression model,

logitfPðYi >0∣XiÞg=ZT
i ζ +B

T
i γ, ð1Þ

Fig. 5 | Evaluation on the MOUTH data. a PCoA plots clustered by batch ID
(corresponding colors are shown at the bottom within the graph), based on Bray-
Curtis dissimilarity on raw count data (top panel), Aitchison dissimilarity on the
corresponding relative abundance data (middle panel), and GUniFrac dissimilarity
on the corresponding relative abundance data (bottom panel). Each point repre-
sents a sample, and each ellipse represents a batchwith the centroid indicating the
mean. As an ellipse connects the 95% percentile of points for each batch, the size of
the ellipse indicates thedispersion, and the angle indicates higher-order features of
the batch. Better alignment of the ellipses is preferred. b Proportions of data

variability explained by batch ID and cigarette smoking (CIG) status, quantified by
PERMANOVA R2 in either Bray-Curtis or Aitchison dissimilarities. Lower variability
explained by batch ID with preserved or increased variability explained by CIG
status is preferred. c Cross-validated cross-entropy of predicting CIG status based
on the taxa read counts via random forest, where n = 5 folds of cross-validation.
Lower values indicate stronger predictive signals of CIG status in the microbial
profiles. Definitions of the boxplot elements: the center line indicates median, the
box limits are upper and lower quartiles, whiskers are the 1.5 interquartile range,
and points beyond the whiskers are outliers.
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where θL = ζ T,γT
� �T

are the true logistic coefficients associated with
the covariates and batch variables. Although the presence–absence
status of a taxon depends strongly on the sequencing depth, we do not
explicitly include the depth in the proposed two-partmodel, nor dowe
recommend rarefaction before applying ConQuR. Rather, we assume
that batch completely confounds library size (e.g., Batch 1 has mean
library size 10,000, Batch 2 has mean library size 20,000, etc.), in
which case the presence–absence status depends on batch, and so
between-batch library size variability is automatically captured
through Model (1). We do not address library size variation within a
batch because usually the variation is not substantial and correcting
the between-batch variation is our primary goal.

Next, instead of modeling the mean by traditional parametric
models, we use linear quantile regression to model the non-zero part,
Y i∣Y i >0. We assume

QWi
τ∣Xi,Y i >0
� �

=ZT
i α τð Þ+BT

i β τð Þ, ð2Þ

where Wi∣Y i >0= Y i∣Y i >0+U,U ~ Uniform 0,1ð Þ, and θQðτÞ= ðαðτÞT,
βðτÞTÞT are the true quantile coefficients at the τ-th quantile of Wi,
which corresponds to a non-zero Y i. Jittering by U is a standard
technique to apply quantile regression for counts17 as it breaks the ties
and permits valid estimations and inferences. τ is a real value between
0 and 1, indicating the quantile level or percentile, e.g., QWi

0:5∣�ð Þ is the
conditional median and QWi

0:75∣�ð Þ refers to the conditional third
quartile of the jittered non-zero read count. Employing a fine grid of
quantile levels τ = 1

k + 1 , . . . ,
k

k + 1

� �
with a large k (e.g., 5th, …, 95th

percentiles with k = 19), we approximately model the conditional
quantile function of Wi∣Y i >0. Due to the one-to-one relationship
between quantiles of Wi∣Y i >0 and quantiles of Y i∣Y i >0

17, the
conditional quantile function of Y i given its presence is established.

We fit the two-part quantile regression model (1), (2) to the inves-
tigated taxon with all available samples. Combining the results of the
two parts based on the fitted models and a sample’s metadata, we can
estimate theoriginal conditional distributionof the taxon count for that
sample. As quantile function is the inverse of distribution function, we
estimate the conditional quantile function, which is equivalent to esti-
mating the conditional distribution. First, the estimated probability π̂
based on the fitted logistic model determines the proportion of zero in
the conditional distribution. Specifically, for that sample, all percentiles
of the taxon count before the ð1� π̂Þ× 100th percentile are zero. Next,
for percentiles after the ð1� π̂Þ× 100th percentile, we squeeze in the
estimated conditional quantiles of Y i given its presence. The combined
function on the whole probability spectrum (0,1) is the final estimated
conditional quantile function Q̂

o
, by which the zero-inflated and over-

dispersed microbial count distribution is comprehensively revealed.
More details of the model and estimation are discussed in the Supple-
mentary Information.

Then, to correct the entire conditional distribution, we regress
out batch effects fromboth the logistic and quantile parts. Specifically,
we subtract the estimated effects of batch—γ, and βðτÞ at any per-
centile, and then combine the two parts in the same manner to obtain
the estimatedbatch-free conditional quantile function Q̂

c
. Note thatby

design, γ and βðτÞ are effects of other batches relative to the reference
batch (refer to “Notation” section). Therefore, we eliminate the dif-
ferences between the sample and those in the reference batch having
identical characteristics.

Matching-step. With both the original and batch-free conditional
distributions in hand, we find the corresponding value of that sample’s
abundance in the batch-free distribution. Ideally, we can find a unique
quantile in Q̂

o
equals to the observed count Y i (find the τ̂ such that

Y i = Q̂
oðτ̂Þ). Then, the value at the samepercentile in Q̂

c
is the corrected

read count Yc
i (Y

c
i = Q̂

cðτ̂Þ).

Since Y i is a count variable, there might be multiple quantiles in
Q̂

o
equal to the observed Y i. It is particularly the case when we adjust

zero counts, as microbiome data are zero-inflated. By the strict defini-
tion of quantiles—τ =PðY i ≤ yÞ, we should locate Y i at the highest per-
centile where Q̂

o
is less or equal to its observed value. For example, in

Fig. 1b (left panel), we need to locate the observed zero at the 58th
percentile, the rightmost point of the range where Q̂

o
equals zero, and

thenpick thenon-zero count of Q̂
c
at the sameposition as the corrected

measurement. However, the estimates, particularly around the zero-
positive change point, might not be stable. This is because the estima-
tion of quantile regression is not stable at extreme percentiles. Around
the change point, the percentile of non-zero Y i is approaching the 0th.
Therefore, we take the rounded average of all matched quantiles in Q̂

c

toobtain a “smoothed”Yc
i , which shouldbenon-zeroaswell. In thisway,

we not only allow non-zero values to become zero, but also zero values
to becomenon-zero. Correcting a non-zero value to zeromay seemodd
since we know the taxon is present. However, it is helpful to keep in
mind that zeros inmicrobiome datamay be classified as sampling zeros
(due to undersampling) or structural zeros (due to taxon absence), and
to understand the introduced zeros as sampling zeros rather than
structural zeros. In microbiome studies, there is no way to differentiate
between the two kinds of zeros, so we make an assumption that the
differences in rate of taxon presence between batches is primarily due
to a higher rate of sampling zeros (not structural zeros) in the sparser
batches. Instead of recovering the “truth”, which will never be fully
feasible given the limitations of the data, ConQuR aims to align all
batches’ distributions, including the presence–absence likelihood.

When the sample size is limited, or the grid of quantile levels is not
fine enough, there might be no quantiles in Q̂

o
equal to Y i. Then, as

quantile functions are left-continuous, we locate Y i at the percentile
with the maximum value smaller than Y i.

After the matching-step, we can correct each sample’s observa-
tion for the investigated taxon. Repeat the two-step procedure on all
taxa, we adjust all entries in the read count table. As both the
presence–absence status and values given the presence of all taxa are
corrected relative to the reference batch, we observe that, in the cor-
rected table, library sizes of other batches are similar to that in the
reference batch and non-zero read counts in other batches follow
similar distribution as that of the reference.

ConQuR-libsize: the alternativeof incorporating library size into the
regression model. ConQuR, as described above, is designed for
taxa read counts; thus, it considers between-batch library size
variability as part of the batch effects and removes it. Another
perspective is that since we often treat microbiome abundance as a
relative measure, library size should be included in the regression
model and the complexity from library size ought to bemaintained.
Therefore, we provide ConQuR-libsize, of which the two-part
model is set as follows,

logitfPðYi >0∣XiÞg=ZT
i ζ +B

T
i γ +ψ libsizesi , ð3Þ

QlogY i
τ∣Xi,Y i >0
� �

=ZT
i α τð Þ+BT

i β τð Þ+ logðlibsizeiÞ, ð4Þ

where the standardized libsize is included to model the
presence–absence status of the taxon, and in the quantile step, as a
standard technique, libsize is treated as an offset tomodel quantiles of
the logarithm of read counts. Note that (2) is equivalent to

Q
log

Yi
libsizei

τ∣Xi,Y i >0
� �

=ZT
i α τð Þ+BT

i β τð Þ, ð5Þ

where the outcome is literally the logarithm transformed relative
abundance. To estimate the original and batch-free conditional
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distributions, we first transform the estimated conditional quantiles of
relative abundance given its presence into the count scale (exponenti-
ate, then multiply by libsize), then follow the same procedure as
ConQuR.

Two-layer tuning to achieve the optimal performance. The choice of
reference batch affects the quality of Q̂

c
and therefore the perfor-

mance of ConQuR. Trying several options is recommended if there is
no specific preference based on prior knowledge. Note that using the
same reference batch across all taxa is crucial to keep the overall
structure of microbiome data. Therefore, tuning over potential refer-
ence choices is the top layer of the process.

Instead of the standard logistic and quantile regressions, we can
use penalized regression or keep the batch ID only in the model,
dropping the key variable and covariates, to achieve potentially more
stable estimates.Whether the resultswill benefit from these alternative
fitting strategies depends on the specific dataset and frequencies of
taxa. Therefore, we suggest a second layer of tuning during which
different fitting strategies are used for taxa with different frequencies.

PERMANOVAR2 explainedby batch ID is the tuning criterion,with
lower values being better. Accordingly, we select the fitting strategy
and reference batch that removes batch effects the most. The tuned
results are presented in this paper, while visualization of the results by
standard ConQuR (using the first batch by numerical or alphabetical
order and standard fitting strategy) is included in Supp. Fig. 8.

Selection of fitting strategies for common to rare taxa: We start with
the second layer of tuning, using a pre-specified reference batch.

For the quantile part, one can use L1-penalized quantile
regression45 with a penalty proportional to sparsity (e.g., λ= 2p

n+ vs
or

2p
logðn+ vsÞ). Like other LASSO methods, this makes the computation fea-
sible when the non-zero counts are fewer than the number of expla-
natory variables and helps to stabilize the estimates of the conditional
quantile functions. Amore aggressive alternative is composite quantile
regression46, which forces different quantiles to share the same set of
coefficients, except the intercept. It therefore substantially reduces the
model complexity, and if the quantiles indeed share similar char-
acteristics (e.g., there are only a few non-zero observations), also
improves the estimation accuracy. The option should be used with
caution, as its assumption is strong and it is computationally
expensive.

For the logistic part, L1-penalized logistic regression can again be
applied. However, since there are usually adequate data points for the
presence–absence model, this option has limited effect in stabilizing
estimation.

The final option is to drop the key variables and covariates, and
then use the batch ID exclusively in the regression models for both
parts. We call this option simple quantile–quantile matching. In prac-
tice, this is essentially the same as matching the empirical quantile
functions of each batch to the reference one.

Many factors affect the performance of the standard and alter-
native fitting strategies, such as the frequencies of taxa, distributional
attributes of the read counts (dispersion, heavy tails, or other irregu-
larity), the quality of metadata, etc. Operationally, those options
demonstrate different pros and cons for taxa with different fre-
quencies, and the option that is most effective for taxa with a certain
range of frequency is data specific.We divide the taxa read count table
into sub-tables based on frequency, e.g., sub-Tab. 1 consisting of taxa
with prevalence >90%, sub-Tab. 2 consisting of taxa with 80%<pre-
valence ≤90%, etc. For each sub-table, we search for the best fitting
strategy that produces the lowest PERMANOVA R2 explained by batch
ID. Concatenating the optimally corrected sub-tables, we obtain the
overall batch-free microbial profiles. Note that though only local
optima (for each sub-table) are determined, this procedure is satis-
factory considering the extensive time cost by searching for the global
optimum (for the overall taxa read count table).

Selection of the reference batch: ConQuR aligns both the
presence–absence likelihood and the distribution of counts given the
taxon is present to those of the reference batch. Thus, the quality of
the reference batch (both taxa counts and samplemetadata) is crucial.
Note that a large batch or an abundant batch is not necessarily a high-
quality batch. For example, if the reference batch is large, consisting of
the most samples, but is excessively sparse, counts of other batches
will be drawn to zeros as well; if it is abundant, but mostly taking
outlying values, corrected measurements of the other batches might
be unstably large.

With each potential reference batch, we conduct the second layer
tuning and obtain a corresponding optimally corrected taxa read
count table. The corrected table with the lowest PERMANOVA R2 is
chosen to be the final corrected microbiome data.

Computation of ConQuR. The computation of ConQuR is intensive as
two conditional distributions (original and batch-free) must be esti-
mated for each sample and each taxon. For a selected fitting strategy,
the time depends on sample size n and taxa number J, and the scale is
approximately O nJð Þ. Fortunately, the algorithm can be run in parallel
because it corrects each taxon separately. In the package, we use two
cores to speed it up. For data of similar size as the CARDIA and HIVRC
datasets, it will take a PC 15min and 1.75 GBmemory for correction by
standard ConQuR. The complexity increases with tuning. It cost a PC
2 hours to fine tune the CARDIA or HIVRC datasets over all possible
choices. However, in view of the months or years required for data
collection, sample processing and bioinformatics, this one-time com-
putation that increases the quality of subsequent analyses should not
be a significant concern.

Also, ConQuR is always computationally feasible, regardless of
excessive zeros or outlying non-zero observations. This is because it
estimates each location of the conditional distribution, separately and
non-parametrically. On the other hand, the algorithm for generating
negative binomial realizations of ComBat-seq may fail, because taxa
that are highly dispersed or with extreme abundances can lead to
extraordinarily large estimates of either the mean or dispersion para-
meters of negative binomial distribution. In the extreme case, when
the continuous covariate, age, was included in the ComBat-seq model
when analyzing the CARDIA data, the count generating algorithm
failed to converge.

Description of datasets
CARDIA27 enrolled young adults in 1985–86, to elucidate the devel-
opment of CVD risk factors across adulthood. Clinical risk factors
related to CVD and demographic measures were collected, including
SBP and gender, respectively. Stool samples were collected at the Year
30 follow-up (2015–16) and 16S rRNA gene sequencing data were
processed through DADA228 pipeline with Silva reference database29

across 7 runs. CARDIA is used to demonstrate the performance of
ConQuR on a single large-scale epidemiology study with moderate
batch differences and small effects of interest (SBP, a continuous
variable).

HIVRC37 included multiple individual studies reporting 16S rRNA
gene sequences of stool samples from HIV+ patients. The raw
sequencing data across studies were processed through Resphera
Insight38. Details of data pre-processing and taxonomic assignment are
published elsewhere37. HIVRC is used to show the merit of ConQuR in
the context of vertical data integration, where the combined data
suffer from more substantial “batch” effects, with small effects of
interest (HIV status, a binary variable).

MOUTH40 reported 16S rRNA gene sequences of saliva samples.
Details about study design, sample collection and sequencing can be
found elsewhere40.MOUTH isused todemonstrate the performanceof
ConQuR when batch variation is similar in size to the key variable’s
effect (CIG status, a polytomous variable).
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To control the quality of analyses, pre-processing of the CARDIA,
HIVRC, and MOUTH data was conducted before batch correction,
including aggregating the data to the genus level, removing samples
with missing metadata, and removing lineages with zero reads across
all samples.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MOM-PI data are provided in the Bioconductor R package,
HMP2Data. The CARDIA data can only be shared upon request due to
the CARDIA Study Publications Policy. A request can be made by
submitting a CARDIA Data Set Request-Intent to Analyze Form to the
CARDIACoordinatingCenter, University of Alabamaat Birmingham, at
https://www.cardia.dopm.uab.edu/publications-2/publications-
documents. The reference database, Silva, can be found at https://
www.arb-silva.de/. The integrated HIVRC data are available in Synapse
under accession code syn18406854. The MOUTH data are available in
Synapse under accession code syn26529406.

Code availability
The R package ConQuR47 is available at https://github.com/wdl2459/
ConQuR in formats appropriate for Macintosh, Windows, or Linux
systems. A vignette demonstrating use of the package (a full analysis
pipeline, including the standard fitting strategy, penalized fitting
strategy, the fine-tuned result, and investigations on the original and
batch-removed taxa read count tables) is included (https://wdl2459.
github.io/ConQuR/ConQuR.Vignette.html).
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