
ARTICLE OPEN

Expanding the phylogenetic distribution of cytochrome
b-containing methanogenic archaea sheds light on the
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Methane produced by methanogenic archaea has an important influence on Earth’s changing climate. Methanogenic archaea are
phylogenetically diverse and widespread in anoxic environments. These microorganisms can be divided into two subgroups based
on whether or not they use b-type cytochromes for energy conservation. Methanogens with b-type cytochromes have a wider
substrate range and higher growth yields than those without them. To date, methanogens with b-type cytochromes were found
exclusively in the phylum “Ca. Halobacteriota” (formerly part of the phylum Euryarchaeota). Here, we present the discovery of
metagenome-assembled genomes harboring methyl-coenzyme M reductase genes reconstructed from mesophilic anoxic
sediments, together with the previously reported thermophilic “Ca. Methylarchaeum tengchongensis”, representing a novel
archaeal order, designated the “Ca. Methylarchaeales”, of the phylum Thermoproteota (formerly the TACK superphylum). These
microorganisms contain genes required for methyl-reducing methanogenesis and the Wood-Ljundahl pathway. Importantly, the
genus “Ca. Methanotowutia” of the “Ca. Methylarchaeales” encode a cytochrome b-containing heterodisulfide reductase (HdrDE)
and methanophenazine-reducing hydrogenase complex that have similar gene arrangements to those found in methanogenic
Methanosarcinales. Our results indicate that members of the “Ca. Methylarchaeales” are methanogens with cytochromes and can
conserve energy via membrane-bound electron transport chains. Phylogenetic and amalgamated likelihood estimation analyses
indicate that methanogens with cytochrome b-containing electron transfer complexes likely evolved before diversification of
Thermoproteota or “Ca. Halobacteriota” in the early Archean Eon. Surveys of public sequence databases suggest that members of
the lineage are globally distributed in anoxic sediments and may be important players in the methane cycle.
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INTRODUCTION
Methane is an important greenhouse gas with an atmospheric
concentration that has more than doubled since the start of the
industrial revolution [1], which is having a profound influence on
Earth’s climate. Carbon isotope studies reveal that biogenic
methane production, primarily from wetlands and agricultural
sources [1], is responsible for the observed rapid increase.
Biological methanogenesis by methanogenic archaea (methano-
gens) accounts for ~74% of global methane emissions [2]. For
many years it was assumed that the methanogens were
phylogenetically restricted to the phylum Euryarchaeota, which
has recently been reclassified as a superphylum consisting of
three separate phyla (“Ca. Halobacteriota”, Methanobacteriota and
“Ca. Thermoplasmatota”) in the Genome Taxonomy Database
(GTDB; Release 95) [3]. Recently, metagenome-assembled

genomes (MAGs) from several uncultured lineages within the
Thermoproteota (former TACK superphylum) have been inferred to
be capable of methanogenesis, greatly expanding the phyloge-
netic diversity of lineages possessing this metabolism. These
lineages include members of the orders “Ca. Methanomethyli-
cales” [4] (former phylum “Ca. Verstraetearchaeota”), “Ca. Nez-
haarchaeales” [5] (former phylum “Ca. Nezhaarchaeota”), the
classes “Ca. Korarchaeia” [6] (former phylum “Ca. Korarchaeota”)
and Nitrososphaeria [7] (former phylum Thaumarchaeota). Mem-
bers of the class “Ca. Bathyarchaeia” (former phylum “Ca.
Bathyarchaeota”) and the order “Ca. Helarchaeales” (former
phylum “Ca. Helarchaeota”) also contain methyl-coenzyme M
reductase (Mcr) complex, which is the key enzyme for methane
metabolism, but are suggested to more likely oxidize short-chain
alkanes [8–10].
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Methanogens can be divided into three groups based on
substrate use: hydrogenotrophic, aceticlastic, methylotrophic, and
methyl-reducing [11]. Hydrogenotrophic methanogens reduce CO2

to CH4 using electrons from H2 [11]. They are the most widely
distributed methanogens and have been discovered in most
methanogenic lineages of the Methanobacteriota and “Ca. Halo-
bacteriota” [12, 13]. Aceticlastic methanogens generate CH4 and
CO2 by disproportionation of acetate, in which the carbonyl group is
oxidized to provide electrons for reduction of methyl group to
methane [12]. They have been observed only in the class “Ca.
Methanosarcinia” [14]. Methylotrophic methanogens use methy-
lated compounds such as methylamines, methanol and methyl
sulfides as carbon and energy sources. Based on studies of cultured
representatives, only members of the Methanosarcinales are found
to be capable of performing methylotrophic methanogenesis [12].
As for methyl-reducing methanogens, methyl compounds cannot
be oxidized to CO2 but are reduced to methane using electrons
derived from H2 or formate [12, 15]. The cultivated representatives
from the Methanomassiliicoccales, the Methanonatronarchaeales
and Methanosphaera have been shown to utilize this methyl-
reducing pathway for methanogenesis [16–18]. The recently
discovered “Ca. Methanomethylicales” and “Ca. Methanofastidiosa”
based on metagenomic assembly are inferred to be also likely to
depend on this pathway [4, 19]. Based on the difference in energy-
conserving systems, all methanogenic archaea can also be classified
into two main subgroups: methanogens with and without b-type
cytochromes [12, 13]. To our knowledge, within cultivated
organisms, cytochrome b-containing methanogens have a wider
substrate range, and are able to use CO2 plus H2, acetate or
methylated compounds as substrates, whereas methanogens
without b-type cytochromes are either hydrogenotrophic or
methyl-reducing [12, 13]. In addition, cytochrome b-containing
methanogens also have higher growth yields than methanogens
without b-type cytochromes owing to use of membrane-bound
electron transport chains [12, 13]. As methanogens with b-type
cytochromes have been exclusively found in the “Ca. Halobacter-
iota” of the Euryarchaeota superphylum, it has been suggested that
the metabolism originated within this phylum.
Here, we present the discovery of seven MAGs containing mcr

genes recovered from anoxic sediments that belong to novel
genera within the family “Ca. Methylarchaceae” of the phylum
Thermoproteota. Importantly, these putative methanogenic
archaea encode cytochrome b-containing complexes and are
predicted to conserve energy via membrane-bound electron
transport chains, which expands the known phylogenetic diversity
of cytochrome b-containing methanogens and enhances our
understanding of their evolutionary history.

RESULTS AND DISCUSSION
Discovery of a novel archaeal lineage in wetland sediments
To examine archaeal community composition and function in a
mangrove ecosystem, we analyzed metagenomic data from
13 sediment samples taken from mangrove wetlands in Techeng
Island of Zhanjiang and Dongzhai Harbour of Haikou, China
(Supplementary Fig. 1). De novo assembly of these sequencing
data (60–120 Gbp for each sample) and genome binning resulted
in 242 archaeal MAGs (>70% complete; <10% contamination)
(Supplementary Table 1). Five MAGs (H03B1, HK01M, HK01B,
HK02M1, and HK02M2) were found to contain genes encoding a
complete methyl-coenzyme M reductase complex (mcrABCDG)
(Table 1). Based on the Genome Taxonomy Database Toolkit
(GTDB-Tk) [3, 20], these MAGs were classified as a novel order
within the class Nitrososphaeria (former phylum Thaumarchaeota)
of the phylum Thermoproteota (former TACK superphylum) (Fig. 1
and Supplementary Fig. 2).
Comparative analyses revealed that the McrA sequences from

these MAGs are distantly related to extant sequences in the NCBITa
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nr database (≤74.2% amino acid identity (AAI)), but have
78.0–80.0% AAI to that of “Ca. M. tengchongensis” (IMG-M
database accession no. Ga0263250) [7]. These mcrA genes were
also found to be homologous to genes (>85.4% AAI) detected in
two metagenomes in IMG database generated from sediments of

Lake Towuti, Indonesia (Supplementary Fig. 1 and Supplementary
Table 2). Two additional related MAGs (TDP8 and TDP10, Table 1)
encoding the complete Mcr complex were subsequently recov-
ered from these metagenomes. For these MAGs (with exception of
HK01M), the mcrABG operon and other genes related to methane
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metabolism were located on long contigs (≥11,476 bp) whose
sequence composition features were consistent with their
corresponding genomes (Supplementary Fig. 3), supporting the
accurate assignment of these contigs to each MAG. The estimated
genome size range for the seven MAGs recovered was 1.06–2.55
Mbp with total number of coding sequences ranging from 1151 to
3291. We examined vertical distribution of these MAGs in
sediment cores of two sampling sites and found that their relative
abundance increased gradually as depth increased from 15 to
100 cm (Supplementary text; Supplementary Fig. 4). Subsequent
searches of public sequencing databases using the 16S rRNA and
mcrA gene sequences annotated in these MAGs identified related
species in freshwater lake sediments, hot springs, mangrove
wetlands, rice paddy soils, hydrothermal vents, and deep-sea
sediments distributed in different regions of the world (Supple-
mentary text; Supplementary Table 3 and Supplementary Fig. 5).
Phylogenomic analysis using 122 concatenated archaeal-

specific marker proteins revealed that the seven MAGs and “Ca.
M. tengchongensis” formed a distinct lineage that is sister to the
order Nitrososphaerales (Fig. 1a and Supplementary Fig. 2b).
Phylogenetic analyses of the 16S and 23S rRNA genes recovered
from these MAGs supported the novelty of this lineage
(Supplementary Table 4 and Supplementary Fig. 2a), with pairwise
nucleotide comparisons of 16S rRNA genes revealing an identity
of 79.1–87.3% to publicly available Nitrososphaeria genomes
(Supplementary Table 5). The seven MAGs belonging to the novel
lineage had an AAI of 44.0–52.3% to all other genomes of the
Nitrososphaeria (Supplementary Table 6), further supporting their
classification as a separate order [21, 22]. Collectively, these
phylogenetic analyses indicate that these MAGs represent four
different genera of the recently described family “Ca. Methylarch-
aceae” within a novel order—designated here as “Ca. Methylarch-
aeales” (Fig. 1a and Supplementary Fig. 2 and Supplementary
Tables 5 and 6). H03B1, HK01M, HK01B, and HK02M1 represents
one genus (69.7–80% AAI to other MAGs), HK02M2 represents the
second (68.9–80% AAI to other MAGs), TDP8 and TDP10 represent
the third (70.2–82.5% AAI), and “Ca. M. tengchongensis”
represents the fourth (68.9–82.5% AAI); the former three genera
are named here “Ca. Methanoinsularis”, “Ca. Methanoporticola”,
and “Ca. Methanotowutia”, respectively.

The “Ca. Methylarchaeales” are potentially methyl-reducing
methanogens with b-type cytochromes
Annotation of the eight “Ca. Methylarchaeales” MAGs confirmed
genes involved in archaeal methane metabolism (Supplementary
Table 7 and Fig. 2), including those encoding the Mcr complex
(mcrABG and auxiliary genes mcrCD), and the ATP-binding protein
AtwA (component A2) required for Mcr activation [23]. The “Ca.
Methylarchaeales” harbor genes for methane production from
methanol and methylamines (mtaA, mtbA, mttB, mtbB, and mtmB)
(Supplementary Table 7 and Fig. 2), suggesting that the “Ca.
Methylarchaeales” have potential to perform methyl-reducing
methanogenesis, as previously suggested for “Ca. M. tengchon-
gensis” [7], and members of the orders Methanomassiliicoccales
[15], “Ca. Methanofastidiosales” [19] and “Ca. Methanomethyli-
cales” [4]. All of the “Ca. Methylarchaeales” MAGs encoded a

tetrahydromethanopterin (H4MPT) S-methyltransferase subunit H
(MtrH), and either a MtrX or MtrA, that are homologous to those of
Methanosarcina barkeri (Supplementary Table 7). Phylogenetic
analysis revealed that the “Ca. Methylarchaeales” MtrH subunits
are more closely related to a MtrH (BP07_RS03240) of Methermi-
coccus shengliensis than to the MtrH subunits of Methanosarcina
(Supplementary Fig. 6). It is likely that the “Ca. Methylarchaeales”
MtrH may be involved in methyl transfer directly to H4MPT, as
previously shown in M. shengliensis for utilization of methoxylated
aromatic compounds [24]. The absence of a complete gene
operon for Mtr complex suggests that the “Ca. Methylarchaeales”
cannot use the CO2 reduction or aceticlastic pathway for
methanogenesis.
In contrast to the “Ca. Methanomethylicales”, all genes for the

Wood-Ljundahl pathway (WLP) and acetyl-CoA decarbonylase/
synthase: CO dehydrogenases (ACDS/CODH) are also present in all
the genomes (Supplementary Table 7 and Fig. 2). However, we did
not identify the energy-converting hydrogenase complex and
F420-reducing hydrogenase complex, both of which are required
for the oxidation of the methyl groups to CO2 via the WLP [12].
This suggests that the “Ca. Methylarchaeales” cannot utilize the
methylotrophic pathway for methanogenesis. Similar to methyl-
reducing methanogens of the Methanonatronarchaeales [17],
function of the defective WLP remains a mystery.
The “Ca. Methylarchaeales” MAGs contain one or two copies of

a gene encoding heterodisulfide reductase subunit D (HdrD)
(Supplementary Fig. 7 and Supplementary Table 7), one of which
was co-located with a b-type cytochrome gene (Fig. 3a and
Supplementary Fig. 7), which is similar to the hdrDE operon of
Methanosarcina barkeri [25]. The b-type cytochromes in the
HdrDE-like complex of the “Ca. Methylarchaeales” are integral
membrane proteins with five transmembrane helical segments
that harbor a nitrate reductase gamma subunit domain (PF02665)
(Fig. 3c and Supplementary Figs. 7 and 8). Sequence analysis of
these b-type cytochromes revealed two histidine residues located
in Helix 2 of these proteins in all the “Ca. Methylarchaeales”
genomes, two histidine residues located in Helix 5 for H03B1, and
single histidine and methionine residues located in Helix 5 for “Ca.
Methanotowutia” and “Ca. Methanoinsularis” (Supplementary
Fig. 7b and Fig. 3c). These residues are suggested to be involved
in the binding of two heme groups [26], similar to the NarI of E.
coli [27] and HdrE of M. barkeri [25]. It is assumed that the two
heme groups ligated to histidine or methionine residues of Helix 1
and Helix 5 are on the periplasmic and cytoplasmic side of the
membrane bilayer respectively, and are responsible for electron
transfer. In addition, the hdrDE operon is adjacent to the mcrABDG
operon in all the “Ca. Methylarchaeales” MAGS (Fig. 3a), support-
ing their role in methanogenesis for these microorganisms.
Collectively, these findings strongly indicate that members of
the “Ca. Methylarchaeales” are b-type cytochrome-containing
methanogens that use the HdrDE complex to reduce the
heterodisulfide CoM-S-S-CoB of Coenzymes M and B generated
in the final step of methanogenesis [28] (Fig. 2).
We identified a homolog of a 11-subunit NADH-quinone

oxidoreductase complex in each “Ca. Methylarchaeales” genome
(Supplementary Table 7) whose gene cluster resembles to the

Fig. 1 Genome tree and distribution of genes related to methane metabolism. a Maximum-likelihood tree of a concatenated set of 122
archaeal-specific marker genes inferred with IQTREE (LG+ C60+ F+ G and 1000 ultrafast bootstrapping), rooted with the DPANN
superphylum, showing the placement of the “Ca. Methylarchaeales” (in cyan) relative to 321 archaeal genomes. Ultrafast bootstrap (BS) value
≥95 are represented by black circles. Representative mcr-containing archaeal lineages available in public databases are included and
expanded in the tree. The lineages assigned to the Euryarchaeota (recently reclassified as a superphylum consisting of three separate phyla:
“Ca. Halobacteriota”, Methanobacteriota, and “Ca. Thermoplasmatota”) are classified at the order level. b The phylogenetic distribution of key
methane metabolism related genes. For mtrA-H, fpoA-N, fpo-like, and atpA-K, they were regarded as present if ≥80% of the subunit genes
constituting these complexes were identified. For other complexes, they were regarded as present only when all subunit genes for these
complexes were found.
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F420H2 dehydrogenase (Fpo) found in Methanosarcina [29]
(Supplementary Fig. 9b). Phylogenetic analysis of the large subunit
revealed that the “Ca. Methylarchaeales” complex is more closely
related to the Fpo and Fpo-like complexes of Methanosarcinales
and Methanomassiliicoccales than to group 4 [NiFe] hydrogenases
(Supplementary Fig. 10). The absence of the typical [NiFe]-binding
motifs in the catalytic subunit excludes the possibility that the
complex is a group 4 [NiFe] hydrogenase (Supplementary Fig. 9a).
In addition, the complex also lack the FpoF subunit required for
binding and oxidation of F420H2 [15]. This suggests that this Fpo-
like complex is unable to interact with F420H2, and instead may use
reduced ferredoxin as an electron donor, similar to its proposed
role for the Methanomassiliicoccales [15] and Methanosaeta
thermophila [30]. In six MAGs from “Ca. Methanoinsularis”, “Ca.
Methanoporticola”, and “Ca. M. tengchongensis”, genes for soluble
methyl viologen-reducing hydrogenase/heterodisulfide reductase
complex (MvhADG/HdrABC) and methanophenazine-reducing
hydrogenase complex (VhtAGC) are missing. It is extremely
unlikely that genes encoding all MvhADG/HdrABC and VhtAGC
complex subunits are present in these near-complete genomes
but were missed by sequencing. Thus, it is proposed that these
microorganisms may use the Fpo-like complex directly to accept
electrons from reduced ferredoxin, and subsequently channel
these electrons to the HdrDE complex coupled to the reduction of
CoM-S-S-CoB (Fig. 2), as shown previously for Methanosaeta
thermophila [30]. The reduced ferredoxin may be produced by

some unidentified hydrogenases or an unknown pathway. The
H03B1 MAG also encodes a formate dehydrogenase subunit A
gene (fdhA) co-located with a fdhB gene (Supplementary Table 7)
and a putative b-type cytochrome with five transmembrane
helices and a prokaryotic b561 domain (PF01292) binding two
heme groups (Supplementary Fig. 11c) that is similar to FdhC of E.
coli. “Ca. M. tengchongensis” contained fdhAB genes, with the fdhB
gene collocated with a gene for a cytochrome b561 with four
transmembrane helices and two heme groups (Supplementary
Fig. 11b). It is likely that these microorganisms may be able to use
formate dehydrogenase to reduce methanophenazine pool which
could then transfer electrons to the membrane-bound HdrDE
complex (Fig. 2). We identified a geranylfarnesyl diphosphate
synthase homolog in each “Ca. Methylarchaeales” genome.
Phylogenetic analysis revealed that these enzymes cluster
together with the geranylfarnesyl diphosphate synthase of M.
mazei, likely suggesting that the “Ca. Methylarchaeales” may be
able to synthesize methanophenazine, as previously shown in M.
mazei [31] (Supplementary Fig. 12).
The “Ca. Methanotowutia” (TDP8 and TDP10) MAGs encode the

small and large subunits for a [NiFe] active site-containing
hydrogenase co-located with a gene for membrane-spanning
b561 domain (PF01292) cytochrome b (Fig. 3b), which is similar to
the operon of VhtAGC complex found in Methanosarcina with
cytochromes [12]. The b-type cytochrome harbors five transmem-
brane helices, with histidine or methionine residues located in
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Fig. 3 Gene composition and structural model of HdrDE and VhtAGC complexes in the “Ca. Methylarchaeales”. a Gene composition of
contigs/scaffolds containing the gene cluster of heterodisulfide reductase (HdrDE) complex. Genes related to methane metabolism are
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Helix 1, 2, 5 for the ligation of two heme groups (Supplementary
Fig. 11a). It has been proposed that the VhtA is guided to the cell
membrane with the help of twin-arginine signal peptide of VhtG
and its [NiFe] active site faces periplasmic side [32, 33]. As a result,
two H+ ions generated by H2 oxidation are released into the
periplasm while two electrons are transferred to heme groups of
VhtC through Fe-S clusters of VhtG [12, 34]. Furthermore, the
electron carrier methanophenazine connects VhtAGC with HdrDE,
and its reduction and reoxidation results in the release of two
additional H+ ions into the periplasm (Fig. 2) [34, 35]. Altogether,
four electrogenic protons are generated in the system, which can
be used to drive the synthesis of one ATP via an archaeal A-type
ATP synthase. The HdrDE complex that receives electrons from the
methanophenazine can be used to reduce CoM-S-S-CoB (Fig. 2),
enabling the coupling of methane production with energy
conservation. This is the first report of a VhtAGC complex and
an HdrDE complex found in an mcr-containing archaeal lineage
outside the Euryarchaeota superphylum (Fig. 1) and indicates that
“Ca. Methanotowutia” may be capable of performing H2-
dependent methyl-reducing methanogenesis. The membrane-
bound electron transport chain is more efficient than electron

bifurcation that is used by methanogens without cytochromes
[12].
Sequence analysis revealed that key conserved residues of the

McrA sequences of the “Ca. Methylarchaeales”, including the
binding sites for F430 cofactors, coenzyme M, and coenzyme B [36],
are the same as those in McrA sequences of members of the
Euryarchaeota superphylum, with exception that the cysteine at
site α452 is replaced with an alanine or serine (Supplementary
Fig. 13 and Supplementary Table 8). Phylogenetic trees of
concatenated and individual McrABG were reconstructed, show-
ing that the “Ca. Methylarchaeales” encode canonical Mcr
complexes that cluster with those of putative methane-
metabolizing archaea and are divergent from those of short-
chain alkane-oxidizing archaea (Fig. 4 and Supplementary Fig. 14).
These results support the view that the “Ca. Methylarchaeales”
metabolize methane.
We also explored the possibility that the “Ca. Methylarchaeales”

may be able to oxidize methane. In reported anaerobic
methanotrophic archaea (ANME), methane oxidation is coupled
to the reduction of several electron acceptors (nitrate, sulfate or
metal oxides). Known ANME are predicted to utilize canonical
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terminal respiratory reductases or multi-heme c-type cytochromes
(MHCs) to transfer electrons to a syntrophic partner microorgan-
ism [37], metal oxides [38, 39] or humics [40]. We could not
identify any terminal reductases or MHCs in the “Ca. Methylarch-
aeales” genomes. Previous studies have hypothesized that
formate or acetate might act as potential syntrophic electron
carriers between methane-oxidizing archaea and their partners
[41, 42], and members of the “Ca. Methylarchaeales” possesses the
genetic potential for the production of these electron carriers.
However, to our knowledge, these electron-transferring mechan-
isms have never been experimentally verified for ANME.
Collectively, these analyses suggest that these “Ca. Methylarch-
aeales” are more likely methanogens, although empirical studies
are required to confirm this.
Similar to all described methanogens [15], the “Ca. Methylarch-

aeales” do not encode a complete tricarboxylic acid cycle, with
citrate synthase, fumarase and succinate dehydrogenase absent
from these MAGs. The “Ca. Methylarchaeales” lack a canonical
pyruvate kinase for glycolysis (Supplementary Fig. 15 and
Supplementary Table 7). However, pyruvate-water dikinase or
pyruvate phosphate dikinase in gluconeogenesis may replace
pyruvate kinase to catalyze the reversible interconversion of
phosphoenolpyruvate and pyruvate, as shown in cultivated
methanogens Methanomassiliicoccales [15]. The identification of
sugar transport proteins and a variety of extracellular and
intracellular carbohydrate-active enzymes (CAZymes) including
glycoside hydrolases (EC 3.2.1.1 and 5.4.99.16) and glycosyltrans-
ferases (EC 2.4.1, 2.4.1.83, and 2.4.99.18, etc.) in the “Ca.
Methylarchaeales” (Supplementary Fig. 15) suggests that they
may be able to utilize sugars as an alternative carbon and energy
source, as previously hypothesized for the “Ca. Methanomethyli-
cales” and “Ca. Bathyarchaeia” [4, 8]. However, comparative
genomics revealed that cultured methanogens that do not utilize
sugars also encode similar proteins (Supplementary Fig. 15)
[12, 13], and they may instead be involved in biosynthetic
pathways. In addition, peptide and amino acid transporters, and
enzymes related to peptide fermentation including extracellular
peptidases, endopeptidases, 2-oxoglutarate ferredoxin oxidore-
ductase (kor), 2-ketoisovalerate ferredoxin oxidoreductase (vor),
indolepyruvate ferredoxin oxidoreductase (ior), and pyruvate
ferredoxin oxidoreductase (por) are present in both the “Ca.
Methylarchaeales” and cultured methanogens (Supplementary
Fig. 15). Nevertheless, to our best knowledge, peptide fermenta-
tion has never been reported in these isolated methanogens to
date. Thus, the genes may be involved in assimilation and
metabolism of amino acids in the “Ca. Methylarchaeales” and
other newly discovered uncultured methanogens [4, 8, 12].

Evolution of the b-type cytochrome-containing methanogens
The rapid increase in the number and diversity of MAGs has
greatly expanded the known diversity and distribution of Mcr
genes in archaea. To investigate the evolutionary history of the
Mcr complexes in methanogens, we inferred the phylogeny of
concatenated McrABG subunits based on all mcr-containing
archaeal genomes available in public databases. In accordance
with previous studies [43, 44], lineages in Class I and Class II
methanogens within the Euryarchaeota superphylum appear
congruent between McrABG and species trees while H2-depen-
dent methylotrophic methanogens Methanomassiliicoccales and
Methanonatronarchaeia, and methanotroph “Ca. Methanopha-
gales” (ANME-1) are not (Fig. 4). The results were further
supported by the phylogeny of the six conserved markers
(m4–m9) in this (Supplementary Fig. 16) and previous studies
[44]. These markers are solely present in archaea containing Mcr or
Mcr-like complexes and suggested to be involved in activation,
folding and assembly of Mcr subunits [44]. The Mcr genes of “Ca.
Methanomethylicales” and “Ca. Korarchaeia” within the phylum

Thermoproteota were previously suggested to be acquired via
HGTs, since they are closely related with those of methylotrophic
methanogens of the Euryarchaeota superphylum in McrABG tree
[44]. However, analyses including our “Ca. Methylarchaeales”
MAGs and several others with an Mcr complex revealed good
congruence between the concatenated McrABG, m4-m9 genes,
and the genome-based trees for the lineages within the
Thermoproteota (including the “Ca. Methanomethylicales”, “Ca.
Korarchaeia”, “Ca. Nezhaarchaeales”, and our “Ca. Methylarch-
aeales”; Fig. 4 and Supplementary Fig. 16) support vertical
inheritance and evolution independent of the Euryarchaeota
superphylum. Wide distribution of mcr genes in archaea
(Supplementary Fig. 17 and Supplementary Table 9) and their
congruence with the genome-based tree for many lineages within
the Euryarchaeota superphylum and the Thermoproteota suggest
that these genes likely have originated before the divergence of
these two major archaeal lineages.
Recently, amalgamated likelihood estimation (ALE) has been

used to estimate presence probability of McrA in each internal
node in a rooted archaeal species tree, supporting the presence of
McrA with high confidence in the common ancestor of Class I and
Class II methanogens, “Ca. Methanofastidiosales”/“Ca. Nuwarch-
aeales” in Euryarchaeota superphylum, as well as “Ca. Methano-
methylicales”, “Ca. Korarchaeia”, and “Ca. Nezhaarchaeales” in the
Thermoproteota [45]. Compared to the previous study [45], our
ALE results support the presence of McrA with high confidence
[presence probability (pp) >0.9] at the basal node of “Ca.
Methanomethylicales”, “Ca. Nezhaarchaeales”, “Ca. Korarchaeia”,
and “Ca. Methylarchaeales” in the Thermoproteota (Supplementary
Fig. 17), suggesting an earlier origin of Mcr complex in
Thermoproteota. The difference is likely attributed to the addition
of “Ca. Methylarchaeales”. Confidence in evolutionary inferences
from ALE analyses will require expansion of genome coverage of
some of the poorly represented or yet-to-be-discovered Mcr-
containing lineages. A previous study showed that an ancestral
McrA sequence were more closely related to McrA from “Ca.
Methanodesulfokores washburnensis” in the “Ca. Korarchaeia”
compared to any other lineages [6], possibly supporting our
inference that methane metabolism may have evolved relatively
early in Thermoproteota.
The b-type cytochrome in HdrDE complex belongs to the

protein family of nitrate reductase gamma subunit (PF02665, NarI).
Using all publicly available archaeal genomes, we found that the
NarI domain-containing cytochromes (NarI-Cyt) are primarily used
in three electron transfer complexes: HdrDE, dissimilatory nitrate
reductase (NarGHI) [46], and sulfite reductase (DsrABCJKMOP). For
the HdrDE and NarGHI complexes, the genes encoding the
subunits are co-localized in archaeal genomes, each forming a
transcriptional unit. However, in the Dsr complex, only a DsrK is
co-localized with a DsrM (b-type cytochrome) while other subunits
are usually not adjacent to the DsrKM but separated by few genes
[6]. We examined distribution of the three complexes in archaea. A
total of 101 genomes were found to encode these complexes (66
for HdrDE, 16 for Nar, 23 for Dsr), and they are distributed across
the Euryarchaeota superphylum, Thermoproteota, and Asgardarch-
aeota (Supplementary Fig. 17 and Supplementary Table 9). Among
these genomes, the HdrDE is found in methanogens and
methanotrophs belonging to the class “Ca. Methanosarcinia”,
the orders Methanomicrobiales and Methanonatronarchaeales, and
in alkane-oxidizing archaea belonging to the orders Archaeoglo-
bales, “Ca. Syntropharchaeales”, and Methanosarcinales (GoM-
Arc1) (Supplementary Fig. 17). In Mcr-containing archaea outside
of the Euryarchaeota superphylum, the complex is exclusively
found in the “Ca. Methylarchaeales” (Fig. 1 and Supplementary
Fig. 17).
Phylogenetic analyses of the NarI-Cyt were conducted to

investigate the evolution of these genes in archaea (Fig. 5a). The
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results showed that these cytochromes have experienced
frequent horizontal gene transfer, especially DsrM. The DsrM
sequences annotated in members of the Thermoproteota form a
distinct cluster. In the cluster, Archaeoglobi and “Ca.

Hydrothermarchaeota” DsrM branch far from their Euryarchaeota
superphylum relatives, and have potentially gained their cyto-
chromes from a member of the “Ca. Korarchaeia”. Similarly, the
“Ca. Methanoperedenaceae” and Archaeoglobi might have
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acquired their NarI genes from a member of Thermoproteia.
Congruence between the cytochrome and genome-based trees
for members of the Thermoproteota suggest that these cyto-
chromes might have evolved before the diversification of this
phylum. We further inferred a gene tree using concatenated
HdrDE complex (Fig. 5b). The topological structure of this tree
exhibits high congruence with the genome-based tree for all
lineages except the Methanonatronarchaeia, supporting an early
presence of the complex in archaea. This suggestion is supported
by ALE analyses which indicate the presence of NarI-Cyt with high
confidence in the common ancestor of Thermoproteota (pp=
0.69) and in the common ancestor of “Ca. Halobacteriota”
(pp= 0.70) (Supplementary Fig. 17).
As mentioned above, b-type cytochromes are classified into

different protein families, and form part of many membrane-
bound electron transfer complexes in bioenergetic pathways
[47, 48]. Aside from HdrDE, Nar, and Dsr, such complexes also
include Vht, Fdh, b6f complex, bc1 complex, and succinate
dehydrogenase (Sdh). We examined the distribution of different
families of b-type cytochromes in 416 representative archaea
covering 41 orders or phyla of the Euryarchaeota superphylum,
Thermoproteota, and Asgardarchaeota (Supplementary Fig. 17 and
Supplementary Table 9). A total of 246 genomes contained these
b-type cytochromes that were distributed across 23 archaeal
lineages. In total, 11 of the 13 lineages of the Thermoproteota, and

11 of the 24 orders in Euryarchaeota superphylum, had b-type
cytochrome, suggesting its pervasiveness in archaea. We con-
ducted phylogenetic analyses of the b-type cytochromes from
different families (Fig. 6a). The result indicates that cytochromes
from Fdh and Sdh complexes form two large clusters. Within each
cluster, lineages from Thermoproteota or the Euryarchaeota
superphylum were essentially grouped together, suggesting that
these cytochromes may have evolved before the divergence of
these major archaeal lineages. The cluster of cytochromes of the
b6f complex is close to those of the bc1 complex, consistent with
the suggestion that bacterial cytochromes in bc1 complex might
originate from cytochromes in b6f complex [48]. A phylogenetic
analysis of concatenated VhtAGC showed clustering of lineages
from Thermoproteota with Archaeoglobi (Fig. 6b), suggesting
ancient exchanges of the Vht complex among these lineages.
Taken together, these results support an early origin of b-type
cytochromes in archaea. Previous studies also imply that some
core enzymes for bioenergetic pathways, including membrane-
integral b-type cytochrome, formate dehydrogenase, [NiFe]-
hydrogenase, the Rieske/cytb complexes, and NO-reductases,
were present in the Last Universal Common Ancestor of Bacteria
and Archaea [48, 49].
As the heme is indispensable to b-type cytochrome [47], we also

investigated distribution of its biosynthetic pathway in archaea.
Although there are 11 genes involving in the heme biosynthesis,
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the three genes (Ahb-NirDH, Ahb-NirJ1, and Ahb-NirJ2), responsible
for conversion from precorrin-2 to heme, are the key to this
pathway. Thus, these three genes were used as markers denoting
the presence of heme biosynthetic pathway. Among 41 archaeal
lineages, 32 had this pathway including the “Ca. Methylarch-
aeales” (Supplemental text, Fig. 2, Supplementary Fig. 17 and
Supplementary Table 9). Phylogenetic analyses reveal that these
lineages from Thermoproteota largely cluster together for Ahb-
NirDH (Supplementary Fig. 18). However, for Ahb-NirJ1 and Ahb-
NirJ2, lineages from the Euryarchaeota superphylum, the Thermo-
proteota, and Asgardarchaeota are tangled up, suggesting
frequent HGTs of these genes between these lineages. The wide
distribution of this pathway across the Euryarchaeota super-
phylum, the Thermoproteota, and Asgardarchaeota (Supplemen-
tary Fig. 17 and Supplementary Table 9) suggests that a common
ancestor may have been able to synthesize heme. This observa-
tion further supports the possibility of the early presence of b-type
cytochromes in archaea.
Here we described the discovery of the novel archaeal order

“Ca. Methylarchaeales”, expanding known methanogen and
archaeal diversity. Members of the lineage are methyl-reducing
methanogens that can conserve energy via membrane-bound
electron transport chains. The “Ca. Methylarchaeales” are globally
distributed in anoxic lake and marine sediments, suggesting that
they make an important contribution to global methane emis-
sions. Our broader analyses suggest that methanogens who use b-
type cytochrome-containing complexes to transfer electrons may
have originated before diversification of Thermoproteota or “Ca.
Halobacteriota” phyla based on a conservative estimation for the
origin of McrA and NarI-Cyt genes in the ALE analysis. A previous
study using molecular clock analyses to indicate that the
diversification of Thermoproteota likely occurred in the early
Archean Eon [45]. Archean oceans are thought to have been
anoxic and contain abundant ferrous iron from hydrothermal
volcanics [50, 51], which would have provided sufficient raw
materials for heme synthesis by methanogens. In addition, CO2,
H2, and organic compounds produced by volcanic activity are
transported to the early oceans [52], which provides adequate
carbon and energy sources for methanogenic growth. Compared
to hydrogenotrophic methanogens using electron bifurcation,
methanogens using the membrane-bound electron chain have a
higher energy production efficiency and growth yield, providing
an advantage for members of the “Ca. Methylarchaeales”
described here.

Taxonomic proposals
“Ca. Methanotowutia igneaquae” (gen. nov., sp. nov.). Methano-
towutia (Me.tha.no.to.wu’ti.a. N.L. pref. methano-, pertaining to
methane; N.L. fem. n. Methanotowutia methanogenic organism
named after the lake Towuti in Indonesia where members of the
genus were first discovered).
Methanotowutia igneaquae (ig.ne.a’quae. L. masc. adj. igneus, of

fire; L. fem. n. aqua, freshwater, pertaining to freshwater habitats;
N.L. gen. n. igneaquae from/of water of fire, referring to the
volcanic lake environment). This organism is deduced to be able
to use methylated compounds for methanogenesis. Representa-
tive genomes are near-complete bins TDP8 (Accession No.
SAMN15658089) and TDP10 (Accession No. SAMN15658091)
recovered from freshwater sediments in Lake Towuti in Indonesia
with the latter the type genome for the species.

“Ca. Methanoinsularis halodrymi” (gen. nov., sp. nov.). Methanoin-
sularis (Me.tha.no.in.su.la’ris. N.L. pref. methano-, pertaining to
methane; L. fem. adj. insularis, from an island; N.L. fem. n.
Methanoinsularis methanogenic organism from an island, speci-
fically referring to Techeng Island in China where these micro-
organisms were discovered).

Methanoinsularis halodrymi (ha.lo.dry’mi. Gr. masc. n. hals (gen.
halos) salt; Gr. masc. n. drymos coppice; N.L. gen. n. halodrymi of
salty woodland, referring to the mangrove wetland environment).
This uncultivated microorganism is assumed to be able to perform
methylotrophic methanogenesis. The type genome for the species
is the bin H03B1 (Accession No. SAMN15658086) recovered from
mangrove wetlands in Techeng Island in China.

“Ca. Methanoinsularis haikouensis” (gen. nov., sp. nov.). Metha-
noinsularis haikouensis (hai.kou.en’sis. N.L. fem. adj. haikouensis,
pertaining to Haikou). This uncultivated microorganism is
assumed to be able to perform methylotrophic methanogenesis.
Representative genomes are the bins HK01M, HK01B, HK02M1
(Accession No. SAMN25131447, SAMN25131448, SAMN25131449)
recovered from mangrove wetlands in Dongzhai Harbour in
Haikou, China.

“Ca. Methanoporticola haikouensis” (gen. nov., sp. nov.). Metha-
noporticola (Me.tha.no.por.ti’co.la. N.L. pref. methano-, pertaining
to methane; L. masc. n. portus, harbour; L. suff. -cola (from L. masc.
or fem. n. incola), inhabitant, dweller; N.L. masc. n. Methanoporti-
col, a methane-forming dweller of a harbor, specifically referring
to Dongzhai Harbour in China where these microorganisms were
discovered).
Methanoporticola haikouensis (hai.kou.en’sis. N.L. masc. adj.

haikouensis, pertaining to Haikou). This uncultivated microorgan-
ism is assumed to be able to perform methylotrophic methano-
genesis. The type genome for the species is the bin HK02M2
(Accession No. SAMN25131450) recovered from mangrove wet-
lands in Dongzhai Harbour in Haikou, China.

“Ca. Methylarchaeales” (ord. nov.). Methylarchaeales (Me.thy-
l.ar.cha.ea’les. N.L. neut. n. Methylarchaeum (Candidatus) type
genus of the order; -ales, ending denoting an order; N.L. fem. pl. n.
Methylarchaeales, the order of the genus “Ca. Methylarchaeum”);
Methylarchaeaceae (Me.thyl.ar.chae.a.ce’ae. N.L. neut. n. Methy-
larchaeum (Candidatus) type genus of the family); -aceae, ending
denoting a family; N.L. fem. pl. n. Methylarchaeaceae, the family of
the genus “Ca. Methylarchaeum”).

MATERIALS AND METHODS
Sample collection and DNA sequencing
Thirteen sediment samples were obtained from mangrove wetlands on
Techeng Island, Zhanjiang, Guangdong, China on November 25, 2018, and
in Dongzhai Harbour, Haikou, China on September 30, 2021 (Supplemen-
tary Fig. 1). In each wetland, the two to three cores (1 m deep and 2–10m
apart) were taken using a peat sampler (two cores for Techeng Island;
three cores for Dongzhai Harbour). Each sediment core was evenly divided
into three parts in an anoxic glove box. Sediments from subsurface
(15–20 cm depth), middle (40–45 cm depth), and bottom (95–100 cm
depth) layers were put into plastic bags immediately after collection, kept
in a sampling box with dry ice, transported to the laboratory and stored at
−80 °C for further analysis. The detailed sampling information is shown in
Supplementary Fig. 1.
Genomic DNA was extracted from ~10 g of sediment samples with the

PowerSoil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA).
Metagenomic sequencing was conducted on HiSeq 2500 platform
(Illumina, San Diego, CA, USA) at Guangdong MagiGene Technology
Company (Guangzhou, China). Each sample from Techeng Island wetland
generated about 60 Gbp of raw sequence data (2 × 150 bp paired-end
reads), while 100 Gbp of sequencing data per sample were obtained for
mangrove sediment from Dongzhai harbour.

Genome assembly and binning
Raw reads generated from mangrove wetland sediments were quality
filtered and pruned using Trimmomatic [53]. The resulting clean reads
were assembled using MEGAHIT [54] with the following parameters:
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--presets meta-large, --min-contig-len 500 and using IDBA-UD [55] with the
following parameters: -mink 55, -maxk 105, -steps 10, --min_contig 500,
--pre_correction, respectively. The contigs/scaffolds generated were
binned using MetaBat2 [56] 8 times, with 8 combinations of specificity
and sensitivity parameters (-m 1500, --maxP 95 or 60, --minS 60 or 95;
--maxEdges 200 or 500). All binning results were merged and refined using
DAS Tool [57] (--score threshold 0.25, v1.1.1). Contigs or scaffolds within
these bins with divergent GC content or tetranucleotide signatures or
coverage profiles were removed with mmgenome [58] and RefineM [59].
The resulting bins were refined manually to remove contaminating
contigs/scaffolds based on multi-copy marker genes. The local assembly
errors for contigs/scaffolds were checked using ra2.py (https://github.com/
christophertbrown/fix_assembly_errors/blob/master/ctbRA/ra2.py) [60].
CheckM [61] was used to assess completeness, contamination, and strain
heterogeneity. Finally, six MAGs (H03B1, H03B2, HK01M, HK01B, HK02M1,
and HK02M2) containing an mcrA gene, representing high-quality
genomes based on genome reporting standards [62], were obtained from
these metagenomic dataset. H03B1 and H03B2 were generated from the
same sample using different assembling tools (MEGAHIT for H03B1; IDBA-
UD for H03B2) (Supplementary Table 10). They had a 99.8% average
nucleotide identity (ANI) to each other, possibly representing the same
strain [63]. As the H03B1 had a higher estimated completeness, it was used
for further analysis.
Two metagenomic datasets generated from sediments in Lake Towuti,

South Sulawesi, Indonesia were transformed to FASTQ file with Fastq-
dump using --split-3 (https://ncbi.github.io/sra-tools/fastq-dump.html)
and then processed with Trimmomatic [53]. Processed reads were
assembled using MEGAHIT [54] (--presets meta-large, --min-contig-len
500), and using IDBA-UD [55] (-mink 34, -maxk 124, -steps 10,
--min_contig 500, --pre_correction), respectively. Binning of generated
contigs/scaffolds, and genomic curation and refining steps were
performed following the procedures as described above. As a result,
four mcrA-containing genomic bins (TDP7-10) were obtained (Supple-
mentary Table 10). The four mcrA gene sequences were identical to one
another (100% aa identity), and had high sequence similarity to the
H03B1 mcrA genes (87.6% aa identity). TDP7 and TDP8 genomes were
obtained from TDP7 metagenome with MEGAHIT [54] and IDBA-UD [55],
respectively while TDP9 and TDP10 genomes were produced from TDP9
metagenome using MEGAHIT [54] and IDBA-UD [55], respectively. TDP7
and TDP8, and TDP9 and TDP10 had a high nucleotide sequence
similarity one another (98.1% and 97.5% ANI, respectively), probably
representing the same strain [63]. The TDP8 and TDP10 bins were
selected to represent these MAGs in further analyses given their higher
completeness estimates.

Concatenated ribosomal RNA gene tree phylogeny
The 16S and 23S rRNA genes of the “Ca. Methylarchaeales” bins were
predicted with Barrnap (https://github.com/tseemann/barrnap). Four 16S
rRNA gene and five 23S rRNA sequences were identified in these MAGs
(Supplementary Table 4). Reference 16S and 23S rRNA gene sequences
that were derived from 145 genomes, representing the diversity of the
Thermoproteota phylum, were used to infer a phylogenetic tree. The 16S
and 23S rRNA sequences from reference genomes of Halobacteria were
used as the outgroup. All 16S and 23S rRNA gene sequences were aligned
with MAFFT (--auto) [64], pruned with BMGE [65] (-m DNAPAM250:4 -g 0.5)
and concatenated. The topology of maximum-likelihood trees were
computed with IQ-TREE [66] using the command: “-m TEST (GTR+ F+ I+
G4), -bb 1000”. Trees were edited using iTOL [67] and modified using
Adobe Illustrator.

Concatenated marker gene tree phylogeny
A set of representative good-quality archaeal genomes consisting of 419
taxa which covered currently known archaeal lineages were used in the
genome trees (Supplementary Table 9). The trees were inferred using a
concatenated set of 122 archaeal-specific single copy marker genes in the
GTDB (https://gtdb.ecogenomic.org/) (Supplementary Table 11). The
orthologs of these marker genes in the “Ca. Methylarchaeales” MAGs
and the reference genomes were identified using GTDB-Tk tool [20] (v1.3.0,
https://github.com/Ecogenomics/GTDBTk) based on hidden Markov mod-
els. Maximum-likelihood trees were constructed with IQ-TREE [66] using
the following command: “-m LG+ C60+ F+ G, -bb 1000”. Trees were
edited using iTOL [67], using the DPANN superphylum as an outgroup, and
modified using Adobe Illustrator.

Genome annotation and metabolic analysis
Gene prediction was conducted with Prodigal [68] using -p meta. Functional
protein annotation was carried out by searching against arCOGs and nr
database with BLASTP [69] (e-value <1e−5). Pfam database and InterproScan
[70] were used to further analyze protein function. KEGG database [71] was
used as reference to reconstruct metabolic pathways. The mcrABCDG genes
were confirmed by searching against mcrABCDG genes from Pfam with
HMMER [72] (Supplementary Table 12). Carbohydrate enzymes were
annotated on dbCAN webserver [73], and peptidases were identified using
eggNOG-mapper and verified with comparisons against nr annotations.
Subcellular localization of carbohydrate enzymes and peptidases were
predicted using CELLO (v.2.5) [74]. The motifs and active sites of McrA, HdrD,
Fpo-like, and b-type cytochromes (NarI-Cyt, VhtC, and FdhC) were analyzed
according to previous studies [15, 25, 36, 75]. Transmembrane helices of b-
type cytochromes were analyzed with TMHHMM Server (v. 2.0) (http://
www.cbs.dtu.dk/services/TMHMM/).

Functional gene phylogeny and gene tree-species tree
reconciliation
Phylogenies of McrABG. The mcrABG genes from reference genomes
(Supplementary Table 9) were identified by searching against arCOGs
using BLASTP [69], and then confirmed by searching againstmcrABG genes
from Pfam using HMMER [72]. MAFFT (--auto) [64] and IQ-TREE [66] were
used for sequence alignment and construction of phylogenetic trees,
respectively. The model used in IQ-TREE was LG+ C60+ F+ G for
concatenated mcrABG genes, while it was LG+ F+ I+ G4 for mcrA and
mcrB genes, and LG+ G4 for mcrG gene. Ultrafast bootstrapping (1000
replicates) was adopted for these trees.

Phylogeny of six concatenated methanogenesis markers (m4–m9). The six
conserved markers were retrieved according to arCOGs accession number
provided by a previous study [44] in the “Ca. Methylarchaeales” MAGs and
mcr-containing genomes available in the NCBI or IMG-databases. These
sequences were aligned with MAFFT (--auto), trimmed with BMGE (-m
BLOSUM30 -b 3 -g 0.5), and concatenated. Before concatenation,
maximum-likelihood trees for each gene were computed with IQ-TREE
(-m TEST, -bb 1000) for inspection of congruence. Genes that lead to
intense incongruences at order or phylum level (bootstrap value ≥80%)
were discarded. Maximum-likelihood phylogeny of concatenated markers
was inferred using IQ-TREE (LG+ C60+ F+ G, -bb 1000).

Phylogenies of b-type cytochromes and concatenated HdrDE. The b-type
cytochrome genes from the “Ca. Methylarchaeales” and 408 representative
genomes from Euryarchaeota superphylum, Thermoproteota, and Asgar-
darchaeota were identified by searching all predicted genes in a genome
against custom hmm profiles for NarI-Cyt, prokaryotic cytochrome b561,
succinate dehydrogenase cytochrome B small subunit, cytochrome bc1
complex subunit 8, cytochrome b6f complex subunit VI (PetL), Cytochrome
b/b6/petB, Ni/Fe-hydrogenase b-type cytochrome subunit, succinate
dehydrogenase cytochrome b556, cytochrome b558/566 subunit B, and cyt
b6/f complex subunit IV using HMMER. Hits were confirmed by comparing
with arCOGs and nr annotations. For NarI-Cyt, it was manually verified to
ensure that it is collocated with a gene encoding HdrD, or DsrK or NarGH in
a genome. Owing to the lack of sequence similarity between NarI-Cyt and
other b-type cytochromes, the phylogenetic tree of NarI-Cyt was built
independently. Sequences were aligned by MAFFT (--auto) [64]. Maximum-
likelihood trees were constructed using IQ-TREE [66] (the model: LG+
C60+ F+ G for NarI-Cyt, cpREV+F+ G4 for other b-type cytochromes, -bb
1000). The HdrD and HdrE was concatenated and its phylogeny was
inferred in IQ-TREE (LG+ C60+ F+ G, -bb 1000).

Phylogeny of concatenated VhtACG. VhtACG genes from the “Ca.
Methylarchaeales” and 408 representative archaeal genomes were
identified by searching all predicted genes in a genome against VhtA,
VhtC, and VhtG hmm databases from Pfam with HMMER, and confirmed
with comparisons against arCOGs and nr annotations. Furthermore, gene
arrangement was checked to ensure that the VhtAGC subunit genes are
collocated in a genome. These sequences were aligned using MAFFT
(--auto), trimmed with trimAl [76] (-automated1), and concatenated. Before
concatenation, maximum-likelihood tree of each subunit was constructed
with IQ-TREE for checking of congruence. No strong incongruences were
found. Maximum-likelihood trees were computed with IQ-TREE [66] (the
model: LG+ C60+ F+G).
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Phylogenies of MtrH, group 4 [NiFe] hydrogenases and geranylfarnesyl
diphosphate synthase. For MtrH, homologs from the “Ca. Methylarch-
aeales” were identified by searching against arCOGs and nr database using
BLASTP. Reference sequences were derived from a previous study [24]. For
group 4 [NiFe] hydrogenases, catalytic subunit of group 4 [NiFe]
hydrogenases homologs from the “Ca. Methylarchaeales” were identified
using arCOGs, and confirmed with HydDB [77]. Reference sequences were
downloaded from HydDB. For geranylfarnesyl diphosphate synthase,
homologs from the “Ca. Methylarchaeales” were annotated with arCOGs
while reference sequences refer to a previous study [31]. Sequences were
aligned using MAFFT (--auto) and trimmed with BMGE (-m BLOSUM30 -b
3 -g 0.9). IQ-TREE (-m TEST, -bb 1000) was used to infer these trees.

Phylogenies of the key genes for the heme biosynthesis pathway (Ahb-NirDH,
Ahb-NirJ1 and Ahb-NirJ2). These genes from the “Ca. Methylarchaeales”
and 408 representative archaeal genomes were identified using eggNOG-
mapper. Hits were confirmed by searching against arCOGs and nr
databases using BLASTP. Sequences were aligned using MAFFT (--auto)
and trimmed with trimAl (-automated1). Maximum-likelihood trees were
constructed with IQ-TREE (-m TEST, -bb 1000).

Gene tree-species tree reconciliation. The ALE analyses were performed
using the ALEml_undated algorithm of the ALE package [78] (v1.0, https://
github.com/ssolo/ALE). A sample of 1000 and 10,000 trees that were
produced in IQ-TREE (-bb: 1000 for McrA, 10,000 for NarI-Cyt) for each gene
family were reconciled with their rooted species trees. The presence
probability of gene family as well as duplication, transfer and loss events
were estimated in each internal node in the rooted species tree.

DATA AVAILABILITY
Genomes are archived in the NCBI database under BioProject ID PRJNA648665.
Genome bins can be found at NCBI under the Accession numbers SAMN15658086
(H03B1), SAMN15658087 (H03B2), SAMN25131447 (HK01M), SAMN25131448
(HK01B), SAMN25131449 (HK02M1), SAMN25131450 (HK02M2), SAMN15658088
(TDP7), SAMN15658089 (TDP8), SAMN15658090 (TDP9), SAMN15658091 (TDP10).
Related raw reads have been submitted to Sequence Read Archive under SRA
accession PRJNA629047.
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