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Small changes in rhizosphere microbiome composition predict
disease outcomes earlier than pathogen density variations
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Even in homogeneous conditions, plants facing a soilborne pathogen tend to show a binary outcome with individuals either
remaining fully healthy or developing severe to lethal disease symptoms. As the rhizosphere microbiome is a major determinant of
plant health, we postulated that such a binary outcome may result from an early divergence in the rhizosphere microbiome
assembly that may further cascade into varying disease suppression abilities. We tested this hypothesis by setting up a longitudinal
study of tomato plants growing in a natural but homogenized soil infested with the soilborne bacterial pathogen Ralstonia
solanacearum. Starting from an originally identical species pool, individual rhizosphere microbiome compositions rapidly diverged
into multiple configurations during the plant vegetative growth. This variation in community composition was strongly associated
with later disease development during the later fruiting state. Most interestingly, these patterns also significantly predicted disease
outcomes 2 weeks before any difference in pathogen density became apparent between the healthy and diseased groups. In this
system, a total of 135 bacterial OTUs were associated with persistent healthy plants. Five of these enriched OTUs (Lysinibacillus,
Pseudarthrobacter, Bordetella, Bacillus, and Chryseobacterium) were isolated and shown to reduce disease severity by 30.4–100%
when co-introduced with the pathogen. Overall, our results demonstrated that an initially homogenized soil can rapidly diverge
into rhizosphere microbiomes varying in their ability to promote plant protection. This suggests that early life interventions may
have significant effects on later microbiome states, and highlights an exciting opportunity for microbiome diagnostics and plant
disease prevention.
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INTRODUCTION
Most agricultural soils are infested with some level of plant
pathogens. Soilborne pathogens can persist for several years
before infecting a new host and marginally respond to pesticides,
resulting in major yield losses worldwide [1, 2]. Understanding the
disease dynamics is essential to prevent pathogen spread and yet
such often remains elusive. One particularly salient feature of
soilborne diseases is the binary outcome of infections. In many
outbreaks, plants either remain healthy or get severely ill and die.
Part of this distribution has been typically attributed to hetero-
geneity in local conditions including the pathogen abundance in
soil [3], the genetic background of the pathogen [4], the host plant
genotype [5], the soil and plant-associated microbiome, and/or
soil physicochemical properties [6, 7]. However, the hypothesis of
heterogeneity is challenged by observations that a binary disease
outcome also occurs in homogeneous conditions (Fig. 1A), with
pathogen density remaining low in some individuals, while rapidly
rising and causing disease in others (Fig. 1B). The rhizosphere
microbiome is crucial for plant health [8], and it is known to
change in composition and function during plant development

[9]. In a previous study, we demonstrated that a small variation in
the local species pool had cascading effects on the rhizosphere
microbiome assembly. This resulted in plant health or death in the
presence of a pathogen [6]. In this work, we tested whether these
alternative states of the rhizosphere microbiome (i) form out of an
initially homogenized soil; and (ii) affect the level of plant
protection against a soilborne pathogen (Fig. 1C). These
hypotheses are linked to the widespread presence of bifurcations
in ecosystem development, where different alternative states
emerge out of a homogenous configuration [10].
Pathogen infection is often reported as density-dependent.

While infection requires a threshold density, soil pathogen density
is a poor predictor for disease onset in field conditions [6]. Soil
homogenization removes this confounding factor by setting
pathogen variation to zero. New methods are thus needed for
early disease diagnosis allowing for the detection of vulnerabilities
before the disease outbreak. In this sense, microbiome diagnostics
can offer a possible solution. For instance, in humans, numerous
studies have revealed the close ties between microbiome
composition and various diseases (e.g., colorectal cancer, cirrhosis,
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arthritis, and irritable bowel syndrome) [11]. As a result, there is a
growing interest in microbiome research toward advancing
disease diagnostic and therapies [12]. For example, microbial
biomarkers contributing to human health have been discovered
and further applied as probiotic agents to improve clinical
interventions [13, 14]. Such information is particularly scant in
plant-microbiome studies. Furthermore, most studies in the field
of biomarkers are correlative as they compare microbiome
compositions when the disease has already been set on. The
observed correlations may therefore be confounded by the
presence of species associated with the diseased environment
but without causal effect on disease [15] or even generate
erroneous predictions, as the species that survived in the diseased
environment are often antagonistic to the pathogen [16]. Thus,
the development of longitudinal studies may solve the causal
relationship between microbiome assembly and disease onset. As
such, we used this approach in the past to demonstrate the
importance of local variation of the founding species pool for
microbiome dynamics [6] (Fig. S1). In the present study, we
modified the setup to remove the initial variance in microbial and
physicochemical properties. This allowed us to study whether
heterogeneity in plant-microbiome composition and function can
emerge out of an initially homogeneous species pool. This
variation can be further explored in line with plant phenotypic
responses (i.e., health and disease), allowing for inference of causal
interactions between microbiome assembly and plant health.

The present study scrutinizes microbiome development
together with disease susceptibility to the pathogenic bacterium
Ralstonia solanacearum, the causative agent of bacterial wilt
disease affecting more than 200 crops [2]. Soilborne pathogens
need to invade the root microbiome and spread as a saprophyte
until reaching a trigger population density, prior to causing
infection. Thus, pathogen success is a direct function of its
interaction with the rhizosphere microbiome [17]. In order to
elucidate the causal relationships between microbiome assembly
and disease, we used a longitudinal study with tomato plants
growing in a natural homogenized soil infested with R.
solanacearum. By using this nondestructive sampling system
(Fig. S1), we were able to regularly assess microbiome assembly
for each plant, long before the appearance of wilt disease
symptoms (Fig. 1D). We recorded the plant healthy status,
sampled rhizosphere soils, measured soil physicochemical proper-
ties, quantified soil pathogen abundance, profiled bacterial
community composition, and identified discriminating taxa
associated with disease outcomes (Fig. 1E). We expected that
the rhizosphere microbiome assembly will not follow a linear
process. Instead, due to the high level of facilitation between
rhizosphere bacteria [16, 18], we expected that microbiome
assembly may take a turn at any moment and assemble into a
range of alternate configurations out of an initially homogenous
soil community [19, 20]. We further expected these variations in
microbiome states to alter competitive interactions with an
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Fig. 1 Hypotheses and experimental design. A Scenarios of disease incidence in the pathogen-only experiment. Plants are expected to die
after pathogen inoculation, while (generally) not all plants show disease symptoms, and some plants survived up to the end of the
experiment (binary disease outcome). B Scenarios of pathogen abundance in the rhizosphere of the pathogen-only experiment. Although
plant individuals are exposed to the same initial abundance of the pathogen in the rhizosphere, compared to healthy plants, the diseased
plants often have higher pathogen loads in the rhizosphere. Changes in pathogen abundance between healthy and diseased plants are
detectable prior to the onset of disease symptoms. C Schematic figure of the hypotheses. Soil community state gradually changes as plants
grow. We hypothesize that the microbiome can diverge toward different configurations out of an initial constant species pool, later affecting
plant protection against disease. D Schematic figure of the experimental design. We used the rhizobox system [6] for nondestructive repeated
sampling of individual plants at different growth stages. Soils associated with 54 plant individuals at the initial stage (IS; 2 days after planting
(dap)), vegetative stage 1 (VS1; 15 dap), vegetative stage 2 (VS2; 27 dap), reproductive stage 1 (RS1; flowering stage; 40 dap), and reproductive
stage 2 (RS2; fruiting stage; 60 dap) were collected. E We recorded the disease incidence, sampled rhizosphere soils, measured soil
physicochemical properties, quantified pathogen abundance, determined bacterial community composition, and identified the discriminating
OTUs associated with healthy and diseased plants.
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invading pathogen, thereby resulting in differences in disease
development at later stages of plant development (Fig. 1C).

MATERIALS AND METHODS
Meta-analysis of bacterial wilt incidence in tomato
We used Web of Science to search for published peer-reviewed articles
using the keywords “bacterial wilt of tomato” to investigate the prevalence
of binary infection outcomes. Data were extracted according to the
following criteria: (i) studies from 2010 to 2020 with tomato as the host
plant were selected; (ii) disease incidences of tomato plants grown in water
or sterile soil were not included in the dataset; (iii) since we only focused
on well-controlled experiments, and complex variable environmental
factors exist under field conditions, the disease incidences of tomato
grown under field experiments were also excluded from the dataset; (iv)
for studies that manipulated multiple factors (e.g., biocontrol agent,
specific genes of the pathogen, and management practice), only data from
controls and regular fertilization treatments were included; (v) when
articles reported multiple independent manipulative experiments (e.g.,
experiments at separate sites), each experiment was considered as an
independent study and included in the dataset [21]; (vi) when articles
reported bacterial wilt incidence at different time-points, only the latest
time-point was considered; (vii) when data were only reported as figures,
the data means were extracted using GetData-Graph Digitizer
(www.getdata-graph-digitizer.com). In total, this meta-analysis included
132 observations from 58 articles (External Databases S1).

Microcosm experiment
The soil was collected at a depth of 0–20 cm from 15 random sites in a
tomato field in Qilin, Nanjing, China. This site is historically infested with R.
solanacearum. The collected soil was processed to remove plant debris and
sieved (2 mm for middle-layer nylon bags of the rhizobox and 4mm for
use in the greenhouse experiment; see below) without air-drying to
preserve the living soil microbiome.
We used a previously developed mesocosm system (“rhizobox”) [6] to

repeatedly collect rhizosphere soil from individual plants without
damaging the plant root system (Fig. S1). This system allows for tracking
the successional changes in the rhizosphere microbiome composition
throughout the plant developmental stages, and for quantifying the
dynamics of pathogen abundance and soil physicochemical properties. In
contrast to the original setup that employed sterilization by gamma
radiation of the soil in the nylon bags [6], we thoroughly homogenized all
the soils in bag and pot to ensure that each plant was exposed to an
initially homogeneous soil microbiome, soil physicochemical properties,
and pathogen abundance. We provide a detailed description of the
mesocosm system in the Supplementary Information (Appendix S1), and
elsewhere [6].

Experiment design and sampling strategy
Tomato seeds (Solanum lycopersicum cv. Hezuo 903) were surface-sterilized
in 3% NaClO (v/v) for 5 min, rinsed four times with sterile distilled water,
germinated in the dark for 2 days, and sown in a nursery substrate (Huaian
Agricultural Technology Development Ltd., Huaian, China). After incuba-
tion in the greenhouse at 28 ± 3 °C for 3 weeks, tomato seedlings with
similar sizes were gently washed. One seedling was planted in the root
compartment of each rhizobox, previously filled with 1.2 kg of homo-
genized soil (<4mm). The rhizoboxes were buried in pots containing 4 kg
of the same batch of homogenized soil (<4mm). A total of 54 pots were
randomly placed and maintained in the greenhouse under ambient
conditions suitable for tomato growth (28 ± 3 °C).
To collect rhizosphere soil in a nondestructive manner, three of the

middle-layer nylon bags were randomly collected at each sampling time
and pot samples were pooled into one composite sample, placed on ice,
and transported to the laboratory (<6 h). The collected soils were stored at
−80 °C until further processing. Samples were collected from 54 individual
plants at the initial stage (IS; 2 days after planting (dap)), vegetative stage 1
(VS1; 15 dap), vegetative stage 2 (27 dap), reproductive stage 1 (RS1;
flowering stage; 40 dap), and reproductive stage 2 (RS2; fruit develop-
mental stage; 60 dap) (Fig. 1D). The growth state of the tomato roots in the
root compartment was checked routinely to ensure that the root
compartment was densely rooted at 15 dap and onwards. This is important
to ensure that the collected samples correspond to the rhizosphere. In this
system, samples collected 2 dap were treated as bulk soil.

The disease index was recorded separately for each plant on a scale of
0–4 (0: no wilting; 1: 1–25% of leaves wilted; 2: 26–50% of leaves wilted; 3:
51–75% of leaves wilted; 4: 76–100% of leaves wilted). Disease incidence
was then calculated as= [∑ (number of diseased plants in given disease
index × given disease index) × (total number of plants × highest disease
index)−1] × 100% [22]. Fifty percent of the tomato plants (i.e., 27 individual
plants) showed wilting symptoms at 60 days after planting (Fig. S2A). The
plants were incubated for an additional week (67 days in total) to ensure
that none of the symptomless plants developed any wilt symptoms. After
67 days, all tomato plants were collected and tested for the density of R.
solanacearum in their stem crowns. This was carried out by macerating 5 g
of stem crown tissues in 45mL sterile 0.9% NaCl followed by serial dilution
and plating on R. solanacearum semi-selective medium (SMSA) [23].
Ralstonia solanacearum is often detected in symptomless plants harboring
significant pathogen populations [4]. This state is known as latent
infection. As a result, plant samples were separated into three disease
outcomes: (i) healthy plants showing no wilt symptoms and tested
negative for R. solanacearum, (ii) diseased plants showing wilt symptoms
and tested positive for R. solanacearum, and (iii) latently infected plants
showing no wilt symptoms and tested positive for R. solanacearum. At the
end of the greenhouse experiment, we found 13 healthy plants, 14 latently
infected plants, and 27 diseased plants. As latent infection may both
represent an upcoming disease or an asymptomatic infection, we opted
for excluding them from further analyses and only assessed healthy and
diseased plants. For that, ten healthy and ten diseased plants were
randomly selected and the associated soil samples (2 disease outcomes
and 5 developmental stages resulting in 100 samples) were used for
further analyses (Fig. S2B).

Soil DNA extraction and pathogen quantification
Total genomic DNA was extracted from 400mg of soil using the PowerSoil
DNA Isolation Kit (QIAGEN, Hilden, Germany). DNA concentrations were
determined using a NanoDrop spectrophotometer (ND2000, Thermo-
Scientific, DE, USA). Aliquots of the extracted DNA samples were used for
quantitative PCR analysis to determine the absolute abundance of R.
solanacearum, and for PCR amplification prior to the bacterial small-
subunit (SSU) rRNA gene high-throughput sequencing.
Quantitative PCR analysis was performed using the specific R.

solanacearum primer set Rsol_fliC [24]. Each sample was measured in
triplicate on a 7500 Fast Real-Time PCR System using the SYBR Premix Ex
Taq Kit (Takara, Dalian, China) (Applied Biosystems, CA, USA), according to
the manufacturer’s instructions (Table S1). We did not include reference
DNA as an internal standard to the isolated DNA and this can introduce
possible uncontrolled biases in pathogen quantification. In this study, we
generated a standard curve using a plasmid (pMD 19-T vector, Takara,
Dalian, China) containing the fliC gene of the R. solanacearum strain QL-
Rs1115 [25].

Bacterial small-subunit rRNA gene amplification and amplicon
sequence analysis
The partial SSU rRNA gene was amplified using the primer set 563F and
802R [26] with attached Illumina flow cell adapters and sample-specific 8-
bp barcodes, according to previously described PCR conditions (Table S1)
[27]. Each sample was amplified in triplicate to minimize the bias of PCR
amplification and pooled before purification using the AxyPrep PCR Clean-
up Kit (Axygen Biosciences, CA, USA). The purified PCR products were
quantified with QuantiFluor-ST (Promega, WI, USA), and sequencing
libraries were constructed as previously described [28]. Sequencing was
carried out on an Illumina MiSeq platform (2 × 250 bp) (Biozeron Biological
Technology Co. Ltd., Shanghai, China).
Quality control of sequence reads was performed using the UPARSE

pipeline [29]. Briefly, paired-end reads were assembled and trimmed
(maximal expected errors of 0.25, reads length >200 bp). Singletons were
removed prior to clustering into OTUs at 97% of nucleotide similarity,
followed by filtration of chimeras using UCHIME [30]. Sampling effort was
equalized to the depth of the smallest sample (23, 639 reads). We also
validated the OTU-based results using a 100% sequence similar zero-radius
OTUs (zOTUs) [31]. This was carried out by examining the correlation
between pairwise dissimilarities (Bray–Curtis index) obtained for the OTU-
based and zOTU-based methods. Filtered sequences were clustered into
zOTU using the UNOISE 3 algorithm implemented in USEARCH. Taxonomic
assignments of the OTUs were obtained using the Ribosomal Database
Project (RDP) pipeline (Taxonomy 18) [32] with a confidence threshold of
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80%. Raw sequences were deposited in the DDBJ SRA under the accession
numbers PRJNA299538 and PRJNA806399.

Characterization of soil physicochemical properties
Soil physicochemical properties were determined using standard operat-
ing procedures. Electrical conductivity and pH were measured using a
conductivity meter (DDS-307A, Rex, Shanghai, China) and a Sartorius PB-10
pH meter (Göttingen, Germany), respectively. NH4

+-N and NO3
−-N were

measured by KCl extraction using a Lachat Flow Injection Analyzer
(AutoAnalyzer3-AA3, Seal Analytical, WI, USA). Available phosphorus (P)
was determined using the molybdenum blue method [33]. Total carbon (C)
and nitrogen (N) were quantified using an elemental analyser (Vario EL III,
Elementar, Hanau, Germany). Dissolved organic carbon and organic
nitrogen were determined using a Liqui TOC elementar analyzer
(Elementar Co., Hanau, Germany). Each soil physicochemical property
was transformed to range between 0 to 1 and all the measured properties
were used for principal component analysis (PCA) to visualize variations
across samples.

Rhizobacteria isolation, taxonomic assignments, and isolate-
OTU match
We conducted a separate greenhouse experiment to isolate rhizobacteria
from tomato plants at vegetative stage 2 (i.e., 27 dap). Tomato seeds (cv.
Hezuo 903) were surface-sterilized, germinated, and sown in nursery
substrate as described above. Three weeks after sowing, seedlings were
planted in pots (not rhizobox) containing 2 kg of homogenized soil
(<4mm). The soil was the same as used above and each pot contained one
seedling. Twelve tomato plants were destructively sampled at 27 dap and
none of these individuals showed disease symptoms. To harvest the
rhizosphere soil, the excess soil was first removed from the tomato roots
by shaking and the remaining soil adhered to the roots (rhizosphere soil)
was collected. Prior to bacteria isolation, soils of three individual plants
were randomly pooled (resulting in four soil replicates). This strategy was
used to reduce the number of soil samples and increase the depth of
rhizobacteria isolation in each sample. The isolation started with soil
suspensions serially diluted and plated on 1/10 tryptone soy agar (1.5 g L−1

tryptone, 0.5 g L−1 soytone, 0.5 g L−1 NaCl, and 15 g L−1 agar). After 2 days
of incubation at 30 °C, a total of 137 isolates (32-37 isolates per replicate,
n= 4) were randomly selected and purified.
Bacterial isolates were taxonomically classified based on the SSU rRNA

gene sequence using a standard procedure [16]. Briefly, the total
genomic DNA of each isolate was extracted using EZNA bacterial DNA
isolation kit (Omega Bio-tek, Norcross, GA, USA), following the
manufacturer’s instructions. Amplification targeting the bacterial SSU
rRNA gene was carried out using the primer set F27 and R1492 [34]
(Table S1). The PCR products were sequenced at Songon Biotechnology
Co. Ltd (No. 698, Xingmin Road, Songjiang Zone, Shanghai, China). The
SSU rRNA sequences were classified using the NCBI and RDP pipeline.
The obtained 137 isolated bacteria were taxonomically affiliated to the
phyla Pseudomonadota (formerly Proteobacteria), Actinomycetota (for-
merly Actinobacteria), Bacillota (formerly Firmicutes), and Bacteroidota
(formerly Bacteroidetes) (Table S2).
We mapped the full-length SSU rRNA gene sequences of the bacterial

isolates to the OTU representative sequences obtained via high-
throughput sequencing. For that, bacterial SSU rRNA gene sequences of
the isolates were trimmed to the same region of the high-throughput
sequencing data using the RDP pipeline. Then, sequences were mapped to
the OTU representative sequences at ≥97% sequence similarity using
UPARSE. Out of the 137 bacterial isolates, 118 isolates (86%) matched 31
OTUs retrieved by high-throughput sequencing, and only 19 isolates (14%)
were not matched with a representative sequence of OTUs. Out of the 31
matched OTUs, 5 were enriched by healthy plants at VS2, while the
remaining showed non-significant variations in relative abundance
between healthy and diseased plants.

Effects of isolated bacteria on bacterial wilt disease
One additional greenhouse experiment was conducted to test the disease
suppression ability of each retrieved isolate with corresponding OTU
matches. This included the five healthy-plant-enriched isolates/OTUs
(Fig. 4E), and ten randomly selected non-discriminating isolates/OTUs
(Table S3). Tomato seeds (cv. Hezuo 903) were surface-sterilized and
germinated as described above. Each germinated seed was sown in pots
containing 80 g of nursery substrate. The pots were incubated under

ambient conditions suitable for tomato growth (28 ± 3 °C). After sowing for
25 days, each isolated bacteria were applied individually per treatment at a
cell density of 1 × 106 CFU g−1 of nursery substrate. One week after
inoculation of the isolated bacteria, R. solanacearum QL-Rs1115 was
inoculated at a cell density of 2 × 106 CFU g−1 of nursery substrate. For the
control treatment, only the pathogen was inoculated. For each treatment,
18 individual plants were used (n= 18), resulting in a total of 288 plants.
The disease index was recorded 25 days after pathogen inoculation.

Statistical analyses
All statistical analyses were carried out in R-4.0.3 [35]. Nonparametric
Mann–Whitney test and Student’s t test were used to compare mean
differences associated with disease outcomes. PCA was conducted using
the “prcomp” command available in the vegan package [36]. The
composition of bacterial communities was ordinated by principal
coordinates analysis (PCoA) based on Bray–Curtis distances. Differences
in community composition and soil physicochemical properties between
disease outcomes were compared using permutational multivariate
analysis of variance (PERMANOVA) using the vegan package. Linear
discriminant analysis (LDA) was used to explore the most discriminating
OTUs between health conditions using LEfSe [37]. A factorial analysis of
variance (ANOVA, Tukey’s HSD test) was used to compare the mean
differences between disease indexes.

RESULTS
Consistent binary outcome of bacterial wilt disease
Based on the dataset consisting of 132 observations published
between 2010 and 2020, we found the incidence of bacterial wilt
in tomato to range from 0 to 100%, with an average of 71.4% in
greenhouse experiments (Fig. 2A). Importantly, in 105 of the 132
greenhouse observations, part of the plants remained healthy
even under high disease pressure. These findings point to the
existence of a binary disease outcome even under well-controlled
plant growth conditions. We found that the earliest bacterial wilt
disease symptoms tend to appear at RS1, with the disease
incidence increasing sharply in the following weeks (Fig. 2B,
Fig. S2A). Based on the wilt symptom and the pathogen density in
the stem crown (Fig. 2C, Fig. S2A), plants were classified as
diseased (n= 27), latently infected (n= 14), and healthy (n= 13)
at the end of the greenhouse experiment. A significantly higher
number (4.8-fold higher, p < 0.001, nonparametric Mann–Whitney
test) of R. solanacearum were detected in the crown tissue of
diseased plants when compared to latently infected ones (Fig. 2C).
As latent infection may both represent an upcoming disease or an
asymptomatic infection, we decided to exclude these data from
further analyses, focusing only on healthy and diseased plants.

Divergence in microbiome composition predicts disease
outcome
Similar to the disease incidence (Fig. 2B), the abundance of R.
solanacearum remained low in healthy and diseased plants until
abruptly increasing during the reproductive stage (Fig. 3A). The
abundance of Ralstonia solanacearum was not significantly
different in soils associated with the disease outcome until RS1,
where a higher number of R. solanacearum was detected in the
rhizosphere of diseased plants (1.3-fold, p= 0.016, Student’s t
test), compared to that of healthy plants (Fig. 3A). Physicochemical
properties of the rhizosphere soil exhibited successional patterns
across plant developmental stages, however, these patterns were
not linked to the disease outcome (p > 0.05, PERMANOVA; Fig. 3B,
Fig. S3, and Table S4). This suggests that variations in soil
physicochemical properties were not likely to influence the
disease outcome. The rhizosphere bacterial communities showed
significant clustering according to different plant developmental
stages (Fig. S4; p < 0.001, PERMANOVA). We found the initial
significant difference in bacterial community composition
between healthy and diseased tomato plants at VS2 (Fig. 3D),
2 weeks early than any detectable changes in pathogen density
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(Fig. 3E). This occurs, even though, significant differences in
community alpha diversity between healthy and diseased tomato
were only observed at RS2 (p < 0.001, Student’s t test) (Fig. 3C). We
further repeated the analyses of bacterial community composition

at zero-radius OTU (zOTU) level. We found a strong correlation in
patterns observed based on the OTU and zOTU methods (Fig.
S5A), i.e., initially similar microbiome composition diverging into
multiple configurations at VS2 (Fig. S5B).
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Discriminating taxa associated with disease development
We identified discriminating taxa associated with disease out-
comes for each plant developmental stage. We found that the
number of these discriminating OTUs (0.1–4.5% of total OTU
number) and discriminating genera (0–16.8% of total genus
number) increased with plant development (Fig. 4A, B). These
suggest that the divergence of the whole microbiome composi-
tion at VS2 might have been due to events that had already
occurred previously. Thus, the distinct states of the microbiome
composition may likely reflect initial divergences in community
assembly. In particular, a large proportion (80.2%) of healthy-
plant-enriched OTUs at VS2 was Pseudomonadota (Fig. 4C), while
most of the diseased-plant-enriched OTUs were Bactroidota
(20.4%), Verrucomicrobiota (18.5%), and unclassified bacteria
(29.6%) (Table S5). Twenty-two genera were significantly enriched
in healthy plants at VS2, including 12 Pseudomonadota members
(Acidibacter, Solimonas, Pedomicrobium, Pseudomonas, Geomonas,
Desulfuromonas, Anaeromyxobacter, Achromobacter, Pseudolabrys,
Siccirubricoccus, Brachymonas, and Sphingopyxis) (Fig. 4D).
To test whether the healthy-plant-enriched rhizobacteria at VS2

contribute to disease suppression, we isolated bacteria from the
rhizosphere soil at VS2 (27 dap). All the 137 isolates were matched
to 31 OTUs, out of which five OTUs were associated with
later healthy plants. These include Lysinibacillus xylanilyticus,

Pseudarthrobacter defluvii, Bordetella petrii, Bacillus nealsonii, and
Chryseobacterium gleum (Fig. 4C, E). We further carried out a
greenhouse experiment by inoculating plants with the isolated
strains to test their suppression against R. solanacearum. We
found that the five discriminating OTUs/strains significantly
reduced the disease index of bacterial wilt (p < 0.01, nonpara-
metric Mann–Whitney test) compared to the control. We also
included ten randomly selected non-discriminating OTUs/strains
to explore the disease suppression ability of strains by random
chance. Importantly, the five discriminating OTUs/strains showed
a higher capacity of disease suppression than the ten randomly
selected non-discriminating OTUs/strains (p < 0.001, nonpara-
metric Mann–Whitney test) (Fig. 4F, Fig. S6, and Table S3).
Specifically, these five strains reduced the disease index by
30.4–100%. The effects of OTU_168 (P. defluvii), OTU_554 (B. petrii),
and OTU_660 (B. nealsonii) were significantly greater (p < 0.05,
Student’s t test) than the control (Fig. 4G). Together, these data
validate the disease suppression ability of some healthy-plant-
enriched OTUs at VS2. Moreover, we found four of the five
suppressive isolates (OTU_61, OTU_168, OTU_660, and OTU_1400)
to antagonize the growth of R. solanacearum by conducting
supernatant assay (Fig. S7 and Appendix S2). Worth mentioning,
the isolate corresponding to OTU_554 had no evident effect on
the growth of the pathogen. This suggests that OTU_554 might
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have reduced the incidence of bacterial wilt via indirect effects, for
example, inducing plant immunity. Together, the combination of
culture-independent and culture-dependent approaches demon-
strated that microbiome cues can predict disease outcomes
before the appearance of symptoms, and that specific members of
the rhizosphere microbiome can be harnessed to reduce disease
severity.

DISCUSSION
In this study, we addressed whether disease suppressiveness
could emerge during microbiome assembly, without the need for
the initial presence of a specific set of species or environmental
conditions. We showed that an initially homogeneous bulk soil
microbiomes (i.e., homogeneous species pool) can result in
different rhizosphere microbiomes with direct implications for
plant health/protection. In this case, these variations in commu-
nity composition allowed us to predict the disease onset, earlier
than noticeable changes in the pathogen density. This rapid
divergence during the assembly process sheds new light on
disease dynamics and provides new avenues for microbiome
diagnostics and for managing microbiome-driven plant disease
resistance.
This study contributes to answering the (at a first glance) erratic

nature of disease outcomes [38]. We first used a meta-analysis to
reveal that outbreaks of bacterial wilt disease consistently show a
binary outcome with individuals either remaining healthy or
diseased. Binary disease outcomes have long been reported as
anecdotes across many studies. It is traditionally explained by the
heterogeneity of biotic and abiotic stress exposure [39], pathogen
pressure [38], or variation in the microbial species pool [40–42].
This study provides an alternative explanation to these previously
reported constraints. Simply, the microbiome composition rapidly
diverges into different states, out of an initially homogeneous
bacterial species pool. Then, this variability is strongly linked to the
binary disease outcome. This discovery was made possible by the
use of a longitudinal study, an approach long used in human
medicine but only applied to plant-microbiome studies recently.
This approach allows for unraveling causalities between micro-
biome assembly and disease onset. This is particularly important
as the use of marker species after disease onset, a procedure still
often used in microbiome studies, will highlight species able to
live in the sick environment dominated by the pathogen [16]. As
such, blurring our ability to early detect the main taxa involved
with pathogen suppression.
Pathogen density is widely used as a predictor/indicator of

disease development [43, 44]. However, it is often late for disease
control when high pathogen density is detected. Using our study
as an example, R. solanacearum density significantly increased at
the flowering stage when certain tomato plants had already
shown wilt symptoms. Therefore, an early predictor is needed for
the disease diagnosis prior to pathogen outbreaks to timely
control the disease. Here, we found that the rhizosphere
microbiome composition can predict the disease outcome even
2 weeks before any detectable changes in the pathogen
abundance between the later healthy and diseased plants. This
result indicates the potential disease suppression ability of the
rhizosphere microbiome at the seedling stage. It also highlights
the importance of optimizing seedling management to sustain-
ably enhance plant health by focusing on the functioning of root-
associated microbiomes. Additionally, the association between
microbiome composition and disease outcomes may contribute to
microbiome-based diagnostics where microbiome composition
can be used to develop models on disease occurrence and
severity. It is worth pointing out that we found diseased plants to
be associated with higher rhizosphere bacterial community
diversity than healthy plants. It is generally recognized that
pathogen infection can reduce rhizosphere microbiome diversity

[15, 17, 45]. However, plant diseases have also been found to
increase or have no effects on rhizosphere microbiome diversity
[7, 46, 47]. These discrepancies might occur due to differences in
species pool across soils of different origins, the genetic back-
ground of the plant host, the nature/physiology/ecology of the
pathogen, differences in soil management/agricultural practices,
and/or environmental conditions [5, 48, 49].
Changes in the rhizosphere community composition rather

than the overall species diversity can explain future plant health.
At a more detailed level, we found that disease-suppressive
microbiome states were associated with specific microbial taxa.
The presence of discriminating taxa points to an over-proportional
role of some species as drivers of microbiome suppressiveness
[40]. In this study, we retrieved a range of bacterial isolates
matching genetically these discriminating taxa. When inoculated
in tomato plants, these strains provided suppression against the
pathogen to a level higher than expected by chance, thus
supporting their potential role as mediators of plant health. We
acknowledge that additional research is needed to explain how
these specific taxa operate and were enriched in some samples
and whether the mechanisms involved in disease suppression are
generalizable. Several discriminating taxa belonged to Pseudomo-
nadota, a phylum associated with gut and rhizosphere health,
pointing to a general pattern [50]. Other taxa belonged to
bacterial groups previously reported to harbor a broad antipatho-
gen potential, such as Pseudomonas, Achromobacter, Brachymonas,
or Sphingopyxis [51–54]. However, we would like to state here that
the goal of our isolation-inoculation approach here was merely to
validate our findings rather than providing a comprehensive
mechanistic screening of rhizosphere suppressive taxa. For
instance, most of the healthy-plant-enriched Pseudomonadota
could not be successfully retrieved by standard isolation
procedures, and the five protective isolates reported here
represent only a small fraction of the potential multiple
mechanisms operating on disease suppression by the several
healthy-plant-enriched taxa.
Our results showed that small and early differences in the

rhizosphere microbiome assembling further influence plant
health. As the dynamics of microbiome assembly show strong
parallels between hosts, we anticipate that the results will be of
direct relevance to explaining the dynamics of disease outbreaks.
Besides, such principle can be used to design early microbiome-
centered interventions in diverse ecosystems, such as human/
animal gut or coral reefs [55–57]. While further studies are needed
to establish the possible mechanisms leading to divergence in
microbiome assembly in this study, this effect can be a result of
microbiome intrinsic dynamics. For example, the root exudates
secreted by growing roots of plant individuals reduced compe-
titive pressures leading to stochastic processes in microbial
interactions, which may further lead to changes in microbiome
composition [58]. Recently, Matsumoto et al. [38] reported that
rice of the same cultivar can shift to disease-resistant and
susceptible phenotypes under the pressure of the same seed-
borne pathogen due to the different disease resistance conferred
by the seed microbiome. Our study suggests that the distinct state
of the rhizosphere microbiome composition can also be a result of
changes in the interactions between the seed microbiome and the
soil microbiome. This study focused on rhizosphere bacteria as a
primary level of protection against pathogen invasion. Due to the
technical impossibility to sample endophytic communities in a
nondestructive way, we did not include the endosphere in our
study, even though endophytes might also contribute to
asymptomatic infections under high pathogen density [59].
Bacterial wilt is commonly characterized by symptomless latent

infection [4, 60], while the incidence of the latent infection is
scarcely reported. Thus, further studies are needed to unravel the
incidence of latent infection under different growth conditions. In
this study, we omitted latent infections as they may lump together
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unrelated processes (i.e., delayed symptom onset and asympto-
matic infection). We did nonetheless analyze their rhizosphere
communities and found that the rhizosphere microbiome
composition of latently infected plants was different from that
of the healthy plants at VS2 (Table S6). This suggests that the
establishment of latent infection was likely associated with the
microbiome status. In addition, none of the five protective isolates
in this study were enriched in the rhizosphere of the latently
infected plants (Fig. S8), thus suggesting that lower relative
abundances of these protective taxa might likely result in greater
pathogen success.

CONCLUSION
Plants growing in homogeneous conditions and in the presence of
a soilborne pathogen often display a binary disease outcome.
However, the underlying nature of this phenomenon remains still
largely underexplored. Here, we show that the rhizosphere
microbiome composition of individual plants developed towards
significantly different states even before the outbreak of the
pathogen abundance. Furthermore, the changes in the rhizo-
sphere microbiome composition could predict whether plants
remained healthy or became infected by the pathogen. While
pathogen density can predict disease development, it is challen-
ging to predict disease outcomes in homogenous soils having the
same initial pathogen density. Our results highlight an opportunity
for microbiome diagnostics of plant diseases by profiling the
microbiome as in human disease. Importantly, healthy-plant-
enriched taxa, when distinct community states formed, reduced
disease incidence, suggesting the potential disease suppression
ability of the healthy plant-associated microbiome. These taxa
may be targeted as a viable alternative to promote disease
suppression toward the progressive reduction of environmentally
hazardous pesticides.
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