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Mapping the Immune Landscape in Metastatic Melanoma
Reveals Localized Cell–Cell Interactions That Predict
Immunotherapy Response
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ABSTRACT
◥

While immune checkpoint–based immunotherapy (ICI) shows
promising clinical results in patients with cancer, only a subset of
patients responds favorably. Response to ICI is dictated by complex
networks of cellular interactions between malignant and nonma-
lignant cells. Although insights into the mechanisms that modulate
the pivotal antitumoral activity of cytotoxic T cells (Tcy) have
recently been gained, much of what has been learned is based on
single-cell analyses of dissociated tumor samples, resulting in a lack
of critical information about the spatial distribution of relevant cell
types. Here, we used multiplexed IHC to spatially characterize the
immune landscape of metastatic melanoma from responders and
nonresponders to ICI. Such high-dimensional pathology maps
showed that Tcy gradually evolve toward an exhausted phenotype

as they approach and infiltrate the tumor. Moreover, a key cellular
interaction network functionally linked Tcy and PD-L1þ macro-
phages.Mapping the respective spatial distributions of these two cell
populations predicted response to anti-PD-1 immunotherapy with
high confidence. These results suggest that baseline measurements
of the spatial context should be integrated in the design of predictive
biomarkers to identify patients likely to benefit from ICI.

Significance: This study shows that spatial characterization can
address the challenge of finding efficient biomarkers, revealing that
localization of macrophages and T cells in melanoma predicts
patient response to ICI.

See related commentary by Smalley and Smalley, p. 3198

Introduction
Treatment of malignant melanoma has been revolutionized by the

introduction of anti-PD-1–based immune checkpoint inhibitors (ICI;
refs. 1, 2). Despite having improved overall survival and providing
durable response, the outcome of immune checkpoint blockade is very
variable, with most stage IV patients still succumbing to the dis-
ease (1, 2). Nonetheless, ICI therapy has become a standard of care in
melanoma and many other solid cancers.

The widespread use of immunotherapy, the variable results
obtained in different tumor types, the considerable and sometimes

irreversible toxicity in roughly 20% of the patients and the treatment-
associated costs have made the search for predictive biomarkers a
pressing issue more than ever before in oncology. Consequently,
researchers were prompted to investigate the tumor microenviron-
ment (TME) more thoroughly. As a result, a plethora of different
factors correlating with immunotherapy outcome have emerged,
including both tumor intrinsic [e.g., tumor mutational burden (3),
DNA mismatch repair deficiencies, and microsatellite instability (4),
(epi)genetic aberrations leading todefects inantigenpresentation (5, 6),
signaling defects in JAK/STAT pathway (7), extracellular vesicles (8),
and tumoral MHC-II expression (9)] features and TME-related fea-
tures (e.g., tumor-infiltrating lymphocytes (TIL; refs. 10, 11), specific
cytotoxic T cell (Tcy) subtypes such as progenitor-exhausted Tcy (12),
tumor-infiltrating B cells and tertiary lymphoid structures (13, 14),
intratumoral and gut microbiota (15, 16), myeloid-derived suppressor
cells (17), cancer-associated fibroblasts (18), and tumor-associated
high-endothelial venules (19)]. However, none of these factors have
thus far been broadly implemented in the clinic, partly due to a low
predictive value when used as a single marker. In addition, we are still
lacking a profound understanding of the mechanism(s) that make
anti-PD-1–based therapy successful in 1 patient and unsuccessful in
another. Similarly to how next-generation sequencing has made it
possible tomatchmutational profiles to specific targeted therapies (i.e.,
BRAF and MEK inhibitors; ref. 20), unraveling and improving
response to immunotherapy will require an accurate spatial descrip-
tion of the inflammatory landscapewithin the tumor area (TA) and the
specific understanding of the contribution of each factor of the
complex immune response machinery.

Recently, the preexistent CD8þ T-cell effector response resulting
from chronic tumor antigen exposure and the dynamics following
checkpoint blockade has been elucidatedmore thoroughly. A subset of
Tcy that display stem-like properties and that promote tumor control
in response to checkpoint blockade immunotherapy has been
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identified (12, 21, 22). These so-called progenitor exhausted T cells are
responsible for the proliferative T-cell burst after administration of
anti PD-1 (12, 23). There is substantial evidence that response to
checkpoint blockade is not due to reversal of a T-cell exhaustion
phenotype but rather depends on proliferation of this stem-like subset
of T cells. After eliciting a cytotoxic effect these cells can further
differentiate into “terminally exhausted” Tcy. Data supporting this
model are mostly generated by methods based on tissue dissociation
followed by single-cell analysis, such as single-cell RNA sequencing
(scRNA-seq) or mass cytometry. Obviously, these techniques exclude
spatial information, thereby precluding the analysis of crucial cell–cell
interactions within the context of the original tissue. To partially
overcome this, algorithms for analyzing scRNA-seq data have been
developed to screen for ligand-receptor interactions across all cell types
present in a TME [CellPhoneDB (24)/Nichenet (25)]. These predictive
methods are based on prior knowledge of signaling and gene regu-
latory networks, and while very interesting at producing novel hypoth-
eses, they still require validation at the tissue level. In addition,
computational methods to analyze dissociated cells are devoid of
visual control and thus bear the risk for inaccurate results. Finally,
RNA-based findings may also not translate to the proteomic level,
thereby leaving the final executors of most biological interactions
unidentified. Considering that immune reactions rely onmultiple cell–
cell interactions, a study of the mechanism of an immune response
upon anti-PD-1 treatment should also include spatial information.
Knowing the spatial distribution of the different inflammatory cell
subtypes could further fuel our understanding on how immunother-
apy works while revealing novel potential therapeutic mechanisms or
novel targets with translational clinical utility.

In this study, we used high-dimensional multiplexed IHC
(mIHC) according to the Multiple Iterative Labeling by Antibody
Neodeposition (MILAN; ref. 26) method through which we visu-
alized 77 immune and tumor-related markers at single-cell reso-
lution. As such, we characterized the cellular composition, archi-
tecture, and sociology of the immune landscape in metastatic
melanoma, which allowed us to create a detailed, high-
dimensional pathology map of Tcy, in which the detailed phenotype
of the different Tcy subsets and their exact location in clinical
biopsies is identified. This analysis did not only confirm previous
findings at the proteomic level, but it also allowed us to visualize and
study the interactions between the cellular subsets within their
native tissue context. By subsequently applying novel spatial anal-
ysis approaches, we were able to construct a spatial trajectory within
the tumor in parallel to and corresponding with a pseudotime
differentiation trajectory of Tcy, showing that Tcy gradually evolved
toward more exhausted phenotypes as they approached and infil-
trated the tumor. Finally, we studied the interaction between Tcy
and their local immune microenvironment, thereby revealing a role
for interactions between Tcy and PD-L1þ M1-like macrophages in
the distinction between responders (RESP) and nonresponders
(NRESP) to anti-PD-1 immunotherapy.

Materials and Methods
Clinical data

For the discovery cohort A, a set of 16 pretreatment, frozen
melanoma metastasis lesions from 14 different patients was selected
for NanoString gene expression analysis. All patients were treated with
anti-PD-1 monotherapy (nivolumab or pembrolizumab) after the
biopsy was taken. Only biopsies taken < 365 days before the start of
checkpoint inhibition therapy were included. Furthermore, only

patients with measurable disease were selected, hence enabling tumor
response assessment according to RECIST 1.1 (27). Patients were
classified according to the best objective response to immunotherapy
during their time of follow-up, as defined by RECIST 1.1 (27).
Complete response and partial response were classified as RESP,
progressive disease or stable disease as NRESP. According to these
criteria, 7 patients could be classified as RESP (eight samples) and 7
patients as NRESP (eight samples). In addition, 24 pretreatment,
formalin-fixed, paraffin-embedded (FFPE)melanomametastasis sam-
ples from 21 patients from the University Hospital of Leuven were
collected. Of these samples, 12 were also included in the NanoString
analysis. For validation cohort B, 19 pretreatment FFPE melanoma
metastasis samples from 16 patients from the University Hospital of
Leuven were collected. For both patient cohorts, only metastatic
samples were eligible for inclusion. Pathologists selected the most
representative areas of the tumors for tissue microarray (TMA)
construction. For each metastasis, one to five representative cores/
regions of interest were sampled having at least a size of 1 mm in
diameter. The number of samples taken was determined by the
specimen and the morphologic heterogeneity of both the melanoma
and the inflammatory infiltrate. Therefore, a smaller number of cores
were taken from small and homogeneous samples whereas a larger
number was taken from large but heterogeneous specimens. Specif-
ically for cohort B, cores were sampled only at the tumor-stroma
interface (TSI). In addition, core selection was done blinded for
patients’ response to immunotherapy. In total, for cohort A 70 and
for cohort B 27 cores/regions of interest were selected for analysis. The
TMAs were constructed with the TMA Grand Master (3DHistech
Ltd.). A subset of patients included were treated with anti-PD-1
monotherapy (nivolumab or pembrolizumab) after the biopsy was
taken. Biopsies taken ≥ 365 days before the start of checkpoint
inhibition therapy were excluded for response stratification. Following
similar response stratification criteria used in the NanoString patient
cohort, in cohort A 7 of 21 patients could be classified as RESP (seven
samples) and 8 of 21 patients as NRESP (nine samples). For 6 patients
(eight samples), response assessment was not possible due to several
reasons (e.g., no subsequent therapy with anti-PD-1 treatment, sample
too old according to our cutoff of 365 days). To exclude noise in the
downstream analysis regarding factors associated with response, these
6 patients were included for the evaluation of the immune landscape
but were excluded from the correlation analysis with response. For
cohort B, 9 of 16 patients could be classified as RESP (11 samples) and 7
as NRESP (eight samples). An overview of the samples/patients
included in this study is provided in Supplementary Tables S1 and
S2. Written informed consent was obtained from each patient. The
studies were conducted in accordance with recognized ethical guide-
lines (Declaration of Helsinki). This project was approved by the
Ethical Commission of the University Hospital of Leuven and
approved by the review board.

NanoString gene expression analysis
The frozen material was analyzed using the PanCancer Immune

Profiling Panel of the nCounter technology from NanoString. Tran-
scriptomic counts were log2 transformed. Differential gene expression
of RESP patients versus NRESP patients was calculated using the
limma R package (28). Enriched pathways were identified using the
piano R package (29). Differentially expressed genes were network
mapped using stringDB (30). From the different gene set analysis
methods included in the Piano pipeline, we selected the following 10
using the gene-level statistic defined in parenthesis: Fisher (P value),
stouffer (P value), reporter (P value), page (t value), tailStrength
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(P value), gsea (t value), mean (logFC), median (logFC), sum (logFC),
and maxmean (t value). P values from the different gsa methods were
summarized by calculating the median ranking of the individual
methods and thenmapping the corresponding P value for the obtained
rank. For the gene sets, the Molecular Signatures Database (MSigDB;
ref. 31), curated pathways (c2), canonical pathways (cp), version
7.2 was used. The enrichment of selected pathways was visualized
using fGSEA plots generated with the fgsea R package (32). Insights in
general sample cytometry were gained using CibersortX (33) with the
LM22 signature matrix. Insights in Tcy specific cell populations
cytometry were obtained by first creating a custom signature matrix
using the data and defined cell states by Sade-Feldman and collea-
gues (21) and CibersortX’s “Create Signature Matrix” module. Tcy
proportions were then estimated using the “Impute Cell Fractions”
module. The NanoString results were further validated using the
publicly available data reported in Chen and colleagues (11). The
expression data were directly downloaded from the supplementary
data reported in the publication. Only pretreatment samples were
included for analysis (TimePoint ¼ “Pre aPD1”). For this dataset, the
same abovementioned differential gene expression and pathway anal-
ysis were performed.

MILAN multiplex staining and image acquisition
Multiplex immunofluorescent staining was performed according

to the previously published MILAN protocol (26). The antibody
panel for MILAN was designed to allow a phenotypic identification
of the most abundant cell types based on the results from the
NanoString analysis and the scRNA-seq data from others (21),
including a more in-depth functional characterization of T cells
based on literature review. An overview of the panel with the 77
markers included for the discovery cohort and the specifications
about the primary and secondary antibodies can be found in
Supplementary Table S3. A second mIHC staining was performed
using the validation cohort B with a limited panel of seven markers
plus DAPI (DAPI, CD68, CD163, PDL1, CD8, MLANA, SOX10,
and S100A1). For cohort A, immunofluorescence images were
scanned using the NanoZoomer S60 Digital slide scanner (Hama-
matsu) at 20� objective with resolution of 0.45 mm/pixel. The
hematoxylin and eosin slides were digitized using the Axio scan.Z1
slidescanner (Zeiss) in brightfield modus using a 20� objective with
resolution of 0.22 mm/pixel. For cohort B, immunofluorescence
images were scanned using the Axio scan.Z1 slidescanner (Zeiss) at
10� objective with resolution of 0.65 mm/pixel. All downstream
analyses took into consideration the differences in pixel size
between cohorts A and B to ensure that the same metric distances
were evaluated.

Image quality control and analysis
The stainings were visually evaluated for quality by digital image

experts and experienced pathologists (F.M. Bosisio, G. Cattoretti, and
Y. Van Herck, triple blinded). Multiple approaches were taken to
ensure the quality of the single-cell data. On the image level, the cross-
cycle image registration and tissue integritywere reviewed; regions that
were poorly registered or contained severely deformed tissues and
artifacts were identified, and cells inside those regions were excluded.
Antibodies that gave low confidence staining patterns by visual evalu-
ation were excluded from the analyses. Image analysis was performed
in Fiji/ImageJ following a procedure described previously (34). Briefly,
DAPI images from consecutive rounds were aligned (registered) using
the Turboreg and MultiStackReg plugins from Fiji/ImageJ (version
1.51 u). The coordinates of the registration were saved as Landmarks

and applied to the rest of the channels. Tissue autofluorescence was
subtracted from an acquired image in a dedicated channel, for FITC,
TRITC, and Pacific Orange. The TMA was segmented into tissue
cores using a custom macro. Core segmentation was followed by
watershed cell segmentation and single-cell measurements, which
were performed using the EBImage R package (35). For every cell,
the extracted features included: X/Y coordinates, nuclear size, and
mean fluorescence intensity (MFI) for all the measured markers.

Phenotypic identification
MFI values were normalized within each core to Z-scores as

recommended in Caicedo and colleagues (36). Z-scores were
trimmed in the [0, 5] range to avoid a strong influence of any
possible outliers in downstream analyses. Single cells were mapped
to known cell phenotypes using three different clustering methods:
PhenoGraph (37), FlowSom (38), and KMeans as implemented in
the Rphenograph, FlowSOM, and stats R packages. While FlowSom
and KMeans require the number of clusters as input, PhenoGraph
can be executed by defining exclusively the number of nearest
neighbors to calculate the Jaccard coefficient (37), which was set
to 12. PhenoGraph groups the input cells into a number of numeric
clusters (1,2,. . .,n) with similar expression profiles. The number of
clusters identified by PhenoGraph was then passed as an argument
for FlowSom and KMeans.

Clustering was performed exclusively in a subset of the identified
cells (50, 000) selected by stratified proportional random sampling and
using only the markers defined as phenotypic (Supplementary
Table S3). The stratification was performed by selecting a number of
cells in each sample equal to the relative proportion of the number of
cells in that sample in the entire dataset. That is:

Si ¼ S �Ni

M
; where M ¼

XP

i ¼ 1

Nið Þ

where Si is the number of cells to be sampled for the ith sample, S is the
total number of cells to be sampled (here 50,000), Ni is the number of
cells in the ith sample, andM is the total number of cells in the dataset
(sum of all samples, P).

For each clustering method, clusters were mapped to known
cell phenotypes following manual annotation from domain experts
(F.M. Bosisio, Y. VanHerck, double blinded). If two ormore clustering
methods agreed on the assigned phenotype, the cell was annotated
as such. If all three clustering methods disagreed on the assigned
phenotype, the cell was annotated as “not otherwise specified, NOS.”
For each phenotype, a fingerprint summarizing the average expression
of eachmarker for all the cells of the given phenotype was constructed.
These fingerprints were used to predict the phenotype of all the cells
included in the dataset (minimum of Euclidean distance).

In silico tissue microdissection
We further dissected the analyzed samples into TAs, TSI, and

nontumor areas (NTA; Supplementary Fig. S1). To that end, tissues
were fragmented into 50�50 pixel tiles (22.5 sq. micrometers). Tiles
with at least one cell identified as melanoma were initially defined as
TA. To reduce the impact of potential outliers, a median filter was
applied to the obtained tumor masks. The tumor edge was defined as
the overlap between the dilated tumor mask (box kernel of 5px of
diameter), a dilated nontumor mask (complementary of the tumor
mask, box kernel of 5px of diameter), and the complement of a dilated
mask positive for the areaswithout tissue (i.e., outsidemask, box kernel
of 5 tiles, 251px of diameter). The complement of the outsidemask was
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used to remove the tumor edge in areas close to the contour of the
tissue as predictions around the contour are often unreliable (39). The
TSI was defined at 150 pixels (67.5 mm) symmetrically toward
and away from the tumor edge (i.e., the border between the tumor
and the stroma). This was calculated by dilating the tumor edge
with a box kernel of 301 pixels in diameter. The rest of the tissue was
defined as NTA. We evaluated the immune populations present
in each microdissected area by comparing the proportion of
each identified immune phenotype relative to the total immune
population (pairwise, Wilcoxon test). Adjustment for multiple
comparisons was performed using the FDR method.

High-dimensional proteomic profiling of Tcy
Tcy were further profiled on the basis of the expression of the

following 10 markers: CD137/4-1BB, CD69, CD7, CD74, CXCR5,
granzyme B (GrB), PD-1, TCF7, TIM-3, and VISTA (“Tcy panel”;
Supplementary Table S3). A subset of all the identified Tcy (stratified
sampling, 6,000 cells) was clustered using KMeans and manually
annotated by domain experts (F.M. Bosissio, Y. Van Herck). Finger-
prints were used to calculate the status of all the Tcy included in the
dataset (minimum of Euclidean distance). For all the identified sub-
types, we looked for enrichment in the different in silicomicrodissected
areas by checking the proportion relative to all the immune cells of
each identified subtype between the areas (pairwise, Wilcoxon test).
Adjustment for multiple comparisons was performed using the FDR
method.

In addition, we assigned an activation score to each Tcy based on a
previously published model that integrates the expression of TIM-3
and LAG3 as exhaustion markers and CD69 and OX40 as activation
markers into a single score in the [�1, 1] range (34). We looked for
differences in Tcy activation in the different in-silico microdissected
areas (generally for all Tcy and specifically for each identified subtype)
by applying t tests (two-tails, FDR corrected) on the average activation
of each core. We also investigated how the distance to the tumor edge
affected Tcy activation. To that end, we calculated the Euclidean
distance of each Tcy to the closest point in the tumor edge, grouped
the Tcy in bins of 10 mm, and calculated the average activation score of
all the Tcy in each bin. Distances toward the tumor were defined
negative while distances away from the tumor were defined positive.
To avoid patient-to-patient variability, we previously normalized the
activation of the Tcy by taking z-scores in each core. We fitted a cubic
smoothing spline function to the generated curve, calculated its first-
order derivative, and looked for the point in the X-axis (distance to the
tumor edge) where the Y-axis (derivative of Tcy activation) was
maximum, that is, the point where the Tcy activation score changes
the most.

Spatial dynamics of Tcy differentiation
Next, we assessed the spatial evolution of Tcy subtypes based on

their distance to the tumor edge. To that end, first, we calculated the
probability (Pi,j) of each Tcy (i) belonging to any of the categories
manually annotated (j) as follows:

Pi;j ¼ 1
Mi;j

� wi

where Mi,j is the euclidean distance of the expression of Tcyi to the
fingerprint of the subtype j, andwi is the sum of the inverse distances of
Tcyi for all the subtypes, that is:

wi ¼
XN

j ¼ 1

1
Mi;j

where N is the total number of identified subtypes. Essentially, wi

guarantees that:

XN

j ¼ 1

Pi;j ¼ 1

Then, we calculated the distance of each Tcy to the tumor edge.
Distances toward the tumor were defined negative while distances
away from the tumor were defined positive. Continuous distance
values were grouped in bins of 10 mm. For each bin, we calculated
the probability of belonging to each subtype by averaging the prob-
abilities of all the Tcy included in the bin.

Spatial lineage analysis
We correlated the spatial distance of Tcy to the tumor edge with a

pseudotime value obtained after applying Slingshot (40). To that end,
PD-1, GrB, TIM-3, CD69, TCF7, and Ki67 expression values were
normalized (z-scores) in a number of preselected Tcy subtypes. After
normalization, a subset of the data (500 cells per Tcy subtype) was
randomly sampled. Then, diffusion maps as implemented in the
destiny R package (41) were used to dimensionally reduce the data
to three components. The rest of the dataset was projected on the
reduced space using the dm_predict function. Lineages and trajectories
were calculated using the getLineages and getCurves functions from
the slingshot R package (40). The obtained pseudotime score was
normalized in the [0–1] range. We correlated the density of Tcy
subtypes, their spatial location, and the expression of each of the
included markers in this analysis with the obtained normalized
pseudotime score.

Survival analysis
For each candidate biomarker, we evaluated their prognostic value

by evaluating all the potential cutoffs between the 10% and 90%
quantiles. In each potential threshold, we calculated the P value
associated with a log-rank test. To increase the robustness of our
cutoff, we applied a running average on the continuous distribution of
P values and selected the threshold that returned the lowest P value
after applying the running average. This P value was then used to
classify each patient as high or low for each given biomarker. This
classification of patients was finally used to create the Kaplan–Meier
curves and estimate the log-rank P value associated with each potential
biomarker.

Data reporting
All samples within each patient cohort were stained simulta-

neously. Image acquisition order was distributed spatially and
independently of patient or tumor replicates. Image acquisition,
single-cell quantification, and clustering were blinded to patient
identifiers and clinical metadata. No statistical methods were used
to predetermine sample size.

Data availability
The data that support the findings of this study are available from

the corresponding authors upon reasonable request.

Results
NanoString Gene expression analysis

We first performed bulk transcriptomic analysis using the Pan-
Cancer Immune Profiling Panel of the NanoString nCounter tech-
nology on the frozen material available (whole tumoral nodules) from
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16 metastatic melanoma samples (8 RESP, 8 NRESP, clinical data in
Supplementary Table S1). In total, 10 of 784 genes included in the gene
panel were differentially expressed (Supplementary Table S4). Differ-
entially expressed genes were network projected using String-DB
(Supplementary Fig. S2A; ref. 30). CD4, DDX58, MAP2K4, and
KLRF1 were overexpressed in RESP patients, while HSD11B1,
MFGE8, IGF1R, APP, TNFRSF11B (OPG), and A2M were under-
expressed (Supplementary Fig. S2B). DDX58 andMAP2K4 have been
associated with response to anti-CTLA4 and MEK inhibition, respec-
tively (42, 43), whereas KLRF1 is associated with natural killer cell
infiltration, T-cell exhaustion, and reduced TNF/IFNg produc-
tion (44). On the other hand, several of the underexpressed genes are
known to be associated with specific remodeling of the tumoral
microenvironment, for instance the production of OPG or alpha-2
macroglobuline (A2M) with potential cytokine scavenger properties
(45), M2 polarization of tumor-associated macrophages via IGF1 and
MFG-E8 (46, 47), or the inhibition of proliferation among tumor-
specific CD8þ T-cells by means of increased local cortisol with the
induction of HSD11B1 (48). Performing gene set enrichment and
pathway analysis (Supplementary Table S5), we observed in RESP an
upregulation of B cell–related and T cell–related pathways and of
pathways involved in the adaptive immune system like B lymphocyte
pathway, CSK pathway, T-cell receptor signaling pathway, TCRA
pathway, among others (Supplementary Fig. S2C). The importance
of these pathways was validated in an independent dataset that shows
an upregulation of all reported pathways, with the exception of B
lymphocyte pathway, that could be influenced by sample to sample
variability in B-cell fraction (Supplementary Fig. S2D; ref. 11). When
evaluating the cell fractions obtained after usingCibersortX, we did not
find significant cell differences in general cell composition (LM22) or
in Tcy subtypes (Supplementary Fig. S2E and S2F). We used these
results to assemble a specific antibody panel for the subsequent in situ
single-cell analysis, focusing on the lymphocytic, macrophagic, and
antigen-presenting cells compartment.

Immune landscape and in silico microdissection
UsingMILAN in the discovery cohort (seeMaterials andMethods),

we were able to identify 1,426,617 cells (average of 67,934.14 cells per
patient, SD of 52,588.52; range of 7,316–247,806) containing infor-
mation on nuclear size, X/Y coordinates, and expression (MFI) for
each of the 77 markers included in the analysis (Supplementary
Table S3). Applying unsupervised consensus clustering (see Materials
andMethods, phenotypic identification) by using a panel of 37 selected
phenotypic markers, we identified 67 clusters that were manually
annotated to 18 cell phenotypes, each corresponding to a specific
protein signature and/or fingerprint, characterized by the following
main markers (Fig. 1A and B; Supplementary Fig. S3A–S3D): B cells
(“BC”; CD20, CD79a, and PAX5), plasma cells (“PC”; CD138 and
PRDM1), classical dendritic cells type 1 (“cDC1”; CD141 and IRF8),
classical dendritic cells type 2 (“cDC2”; CD1c), follicular dendritic cells
(“fDC”; CD23 and CD21), plasmacytoid dendritic cells (“pDC”;
CD303), cytotoxic T-cells (“Tcy”; CD3 and CD8), Th cells (“Th”;
CD3 and CD4), regulatory T cells (“Treg”; CD3, CD4 and FOXP3),
blood vessels (“BV”; CD31 and CD34), high endothelial venules
(“HEV”; PNAd), lymphatic vessels (“LV”; Podoplanin), epithelial cells
(“EC”; CK), M1-like macrophages (“M1Mf”, CD68, CD64, and LYZ),
M2-like Macrophages (“M2Mf”, CD68, CD64, and CD163), and
melanoma (“Mel”, S100B and Melan-A). Clusters with the expression
of several markers without an obvious phenotypic profile were anno-
tated as “not otherwise specified, NOS.” Clusters with no expression
of any phenotypic marker were annotated as “blank.” A Uniform

Manifold Approximation and Projection (UMAP) colored by patient
and metastatic site showed a homogeneous distribution indicating the
absence of batch effects regarding these two parameters (Supplemen-
tary Fig. S3E and S3F). From the 49,998 cells included in the clustering
(two cells less than the 50,000 due to rounding effects on the strat-
ification), 24,767 (49.54%) showed agreement in the assigned pheno-
type between all three included clustering methods, 21,685 (43.37%)
showed agreement between two clusteringmethods, and 3,546 (7.09%)
showed an inconsistent phenotype assignation. Cells with an incon-
sistent labeling between the different clustering methods were also
labeled as “NOS” (Supplementary Fig. S3G–S3I). On the basis of the
predicted phenotypes and the X/Y coordinates of each individual
cell, the tissue was digitally reconstructed, resembling the morphol-
ogy of the corresponding hematoxylin and eosin staining of a
previous section, but showing the phenotypic identity of each cell
type (Fig. 1C–E). General sample composition is summarized in
Supplementary Table S6. We did not find significant differences in
general cell composition between RESP and NRESP (Wilcoxon
rank-sum test, two tails).

Next, using the phenotypical identity of each cell within the digitally
reconstructed tissue, we further in silico microdissected the tissue,
separating TA, TSI, and NTA (Fig. 1F; Supplementary Fig. S4A).
Overall, 51% of the areas were labeled as tumor (interpatient SD ¼
17.44%; range, 13.24%–75.28%), 24.6% as TSI (SD ¼ 6.97%; range,
15.07%–39.88%), and 24.4% as nontumor (SD ¼ 14.4%; range, 5.29%–
59.32%), with a large interpatient variability (Supplementary Fig. S4B).
On the basis of the different areas, the global cell composition was
redefined into an area-specific cell composition. In the TSI 29.54% of the
cells were melanoma cells (compared with 76.39% in the TA). On the
contrary, in the TA, approximately 23.61% of the cells were identified as
nonmelanoma cells, mainly infiltrating immune cells (12.77%; Supple-
mentary Table S6). Subsequently, the relative proportion of the various
immune cells was compared between the different areas (Fig. 1G;
Supplementary Fig. S4C). BC, Th, and Treg were significantly enriched
in the NTA compared with the TA with an intermediate level in the
TSI. Tcy on the contrary peaked within the TSI with a significant en-
richment compared with the TA but no significant enrichment com-
pared to the NTA. Both M1-like and M2-like macrophages were
significantly enriched in the TA compared with the TSI and NTA. In
fact, macrophages represented the most abundant immune cell type
within the TA (3.13%M1-like and 2.56%M2-like) in our patient cohort.
No significant differences could be found regarding the immune com-
position of RESP versus NRESP, both overall (Supplementary Fig. S5A)
as well as in the differentmicrodissected areas (Supplementary Fig. S5B).

High-dimensional proteomic profiling of Tcys
To gain deeper insights into the different Tcy subsets present in situ

at the proteomic level, we performed a second level of clustering using
the expression of 10 markers that were not included in the first level
clustering, now exclusively focusing on the previously identified Tcy.
KMeans identified 34 clusters that after manual annotation were
mapped to nine Tcy subtypes, each with a specific protein signature
and/or fingerprint (Fig. 2A–C; Supplementary Fig. S6A and S6B,
biologically explained in Supplementary Table S7).

In addition, using the in silico microdissection and the previously
described proteomic Tcy signatures, we analyzed the possible enrich-
ment of specific subtypes in the different areas of the tumor. No
significant differences could be found for most of the different Tcy,
although an expected trend toward enrichment of the most exhausted
subtype (Tcy09) within the TA seemed to emerge (Fig. 2D). On the
contrary, the TCF7-expressing subtypes, that is, Tcy05 and Tcy06,

Immune Landscape in Metastatic Melanoma Using Multiplexing

AACRJournals.org Cancer Res; 82(18) September 15, 2022 3279



Figure 1.

Phenotypic identification and in silicomicrodissection. A, UMAP showing the 18 different cell phenotypes identified during phenotypic clustering. The colors in the
UMAP represent the populations after manual annotation of the 67 clusters obtained with the preselected 37 protein markers. B, Heatmap showing the
protein signatures of the different cell phenotypes. Rows represent identified cell types; columns represent protein markers. The score inside each cell of the
matrix indicates the average expression of themarker in the identified population. C, Representative core from sampleMEL9 from patient PT7 with hematoxylin and
eosin staining.D–F, Composite fluorescent image of four markers (þDAPI) after image processing (D), digital reconstruction of the core highlighting the phenotypic
identify of each individual cell (E), and in silico microdissection into three areas and the tumor edge (solid black line) within the TSI (F). G, Cell composition
analysis of selected cell phenotypes comparing the relative proportion of immune cells in the different in silicomicrodissected areas (NTA, nontumor area; TSI,
tumor-stroma interface; TA, tumor area), using pairwise Wilcoxon test. BC, B cells; PC, plasma cells; cDC1, classical dendritic cells type I; cDC2, classical
dendritic cells type II; fDC, follicular dendritic cells; pDC, plasmacytoid dendritic cells; Th, T helper cells; BV, blood vessels; HEV, high endothelial venules;
LV, lymphatic vessels; M1Mf, M1-like macrophages; M2Mf, M2-like macrophages; Mel, melanoma cells; NOS, not otherwise specified. � , P < 0.05; �� , P < 0.01;
��� , P < 0.001; ���� , P < 0.0001. P values > 0.05 are not reported.
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Figure 2.

Profiling of Tcys: cytometry and activation. A, UMAP showing the nine different Tcy subtypes identified during Tcy clustering. The colors represent the populations
after manual annotation of the 34 clusters identified by KMeans with the selected 10 markers. B, Heatmap showing the protein signatures of the different Tcy
subtypes. Rows represent identified Tcy subtypes; columns represent protein markers. The score inside each cell of the matrix represents the average expression of
the marker in the subtype. C, Relative immune cell proportion of different Tcy subtypes. D, Cell composition analysis of Tcy subtypes comparing the relative
proportionwithin Tcy in the different in silicomicrodissected areas (NTA, nontumor area; TSI, tumor-stroma interface; TA, tumor area), using pairwiseWilcoxon test.
E, Average activation of Tcy in the different in-silico microdissected areas, using pairwise t test. F, Boxplots representing the activation of different selected Tcy
subtypes. G, Boxplots representing the activation of the different subtypes within the different in silico microdissected areas using pairwise t test. H, Activation
gradients around the tumor edge (all patients). Green-shaded area, NTA; gold-shaded area, tumor-stroma interface; red-shaded area, tumor area. Each black dot
represents the average activation level of the Tcy at a given discretized distance from the tumor edge. The blue line represents the curve fitting for the population of
black dots. The red dashed line represents the first-order derivative of the blue line. I, Activation gradients around the tumor edge (RESP, responders vs. NRESP,
nonresponders). �� , P < 0.01; ��� , P < 0.001. P values > 0.05 are not reported.
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were blocked at the TSI and were not detected in the tumor bed,
confirming the finding described in a previous report (Fig. 2D; ref. 12).
Finally, comparing RESP versus NRESP, no significant differences
were found in bulk (Supplementary Fig. S6C) and in silico micro-
dissected areas (Supplementary Fig. S6D).

Spatial dynamics of Tcy differentiation
As Tcy infiltrate the tumor and are chronically exposed to tumor-

specific antigens (tumor–immune interaction) and to the immune
microenvironment (immune–immune interaction), a spatial differ-
entiation trajectory is expected. We hypothesized that we did not
completely capture the spatial differences in Tcy subtypes with our
previous analysis because of the use of microdissected areas (TA, TSI,
and NTA) as opposed to a continuous spatial description from the
NTA toward the TA. First, based on our observation of a trend toward
enrichment of the exhausted phenotypes within the tumor, we eval-
uated the spatial dynamics of Tcy activation, applying a simplified
model that integrates the simultaneous expression of four markers
(CD69, OX40, LAG3, and TIM-3) as published previously (34). By
comparing the average level of activation in the three different
microdissected areas, not surprisingly Tcy are significantlymore active
in the NTA compared with Tcy in the TA (Fig. 2E and F). Further-
more, the same spatial dynamics is observed when analyzing Tcy
activation for each Tcy subtype in the different microdissected areas
although only that of Tcy06 is significant (Fig. 2G).

Next, to profile how this level of activation dynamically evolves even
in a higher resolution, the average level of activation of Tcy at specific
distances from the tumor edge was analyzed. This confirmed the
largest change in activation status as happening in the TSI at 60 mm of
the tumor edge toward the NTA (Fig. 2H). Interestingly, at 180 mm
from the tumor edge toward the NTA the normalized Tcy activation
starts decreasing as indicated by the negative value of the first
derivative of the fitted curve (see Materials and Methods; Fig. 2H).
This suggests that active Tcy accumulate in the vicinity of the tumor
edge still within the NTA. When comparing RESP versus NRESP, the
gradient in activation is more pronounced for RESP patients (Fig. 2I).

We expected to see a similar spatial transition in Tcy differentiation.
Indeed, when plotting the probability of each Tcy belonging to any of
the proteomic Tcy signatures at different distances to the tumor edge
(see Materials and Methods), it was apparent that Tcy outside the
tumor, far from the edge, are likely to be part of cluster Tcy05. On the
contrary, when closer to the tumor edge, this likelihood decreases, and
Tcy aremore likely to be part of cluster Tcy06 andTcy07 (Fig. 3A). Tcy
infiltrating the tumor aremore likely to be part of Tcy08 and eventually
Tcy09 as they infiltrate deeper in the tumor, very much in line with the
results obtained from our Tcy activation analysis (Fig. 2E–G). This
spatial trajectory of Tcy subtype signature from outside the tumor to
inside the tumor (Tcy05–Tcy09), is also notable by the mean distance
to the tumor edge for each of the Tcy subtypes (Supplementary Fig. S7).
Moreover, when comparing the expression values of selected markers
of activation and exhaustion in Tcy05–09, we observed a gradient in
expression of thesemarkers in these subtypes (Fig. 3B). On the basis of
these results, we hypothesized these spatial changes in Tcy subcluster
signature correlates with a spatial differentiation trajectory within the
tissue and this trajectory in T-cell phenotype and function is caused by
the dynamic process of T cells infiltrating the tumor from the
peritumoral niche. To further corroborate this spatial behavior, we
correlated the spatial distance of Tcy to the tumor edge with a
pseudotime value obtained after cell lineage and pseudotime inference
using Slingshot (40) to a selected number of Tcy subtypes (Fig. 3C–F).
Indeed, we could observe a nonrandom behavior between the spatial

location of Tcy and the pseudotime values, confirming that Tcys that
are deeply infiltrative in the tumor are indeed the more terminally
differentiated/exhausted cells and Tcy outside the tumor are generally
more functional/less exhausted and hence are at the beginning of their
differentiation trajectory. Our results show a peak in cytotoxicity (as
determined by GrB expression) and proliferation (as determined by
Ki67 expression) combined with a lower TCF7 and/or higher PD-1
expression at the inner border of the TSI compared with the outer rim
of the tumor stroma interface or nontumoral areas (Fig. 3F).

Spatial Tcy macrophage interaction
Other groups have shown by using ex vivo and/or functional assays

that the myeloid compartment and Tcy closely interact and influence
each other inmultiple ways, such as,myeloid cell triggered suppression
of Tcy effector function and/or Tcy exhaustion or Tcy-induced
macrophage polarization (49–51). Nonetheless, in situ confirmation
of these findings by spatial analysis is rather limited.Wewere therefore
specifically interested in further deciphering this Tcy–macrophage
interaction.

Spatial effect of neighboring Tcy on PD-L1 expression in
macrophages

We first analyzed the correlation between neighboring Tcy and the
expression of PD-L1 in macrophages. PD-L1 expression in macro-
phages has been described to have predictive value in patients treated
with anti-PD-1 antibodies in melanoma, ovarian cancer, sarcoma, and
non–small cell lung cancer, suggesting that the PD-L1 status of
macrophages is important in addition to their mere presence in the
tumor stroma (52, 53). Similar to Tcy activation, we analyzed how the
expression of PD-L1 in bothM1-like andM2-like macrophages differs
depending on their localization relative to the tumor. For both types of
macrophages, the PD-L1 expression is significantly lower in the TA
when compared with the NTA and the TSI (Fig. 4A). Next, by
increasing the spatial resolution around the tumor edge, we observed
a peak in PD-L1 expression close to the tumor edge outside of the
tumor for M1-like and M2-like macrophages (peak at 40 and 70 mm,
respectively, from the tumor edge), with the highest expression
observed in M2-like macrophages (Fig. 4B). On the basis of the
predictive value of PD-L1 expression in macrophages for checkpoint
inhibitors described by others (52, 53), we repeated the analysis only
for the anti-PD-1–treated patients (7 RESP, 8 NRESP). Remarkably,
for both types of macrophages, these differences are only preserved for
the subset of RESP patients whereas for the NRESP patients the
differences are not significant (Fig. 4C; Supplementary Fig. S8). Next,
we hypothesized that the expression of PD-L1 in macrophages is also
influenced by the local microenvironment, specifically by Tcy, for
example via IFNg secretion (54). For this analysis, we calculated the
shortest distance to the closest Tcy for all macrophages irrespective of
their location and defined a cut-off value of 100 mm to discriminate
betweenmacrophages that could be considered close to at least oneTcy
(“Tcy-close”) and macrophages that could be considered far from any
Tcy (“Tcy-far”). Comparing PD-L1 expression in these two groups of
macrophages, PD-L1 was found significantly higher in “Tcy-close”
macrophages (Fig. 4D). Coherently, when analyzing the expression of
PD-L1 relative to a gradual increase in distance to the closest Tcy, we
observed a gradual decrease in the level of expression with the distance
away from a Tcy (Fig. 4E). Interestingly, when comparing RESP and
NRESP, an inverse correlation between PD-L1 expression and distance
to closest Tcy is only present in the RESP patients (Fig. 4F).

On the basis of the previous analysis, two spatial components
influence the expression of PD-L1 in M1-like and M2-like
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Figure 3.

Profiling of Tcys: lineage. A, Probability gradients around the TSI. Green-shaded area, NTA; gold-shaded area, TSI; red-shaded area, tumor area. Black dots
represent the estimated probability of a Tcy in that region to belong to any of the subtypes. The blue curve represents the curve fitting for that cloud of dots.
B, Barplots showing the average expression of six preselected markers (CD69, GrB, Ki67, PD-1, TCF7, and TIM3) for a subset of the identified Tcy subtypes
(Tcy05:Tcy09). C, Diffusion map representing the projection of the trajectory described by the pseudotime analysis (black line). The scatter plot is colored by
the different preselected Tcy subtypes (Tcy05:Tcy09). D, Density plot of the Tcy subtypes within the trajectory defined by the normalized pseudotime.
E, Scatter plot showing the correlation between the distance to the tumor edge and the inferred pseudotime trajectory. Black dots represent the average
normalized pseudotime for the set of Tcy located at a given distance from the tumor edge. The dashed red line represents the first-order derivative of the
fitted curve. F, Histogram plots showing the average expression value of the markers used to define the pseudotime along the trajectory. The normalized
distance to the tumor edge (DTE) is also represented.
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macrophages: (i) The localization of the macrophage relative to the
tumor, and (ii) distance to Tcy, specifically for RESP patients. To
evaluate whether both spatial components have a synergistic effect on
PD-L1 expression, we compared the level of PD-L1 in the following
four groups, both for M1-like and M2-like macrophages: (i) macro-
phages close to the tumor edge and close to Tcy (“Close-Close”; CC),
(ii) macrophages close to the tumor edge but far from Tcy (“Close-
Far”; CF), (iii) macrophages far from the tumor edge but close to Tcy
(“Far-Close”; FC), and (iv) macrophages far from the tumor edge and

far from Tcy (“Far-Far”; FF). Confirming the previous analysis, both
spatial features (distance to tumor edge and distance to Tcy) were
associated with increased expression of PD-L1 (comparing both
“Close-Far” and “Far-Close” with “Far-Far”). As expected, the highest
expression is observed in the “Close-Close” subgroup, suggesting a
rather additive effect of both spatial components (Fig. 4G). When
comparing RESP and NRESP, the significant difference between
“Close-Close” and “Far-Far” is only preserved in the RESP patients
both in M1-like and M2-like macrophages (Fig. 4H).

Figure 4.

PD-L1 expression in macrophages. A, Boxplots showing PD-L1 expression in M1-like and M2-like macrophages in the different in silico microdissected areas (NTA,
nontumor area; TSI, tumor-stroma interface; TA, tumor area), using pairwise t test test. B, PD-L1 gradient based on distance to the tumor edge. Green-shaded area,
NTA; gold-shadedarea, TSI; red-shaded area, tumor area. Dots represent the averagePD-L1 expression inM1-like andM2-likemacrophages at a certain distance of the
tumor edge. Lines represent the fitted curves for those clouds of points. C, PD-L1 gradient based on distance to the tumor edge stratified by patient response. D,
Boxplots showing PD-L1 expression based on discretized distance to closest Tcy (cut-off distance value, 100mm)using pairwise t test (FDR corrected).E, Scatter plot
showing PD-L1 expression in M1-like and M2-like macrophages based on their distance to the closest Tcy. Each dot represents the average expression of the
macrophages located at a certain distance from the closest Tcy (bins of 10 mm). Yellow-shaded area, “close” region; light-blue-shaded area, “far” region. F, Scatter
plot showing the PD-L1 expression in M1-like and M2-like macrophages based on their distance to closest Tcy stratified by patient response (RESP, responders;
NRESP, nonresponders).G,Boxplots showingPD-L1 expressionbasedondiscretized distance to the edgeand to closest Tcy usingpairwise t test (FDRcorrected). CC,
Close-Close; CF, Close-Far; FC, Far-Close; FF, Far-Far.H,Boxplots showingPD-L1 expression based ondiscretizeddistance to the edge and to closest Tcy stratifiedby
patient response using pairwise t test (FDR corrected). � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. P values > 0.05 are not reported.
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Spatial effect of neighboring macrophages on Tcy activation
Next, we investigated the effect of neighboring macrophages on the

activation status of Tcy. We previously showed a gradual onset of
exhaustion as Tcy infiltrate the tumor (Fig. 2E). Similar to the
influence of neighboring Tcy on the expression of PD-L1 in macro-
phages, we explored how this spatial behavior of Tcy activation is
affected by the presence of macrophages close to Tcy. To start, using
the shortest distance to the closest macrophage, we separated Tcy into
“M1 close”/“M2 close” Tcy and “M1 far”/“M2 far” Tcy using 30 mm as
threshold to define “close” versus “far” (Fig. 5A andB).We found that
Tcy close to M1-like macrophages are significantly more exhausted
than Tcy that are far away from M1-like macrophages, which was not
significant for M2-like macrophages (Fig. 5C). When comparing
RESP with NRESP, remarkable differences emerge.Whereas Tcy close
to M1-like macrophages are significantly more exhausted compared
with Tcy far from M1-like macrophages in the RESP patients, no
significant difference in level of activation of Tcy in relation to
macrophages is observed in the NRESP patients (Fig. 5D).

Finally, we combined both spatial features (location of Tcy relative
to the tumor edge and distance to closest M1/M2-like macrophage)
comparing the level of Tcy activation in the following four groups: (i)
Tcy close to the tumor edge and close to macrophage (“Close-Close”),
(ii) Tcy close to the tumor edge but far from macrophage (“Close-
Far”), (iii) Tcy far from the tumor edge but close to macrophage (“Far-
Close”), and (iv) Tcy far from the tumor edge and far frommacrophage
(“Far-Far”). Both for M1- and M2-like macrophages, the two spatial
features work synergistically in exhausting Tcy with the highest
exhaustion present in Tcy close to the tumor edge and close to
macrophages (Fig. 5E). Similarly, when comparing the level of
exhaustion in these four different spatial groups of Tcy within RESP
andNRESP, the significant difference is only preserved in the RESP for
M1-likemacrophages, showing again the highest exhaustion in “Close-
Close” Tcy (Fig. 5F).

Spatial biomarkers predicting response to anti-PD-1 therapy
The ultimate goal ofmIHC is to serve as a predictive tool for patients

undergoing ICI therapy. We therefore explored to which extent
spatially extracted features can be used to predict response to anti-
PD-1 treatment. On one hand, we observed significant spatial differ-
ences in the expression of PD-L1 in macrophages between RESP and
NRESP (Fig. 4). On the other hand, the predictive value of bulk PD-L1
expression in melanoma has not yet been shown to have predictive
ability in serving as a clinical biomarker. This is in contrast to other
immune checkpoint inhibitor sensitive diseases where the “bulk
analysis” of PD-L1 is used as a stratifying factor for anti-PD-1
therapy (58, 59). We were therefore wondering whether adding spatial
information would further improve the predictive value of PD-L1
expression. First, considering the average PD-L1 expression in the
entire sample (“bulk analysis”) carries, as expected, a rather low
predictive value (AUC ¼ 0.68; Fig. 6A, top). When comparing the
PD-L1 expression inM1-like andM2-likemacrophages between RESP
and NRESP (“single-cell, nonspatial”), we observed an increase in
AUC only for the expression in M1-like macrophages (AUC ¼
0.80; Fig. 6A, center). By adding spatial information and focusing on
the expression of PD-L1 exclusively in macrophages that are close to
the tumor edge and close to Tcy, we observed a further increase in the
predictive value in M1-like macrophages reaching an AUC of 0.98
(Fig. 6A, bottom). Next, we explored the predictive performance of
this spatially resolved biomarker in an independent validation cohort
of patients with anti-PD-1–treatedmelanoma collected retrospectively
(11 samples from 9 RESP and eight samples from 7 NRESP). For this,

MILAN was executed using a limited panel of markers designed to
specifically apply only this spatial biomarker (Supplementary Fig. S9).
Indeed, in this independent patient cohort, predictive performance
was comparable, reaching an AUC of 0.98 (Supplementary Fig. S10A).
An illustrative composite immunofluorescence image and digitization
of the spatial PD-L1 score from both a RESP and NRESP can be found
in Supplementary Fig. S10B–S10E.

Likewise, an improvement in the predictive value of Tcy activation
could be obtained by adding spatial information. Considering the
differences in spatial dynamics in Tcy activation between RESP and
NRESP (Fig. 2I), and by comparing the difference in Tcy activation
between TA and NTA, it was apparent that RESP patients were poorly
separated from NRESP patients (AUC 0.71; Fig. 6B). However, when
considering only those Tcy that are close to M1-like macrophages and
comparing the level of Tcy activation, the predictive value increased,
reaching an AUC of 0.82 (Fig. 6C). Notably, across all candidate
biomarkers, only “PD-L1 expression in spatially selected M1-like
macrophages” provided statistical significance in both the discovery
and validation cohort (Supplementary Fig. S10F and S10G). This
highlights the potential value of this candidate biomarker not only
showing good classification performance in two independent datasets,
but also significantly different value distributions.

Finally, to investigate the prognostic value of both spatial biomar-
kers (Tcy activation close to M1-like macrophages and PD-L1 expres-
sion in spatially selected M1-like macrophages), patients were classi-
fied in a “high” and “low” score group, independent of response to
immunotherapy. Indeed, for both features a high score indicates better
survival, yet only reaching significance when using PD-L1 expression
in spatially selected M1-like macrophages (Supplementary Fig. S10H
and S10I).

Discussion
The race to identify biomarkers to predict a response to check-

point inhibition therapy in patients with malignant melanoma has
produced a plethora of potential candidates over the past few years.
Nevertheless, for melanoma, none of these therapies has been
implemented in clinical practice as they have not elicited sufficient
predictive power thus far. In contrast to targeted therapy, where the
presence of a single driver mutation poses a simple and effective
marker for selecting patients most likely to respond to the corre-
sponding therapy, immunotherapy-treated patients’ responses are
vastly more complex. Obviously, the immune microenvironment
poses a multicellular system, which amongst others is constituted of
multiple types of inflammatory cells, each of them present in many
different functional states and locations. It has become obvious that
to adequately interrogate the tumor immune ecosystem, the use of
single-cell technologies that include as many parameters as possible
is required. Importantly, these technologies should also enable them
to capture the spatial distribution of the different cell types and shed
light on their spatial relationships. In this study, we have employed
mIHC to create a detailed immune landscape of untreated meta-
static melanoma, with a focus on the role of Tcy and their spatial
interactions with other components of the TME.

Previous reports based on low-plex IHC have found preliminary
evidence that the location, and not just the composition of the
inflammatory cells is associated with functional differences that are
fundamental for an antitumoral immune response (55, 56). With our
high-plex spatial technique, we were able to precisely localize each
inflammatory cell in the tissue. This allowed us to study the evolution
of some specific functional states in relation to the spatial distribution
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Figure 5.

Tcy activation levels based on distance to closest macrophage. A, Scatter plot showing average activation value of Tcy based on distance to closest macrophage.
Yellow-shaded area, “close” region; light-blue-shaded area, “far” region. B, Scatter plot showing average activation value of Tcy based on distance to closest
macrophage stratifiedbypatient response.C,Boxplots showing the activation level of Tcybasedondiscretizeddistance to closestmacrophage using pairwise t test
(FDR corrected). D, Boxplots showing the activation level of Tcy based on discretized distance to closest macrophage stratified by patient response using
pairwise t test (FDR corrected). E, Boxplots showing the activation level of Tcy based on discretized distance to closest macrophage and distance to
the edge using pairwise t test (FDR corrected). CC, Close-Close; CF, Close-Far; FC, Far-Close; FF, Far-Far. F, Boxplots showing the activation level of Tcy
based on discretized distance to closest macrophage and distance to the edge stratified by patient response using pairwise t test (FDR corrected). � , P < 0.05;
�� , P < 0.01; ��� , P < 0.001. P values > 0.05 are not reported.
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of these cells. In particular, we identified Tcy subtypes based on a
marker profile described in previous literature (21) and identified their
location in the tissue. The approach we used could be applied onmuch
larger numbers of cells compared with other single-cell techniques,
for example, scRNA-seq. Moreover, by applying novel spatial analy-
sis tools in combination with our previously described Tcy activa-
tion score (34), we visualized an increase of Tcy exhaustion along
a gradient that ran perpendicular from outside the tumor, across the
TSI toward the inside of the tumor.

In addition, by studying cell–cell interactions, we have demonstrat-
ed that PD-L1 expression is a discriminator for response in our

melanoma cohort when analyzed in the spatial context. Our findings
suggest that, at least inmetastaticmelanoma, PD-L1 expression should
not be analyzed on a bulk level but using technologies with much
higher resolution. Specifically, when integrating spatial information
and cell–cell interaction between Tcy andmacrophages, the technique
we employed allowed us to further decipher differences between RESP
and NRESP. It is known that PD-L1 expression in macrophages is
induced by an IFNg-rich environment secreted by lymphocytes (54),
and that PD-L1 expression by macrophages is typically present at the
TSI (57). Our data demonstrate that in RESP patients specifically, PD-
L1 expression levels are very high inM1-like andM2-likemacrophages

Figure 6.

High order biomarkers. A, Left, barplots showing
the average PD-L1 expression in all cells (top;
“bulk”), M1-like macrophages (middle; “single-
cell”), and spatially selected (distance to tumor
edge less than 30 mm and distance to the
closest Tcy less than 10mm)M1-likemacrophages
(bottom; “spatial single-cell”) for each patient
and colored by patient response. Responders,
RESP; nonresponders, NRESP. Right, ROC curves
corresponding to the score rankings for the
different candidate biomarkers. B, Left, barplot
showing the difference in Tcy activation between
tumor and NTAs for RESP and NRESP patients.
Each bar represents a patient. The module of the
bar is calculated as the difference between the
average Tcy activation in the NTA and the aver-
age Tcy activation in the TA. Activation values
were first normalized (z-scores) for each core.
Right, ROC curve corresponding to the score
ranking. C, Left, barplot showing the average
Tcy activation level at less than 10 mm from the
closest M1-like macrophage. Right, ROC curve
corresponding to the score ranking.
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at the TSI followed by a rapid decrease in expression inside the TA,
with even higher PD-L1 expressionwhen close toTcy.Others observed
an enhanced frequency of IFNg-producing T cells correlating with a
numerical expansion and higher PD-L1 expression in the myeloid
compartment only in responding patients using mass cytometry
analysis of peripheral blood mononuclear cell (58). Although lacking
spatial information, these data suggest that even in the periphery PD-
L1 expression inmyeloid-derived cells harbors predictive information,
which is in line with the data we present. Recently, an in-depth spatial
characterization of primary melanoma has been performed by
others to investigate immune evasion mechanisms (59). Interest-
ingly, the authors could observe a spatially restricted suppressive
microenvironment along the tumor-stromal boundary, partially
driven by PD-1/PD-L1–mediated cell contacts involving macro-
phages and T cells. This suggests the TSI-restricted TME involving
close macrophage–Tcy interactions with a pivotal role for the PD-
L1 axis described in our work, is already present at early stages of
the disease. When investigating the level of Tcy activation, the
opposite trend is evident. The closer Tcy are located to M1-like and
M2-like macrophages at the TSI, the larger the decrease in activa-
tion markers, hereby suggesting that in RESP patients, PD-L1
expression and Tcy activation follow a more orderly spatial regu-
lation while in NRESP patients these are more arbitrary.

Our study has several limitations. First of all, the number of patients
included in the discovery cohort is rather limited, which could hamper
the broad applicability of our findings to the general melanoma
population. As a direct result, some generally accepted but less specific
predictive biomarkers, such as TIL infiltration, cannot be reproduced
within this study. Nonetheless, the integration of spatial information
on top of high-dimensional proteomic data of >1.4 million single cells
allows the discovery of novel biological insights with clinical potential,
when analyzing cell–cell interactions combined with marker expres-
sion. The validation of our spatially resolved predictive biomarker in
an independent patient cohort confirms the latter. Next, the mIHC
method itself harbors the risk for selection bias with the a priori
selection of antibody markers to include in the experiment. For
example, confirming the importance of macrophage–Tcy interaction,
our current panel does not allow a higher level of macrophage
subtyping. The stratification of macrophages into M1-like and
M2-like macrophages is an oversimplification of macrophage biol-
ogy by excluding all intermediate states. To investigate this inter-
action even more in depth, an expanded panel of macrophage
markers would need to be included. Finally, mIHC is not a dynamic
functional assay and all Tcy activity (e.g., Tcy activation status) is
inferred from the static quantitative and qualitative immunofluo-
rescence staining of the included markers. Therefore, it is not clear
how the spatial dynamics of our Tcy activation model would
translate into in vivo functional Tcy activity.

In summary, our data show the feasibility of high-dimensional
mIHC as a valuable technique in the armamentarium of single-cell
analysis in the quest for biomarkers associated with response to anti-
PD-1 therapy in melanoma. We demonstrate that marker expression
on cellular components of the TME is a very dynamic process, and that
spatial information is crucial in identifying relevant cell–cell interac-
tions and dynamics of marker expression. Given the complexity of the
mechanisms of an immune response we believe that integrating

multiple techniques will be necessary to gain a deeper understanding
of what makes immunotherapy successful.
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