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Abstract 

Background:  Formalin-fixed, paraffin-embedded (FFPE) tissues have many advantages for identification of risk 
biomarkers, including wide availability and potential for extended follow-up endpoints. However, RNA derived from 
archival FFPE samples has limited quality. Here we identified parameters that determine which FFPE samples have the 
potential for successful RNA extraction, library preparation, and generation of usable RNAseq data.

Methods:  We optimized library preparation protocols designed for use with FFPE samples using seven FFPE and 
Fresh Frozen replicate pairs, and tested optimized protocols using a study set of 130 FFPE biopsies from women 
with benign breast disease. Metrics from RNA extraction and preparation procedures were collected and compared 
with bioinformatics sequencing summary statistics. Finally, a decision tree model was built to learn the relationship 
between pre-sequencing lab metrics and qc pass/fail status as determined by bioinformatics metrics.

Results:  Samples that failed bioinformatics qc tended to have low median sample-wise correlation within the cohort 
(Spearman correlation < 0.75), low number of reads mapped to gene regions (< 25 million), or low number of detect‑
able genes (11,400 # of detected genes with TPM > 4). The median RNA concentration and pre-capture library Qubit 
values for qc failed samples were 18.9 ng/ul and 2.08 ng/ul respectively, which were significantly lower than those of 
qc pass samples (40.8 ng/ul and 5.82 ng/ul). We built a decision tree model based on input RNA concentration, input 
library qubit values, and achieved an F score of 0.848 in predicting QC status (pass/fail) of FFPE samples.

Conclusions:  We provide a bioinformatics quality control recommendation for FFPE samples from breast tissue 
by evaluating bioinformatic and sample metrics. Our results suggest a minimum concentration of 25 ng/ul FFPE-
extracted RNA for library preparation and 1.7 ng/ul pre-capture library output to achieve adequate RNA-seq data for 
downstream bioinformatics analysis.
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Background
For decades, clinical biospecimens have been typi-
cally fixed in formalin then embedded in paraffin wax 
to make formalin-fixed paraffin-embedded (FFPE) tis-
sue blocks for diagnosis and long-term storage. FFPE 
tissue archiving has many advantages, including room 
temperature stability, long-term storage, and suitability 
for subsequent immunohistochemical (IHC) analyses, 
which had led to use of FFPE in IHC-based biomarker 
investigations [1, 2]. However, FFPE processing and 
tissue storage are known to result in highly degraded 
RNAs which limits gene expression-based biomarker 
discovery using RNA sequencing [3–5]. Transcriptional 
profiling by RNA sequencing (RNA-seq) is a powerful 
tool for genome wide quantification of RNA expres-
sion with high sensitivity that has been routinely used 
in breast cancer research and clinical diagnosis [6–9]. 
RNA-seq involves an enrichment step to remove the 
abundant ribosomal RNAs by either ribosomal deple-
tion or Poly(A) selection [10, 11]. However, Poly(A) 
selection protocol is less suitable for low quality RNA 
derived from FFPE samples [12]. During recent years, 
RNA library protocols tailored for FFPE samples have 
been developed, including the NEBNext rRNA Deple-
tion and the TruSeq RNA Exome panel, although the 
relative performance of these methods with FFPE-
derived RNA has not been published, and there are lim-
ited studies that provide insight for selection of FFPE 
samples of adequate quality [13, 14].

Our study aim is to compare two commonly used 
RNA library preparation protocols for FFPE samples, 
and to provide a recommendation on RNA input met-
rics, including RNA concentration and library con-
centration, to achieve adequate RNA-seq data for 
downstream bioinformatics analysis.

For the first part of the study, we evaluated two com-
monly used RNA library protocols for FFPE samples 
using seven paired FFPE and fresh frozen (FFzn) sam-
ples. All samples were prepared through both protocols 
and compared based on bioinformatics metrics, includ-
ing alignment, SNP concordance, junction coverage and 
sample-wise correlation. For the second part of the study, 
we sequenced 130 benign breast disease (BBD) samples 
along with technical replicates in ten sequencing batches. 
Thorough bioinformatics quality control was performed 
to identify QC-failed samples. Finally, a decision tree 
model was constructed to correlate pre-sequencing met-
rics with QC status defined by bioinformatics metrics.

Methods
Study design
Institutional Review Board approval was obtained for 
research use of human samples in this project (#IRB 
75–87). A pilot study was performed using FFPE and 
fresh frozen pairs for seven women diagnosed with 
benign breast disease to evaluate the performance of 
two library preparation protocol, Illumina’s TruSeq RNA 
Exome and NEBNext rRNA Depletion (Fig. 1a). To eval-
uate the precision of SNPs identified by the two proto-
cols, we also performed whole exome sequencing (WES) 
for the three selected fresh frozen samples. The TruSeq 
Exome protocol exhibited better performance in bioin-
formatics metrics and was selected to process all study 
samples and technical controls in the main study. A total 
of 158 samples including study samples and technical 
controls were submitted for RNA extraction (Fig.  1b). 
Forty samples failed library preparation due to low RNA 
input quantity. The remaining samples were submitted 
for RNA sequencing in ten sequencing batches. Batches 
were designed so that samples with similar RNA quality 
were included in the same batch. This helped to minimize 
the potential sequencing bias toward high quality samples 
in the same batch. To examine the potential sequencing 
batching effect, the same two technical controls (FFPE 
and FFzn pair for the same subject) were included in 
each sequencing batch 1–7. For sequencing batch 8–10 
where samples are of low RNA quality, we only included 
the FFPE technical control as the FFzn technical control 
would potentially attract more sequencing reads and bias 
the quantification of other low-quality study samples. 
Besides the two technical controls, we also included 11 
study replicate samples in different sequencing batches. 
Thorough bioinformatics evaluations were performed to 
identify samples passing the qc metrics.

RNA quantitation and quality
Total RNA concentration was determined using the 
Qubit 2.0 Fluorometer and RNA HS Assay (Life Technol-
ogies Corp., Carlsbad, CA). RNA integrity was assessed 
and recorded with DV50, DV100, and DV200 values 
using the RNA 6000 Nano Kit on an Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa Clara, CA), but 
was not used for sample exclusion in the library prepara-
tion. DV values are a commonly used metric that repre-
sents the proportion of RNA fragments in a sample with 
greater length than the numeric value (i.e., DV200 equals 
the percentage of RNA fragments > 200 nucleotides).

Keywords:  FFPE, RNA-seq, Quality control, Breast tissue, RNA concentration, Library concentration, Decision tree, 
DV200, DV50
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RNA exome library preparation and sequencing
40–100  ng of experimental FFPE RNA, FFPE con-
trol RNA, or 20  ng fresh frozen control RNA was used 
for library preparation using the TruSeq RNA Library 
Prep for Enrichment and the Illumina Exome Panel-
Enrichment Oligos kit (llumina, Inc., San Diego, CA) 
following the manufacturers protocol for FFPE RNA or 

high-quality total RNA respectively. As per the protocol, 
fragmentation of FFPE RNA was not performed. Follow-
ing adaptor ligation and enrichment, the libraries were 
quantitated by Qubit and pooled for subsequent exome 
capture based on available yield. Up to a 4-plex pooling 
strategy was used for the exome capture, with capture 
groups consisting of 200  ng, 100  ng, 50  ng, 40  ng, and 
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Fig. 1  Flow-chart of library optimization and bioinformatics evaluation. a A pilot study consisting of FFPE and fresh frozen pairs for 7 BBD patients 
were submitted for sequencing to evaluate two protocols of library preparation for RNA-seq, Ribo-depletion and RNA exome capture. Several 
bioinformatics metrics were evaluated for the two protocols. Whole exome sequencing (WES) data was used to estimate SNP confirmation rate, and 
the RNA exome capture showed superior performance in all categories and was selected as the library preparation protocol to process all samples. 
b 130 study samples (ER+ estrogen receptor positive, ER− estrogen receptor negative, Cont control) along with 17 technical replicates and 11 study 
replicates were submitted for library preparation using the RNA exome capture protocol. 40 samples failed library preparation step with insufficient 
RNA. All remaining samples were submitted for sequencing in 10 batches. Rigorous bioinformatics evaluation was performed to identify qc failed 
samples based on defined bioinformatics metrics. The final dataset comprised 62 study samples
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30  ng of input library for each sample in the pre-cap-
ture pool. Up to 12 samples (3 pools) were batched for 
sequencing and included a paired FFPE control RNA 
and fresh frozen control RNA in each batch. Following 
two rounds of hybridization to the capture probes, the 
pools were PCR amplified and purified using AMPure XP 
beads. The amplified and enriched libraries were qual-
ity assessed using a combination of the Qubit dsDNA 
HS Assay (Invitrogen), the Bioanalyzer DNA 7500 Assay 
(Agilent Technologies), and KAPA Library Quantifica-
tion Kit for Illumina (KAPA Biosystems, Boston, MA). 
The three capture pools for each batch were combined 
in equal molar amounts and sequenced across 3 lanes 
of an Illumina NextSeq 500 High Output flowcell using 
75 × 2  bp paired end reads. Each flowcell generated a 
minimum of 700 million reads passing filter.

rRNA depletion library preparation and sequencing
20–100  ng of FFPE RNA and paired fresh frozen RNA 
was used for library preparation using the NEBNext 
rRNA Depletion Kit (Human/Mouse/Rat) and Ultra II 
Directional RNA Library Prep Kit for Illumina (New Eng-
land Biolabs Inc., Ipswich, MA), following the manufac-
turers protocol for highly degraded (RIN ≤ 2) or intact 
(RIN > 7) samples respectively. Fragmentation is based 
on RIN value of RNA input and conducted as outlined 
in the protocol. Fragmentation for FFPE RNA was not 
performed. Experimental FFPE RNA and paired fresh 
frozen RNA from the same patient was used if avail-
able using similar input amounts for each sample type. A 
total of 13 libraries were prepared, including six patient 
pairs. Libraries were quality assessed using a combina-
tion of the Qubit dsDNA HS Assay (Invitrogen), the Bio-
analyzer DNA 7500 Assay (Agilent Technologies), and 
KAPA Library Quantification Kit for Illumina (KAPA 
Biosystems, Boston, MA). Libraries were combined in 
equal molar amounts and sequenced across three lanes 
of an Illumina NextSeq 500 High Output flowcell using 
75 × 2  bp paired end reads. Each flowcell generated a 
minimum of 800 million reads passing filter.

Whole exome sequencing of fresh frozen samples
Three fresh frozen samples were submitted for whole 
exome sequencing at Mayo Clinic molecular genomic 
facility. In brief, paired-end libraries were prepared with 
1.0 μg of genomic DNA in accordance with the manu-
facturer’s protocol (Agilent Technologies, Inc, Santa 
Clara, Calif ). Whole-exon capture was performed with 
750  ng of the prepped library following the protocol 
for the SureSelect Human All Exon v5 + UTRs 75  Mb 
kit (Agilent Technologies, Inc). The purified capture 
products were then amplified with use of SureSelect 
Post-Capture Indexing forward and Index polymerase 

chain reaction reverse primers (Agilent Technologies, 
Inc) for 12 cycles. Concentration and size distribution 
of the completed captured libraries were assessed on 
Qubit (Invitrogen, Waltham, Mass) and Bioanalyzer 
DNA 1000 chip (Agilent Technologies, Inc). Libraries 
were sequenced at an average coverage of about 80× 
in accordance with standard protocol of the cBot and 
HiSeq 3000/4000 PE Cluster Kit (Illumina, San Diego, 
Calif ). The flow cells were sequenced as 150 × 2 paired 
end reads on the HiSeq 4000 with the HiSeq 3000/4000 
sequencing kit and collection software (HCS version 
3.3.52; Illumina). Base calling was performed with Real-
Time Analysis version 2.7.3 (Illumina). All procedures 
were performed in accordance with the manufacturer’s 
instructions.

RNA‑seq alignment and gene quantification
After sequencing procedure, raw FASTQ files were pro-
cessed through Mayo’s internal MAP-RSeq pipeline 
[15] (Version 3.0). MAP-RSeq uses a variety of pub-
licly available bioinformatics tools tailored by in-house 
developed methods. Briefly, the aligning and mapping 
of reads are performed using Star aligner [16] against 
hg38 genome build. The gene and exon counts are gen-
erated by FeatureCounts [17] using the gene definitions 
files from Ensembl v78. Quality control was carried out 
using RSeqQC [18]. Gene expression data was normal-
ized to counts per million (CPM) and transcript per mil-
lion (TPM) using Trimmed Mean of M-values (TMM) 
method as implemented in edgeR [19] followed by log2 
transformation.

Estimation of SNP confirmation rate and false positive rate
SNPs were identified using GATK haplotype caller [20] 
and further filtered by RVBoost [21]. For the pilot study, 
SNP confirmation rate (precision) was calculated for each 
mutation type (C>T, C>G, etc.) as:

where SNPRNA represents the SNPs identified in RNA-
seq data and SNPDNA represents the SNPs identified in 
WES data for the same set of samples. For both pilot and 
main study, false positive rate (FPR) between either tech-
nical or study replicate samples was calculated as:

where Ntotal denotes the total number of genes and 
NMAD>lfc denotes the number of genes with maximum 
absolute difference (MAD) above a certain logarithm fold 
change cutoff.

(1)
SNP confirmation rate = SNPrna ∩ SNPdna/SNPrna,

(2)FPR = NMAD>lfc/Ntotal ,
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Bioinformatics QC and model building
We defined three bioinformatics metrics for QC pur-
pose, including sample-wise median correlation of gene 
expression (median_cor_expr), number of genes mapped 
to genic regions (gene_reads), number of detectable 
genes with transcript per million (TPM) larger than 4 
(gene_tpm4). TPM was calculated based on:

FPKM was calculated as described earlier [22]. For each 
sample, we firstly calculate its Spearman rank correla-
tion of gene expression with each of the rest of samples 
in the cohort. Then, ‘median_cor_expr’ for each sample 
is the median Spearman correlation value with the rest 
of samples in the cohort. After thorough bioinformat-
ics evaluation, samples meeting any of the below criteria 
were flagged as QC-fail:

1.	 Sample-wise median gene expression correlation 
smaller than 0.75

2.	 Gene mapped reads smaller than 25 million gene 
mapped reads,

3.	 Less than 11,400 # of detected genes with TPM > 4

For each of the sequencing batch, if the technical con-
trols/replicates failed QC, the whole batch of samples 
will be flagged as QC-fail as well. For our study, all tech-
nical controls/replicates have passed QC. A decision tree 
model was built based on CART Modeling via rpart R 
package to learn the relationship between pre-sequenc-
ing QC metrics, such as RNA qubit or pre-capture library 
qubit, and QC pass/fail status predicted by post sequenc-
ing bioinformatics metrics. Samples were split into train-
ing and testing set with a ratio of 7:3. Repeated cross 
validation were performed to optimal parameters (com-
plexity parameter) during model training. Similarly, an 
alternative model based on logistic regression was also 
constructed:

All models were built based on Caret R package [23] and 
all statistical analysis was carried out in R under R ver-
sion 4.0.3.

Results
Evaluating FFPE library preparation kits using FFPE 
and fresh frozen replicates
We evaluated two RNA-seq library preparation proto-
cols optimized for low quality, highly degraded samples 

(3)TPM =
FPKM

∑

FPKM
× 10

6
,

(4)ln
p(X)

1− p(X)
= β0 + β1X

(such as FFPE): Illumina’s TruSeq RNA Exome proto-
col and NEBNext rRNA Depletion protocol (Fig.  1a). 
FFPE and Fresh Frozen (FFzn) replicates for seven BBD 
patients were prepared using the two selected protocols 
and submitted for RNA sequencing as described in the 
Methods section. While the Depletion protocol gener-
ated more sequenced reads compared to RNA Exome, a 
significantly lower proportion of reads were mappable to 
genic or exon-exon junction regions for both FFzn and 
FFPE samples (Additional file 1), and captured a smaller 
number of canonical exon-exon junctions (Additional 
file  1). We also examined the two protocols in terms of 
their ability to accurately capture SNP genotypes. SNP 
confirmation rate (precision) was calculated for three 
FFzn samples by using SNPs identified from their cor-
responding DNA whole exome sequencing (WES) data 
(Additional file 1). The calculation was performed sepa-
rately for six conventional mutation categories (C>T, 
C>G, C>A, T>A, T>C, and T>G.). The Depletion proto-
col generated many false positive calls with consistently 
low SNP confirmation rate across all mutation categories. 
For the RNA Exome protocol, the SNP confirmation rate 
was significantly higher across different mutation catego-
ries with C>T being highest (p value < 2.2E−16) as was 
previously reported [24]. Finally, we compared the two 
protocols in terms of their correlation with data from 
the TruSeq protocol with PolyA selection using five FFzn 
samples (Additional file  1). For the Depletion protocol, 
only two of five samples successfully clustered by subject 
ID instead of library protocol. The RNA Exome protocol 
showed good concordance with the TruSeq PolyA data 
where all samples were clustered by subject ID regard-
less of their library protocol. Overall, the RNA Exome 
protocol showed superior performance compared to the 
Depletion protocol in terms of these bioinformatics met-
rics and was selected as the library protocol to process all 
samples in the main study (Additional file 1, Fig. 1b).

Sample QC based on bioinformatics metrics
All study samples and technical controls were submit-
ted for library preparation using RNA Exome protocol. 
Library concentration was gathered on the individual 
samples prior to hybridization capture and is hereaf-
ter referred to as the “pre-capture” library. 40 samples 
failed this step due to low pre-capture library out-
put. The remaining samples were submitted for RNA 
sequencing in ten batches as detailed in the methods 
section (Fig. 1b). Bioinformatics quantification of gene 
expression was then performed, and qc metrics were 
collected, including sample-wise median gene expres-
sion correlation (median_cor_expr), number of gene 
mapped reads (gene_reads), number of detectable 
genes with transcript per million (TPM) larger than 4 
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(gene_tpm4). Median_cor_expr was calculated for each 
sample as its median correlation of gene expression 
with all other samples in the cohort, and was between 
0.8 and 0.9 for most samples (Fig. 2a). Based on the 11 
study sample replicates, we first evaluated the relation-
ship between false positive rate (FPR) and median_cor_
expr (Fig.  2b). Replicates with lower median_cor_expr 
tend to have higher FPR. For samples with extremely 
low median_cor_expr, FPR decreased and plateaued 

around 20% likely due to a reduced number of detect-
able genes. Similar trends were observed between FPR 
and median_cor_expr when applying an expression cut-
off before calculating FPR. Due to the limited number 
of study replicates within median_cor_expr range of 0.7 
and 0.8, a median_cor_expr value around the inflection 
point (0.75) was selected as a cutoff to identify qc failed 
samples. We next investigated the relationship between 
median_cor_expr and gene_tpm4 (Fig.  2c). Samples 
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Fig. 2  Bioinformatics QC to identify pass versus fail samples. a Heatmap of sample pairwise correlation of gene expression. Row color annotation 
bar indicate sequencing batch (seqb) 1–7 and 8–10. Right lower panel shows a histogram of the distribution of sample wise median correlation 
based on gene expression data. b Relationship between sample wise median correlation of gene expression with false positive rate using 11 study 
replicate samples. Samples with a sample-wise median correlation below 0.75 were classified as QC failed samples. Loess is used curve fitting 
and 95% confidence interval is plotted in grey bands. c Relationship between sample wise median correlation of gene expression with number 
of detectable genes with transcript per million (TPM) > 4. A cutoff of 11,400# of genes was selected to identify QC failed samples. d Relationship 
between number of gene mapped reads and total number of detected genes with transcript per million (TPM) > 4. A cutoff was selected at 80% of 
saturation point (20 million gene mapped reads, 10,400 # of detected genes with TPM > 4)
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with higher gene_tpm4 had better median_cor_expr; a 
median_cor_expr of 0.75 corresponding to a value of 
11,400 for gene_tpm4 was selected as the threshold. 
Finally, we examined the relationship between gene_
reads and gene_tpm4 (Fig. 2d). Samples with increased 
gene_reads had higher gene_tpm4. The trend saturated 
with gene_tpm4 around 13,000, with a gene_tpm4 of 
11,400 (roughly 85% of saturation) corresponding to 
25 million gene_reads. Samples were therefore iden-
tified as QC failed when meeting any of the following 
criteria: 1) low median sample-wise correlation within 
the cohort (median_cor_expr < 0.75); 2) low number 
of detectable genes (gene_tpm4 < 11,400); 3) low num-
ber of reads mapped to gene regions (gene_reads < 25 
million). We also evaluated the effect of sample size on 
the calculating of median_cor_expr (Additional file  2). 
Median_cor_expr are very stable with different sample 
sizes, and we start to achieve a good estimation even 
when the sample size is small (10–20 range). This con-
firms that our using of median correlation is robust and 
applicable even to small study size.

Relationship between pre‑sequencing lab metrics 
and post sequencing bioinformatics metrics
We next examined the relationship between pre-
sequencing RNA metrics and post sequencing bioin-
formatics metrics. Among those pre-sequencing lab 
metrics, pre-capture library qubit values showed high 
correlation with bioinformatics metrics, including 
median_cor_expr, gene_tpm4 and gene_reads (Addi-
tional file  3). Samples failing bioinformatics qc had 
significantly lower library qubit values compared to 
qc-passed samples (p value = 2.8E−6). Figure  3 shows 
the detailed relationship of library qubit values with 
bioinformatics metrics, including median_cor_expr, 
gene_tpm4 and gene_reads, which were all positively 
correlated with library qubit (Fig.  3a–c). Local fail-
ure rate was calculated based on these bioinformatics 
metrics under different library qubit values. As shown 
in Fig.  3d, local failure rate decreased with increasing 
library qubit values and saturated at 20% with library 
qubit value around 2–4  ng/ul. We observed a similar 
trend with input RNA qubit (Additional file  4). Local 
failure rate decreased with increasing RNA qubit val-
ues and saturated at 25% with an RNA qubit value ~ 20 
to 30  ng/ul. The recommended quantities of starting 
FFPE material according to the vendor corresponds to 
a range of DV200 values, with the lowest recommended 
quality at DV200 of 30–50%, and lowest corresponding 
input of 4.7  ng/ul. Recommendations for input RNA 
using DV50 or DV100 values has not been evaluated by 
the vendor.

Prediction of QC failed samples based on pre‑sequencing 
metrics
We next built a decision tree model to learn the relation-
ship between pre-sequencing lab metrics and qc pass/fail 
status as determined by bioinformatics metrics. Samples 
were split into training and testing sets with a ratio of 
7:3. Repeated cross validation was used to determine the 
optimal ‘complexity’ parameter used to build the train-
ing model (Fig.  4a). We found that pre-capture library 
concentration had higher feature importance compared 
to RNA concentration (Fig. 4c). Finally, we evaluated the 
performance of the training model by applying it to the 
testing set and were able to achieve an F score of 0.848. 
As shown in Fig. 4b, we grouped the samples into three 
categories based on RNA and pre-capture library concen-
trations: 1. Low/marginal quality (RNA qubit < 25 ng/ul); 
2. Intermediate quality (RNA qubit ≥ 25 ng/ul and library 
qubit < 1.7  ng/ul); 3. Good quality (RNA qubit ≥ 25  ng/
ul and library qubit ≥ 1.7 ng/ul). The decision tree-based 
model was chosen due to its high interpretability. Logis-
tic regression analysis on the model achieved a similar 
performance in terms of F score (0.844).

False positives evaluation based on FFPE and fresh frozen 
replicates
We also evaluated the reproducibility across sequenc-
ing batches using FFPE and FFzn replicates (Additional 
file  5). As expected, FFPE replicates had higher over-
all FPR compared to FFzn replicates (18.4% vs. 12.7%). 
By applying an expression cutoff of tpm > 4, FPR for 
both FFPE and FFzn replicates decreased significantly 
(1.35e−2 vs. 4.19e−3). We further investigated the rela-
tionship between MAD (Max Absolute Difference) and 
gene-level features including gene length and GC content 
for FFPE replicates. As shown in Additional file 5, shorter 
genes were more variable and had larger MAD compared 
to longer genes. GC content had a moderate positive cor-
relation with MAD indicating that genes with high GC 
content were more likely to be influenced by FFPE proce-
dure. In summary, FFPE replicates showed similar repro-
ducibility as FFzn replicates across sequencing batches. 
Genes with short length or high GC content are more 
likely to be influenced by FFPE procedure.

Discussion
In this study, we evaluated two commonly used RNA 
library protocols for FFPE samples: RNA exome cap-
ture and rRNA-depletion, using seven paired FFPE-
FFzn samples. Samples processed using the RNA exome 
capture protocol showed a higher percentage of gene 
mapped reads, captured a higher number of canonical 
junctions, generated better SNP concordance rate and 
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demonstrated better concordance with TruSeq PolyA 
data. Next, we sought to identify pre-sequencing metrics 
that could be used to predict sample pass/fail status based 
on post-sequencing bioinformatics metrics. All study 
samples along with replicate samples were processed 
using the RNA exome protocol. Three bioinformatics 
metrics were determined to identify qc-failed samples, 
including sample-wise median correlation (median_cor_
expr), number of gene mapped reads (gene_reads), num-
ber of detectable genes with transcript per million (TPM) 

larger than 4 (gene_tpm4). Finally, a decision tree-based 
model was built to examine the relationship between pre-
sequencing lab metrics and qc-status as defined by post-
sequencing bioinformatics metrics. Based on the model, 
we recommend a minimum of 25 ng/ul for RNA concen-
tration and 1.7  ng/ul for pre-capture library concentra-
tion for FFPE samples to generate good quality RNA-seq 
data for bioinformatics analysis. We also demonstrated 
that FFPE replicates have similar reproducibility com-
pared to FFzn replicates across sequencing batches. 
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However, genes with short length or high GC content are 
more likely to be influenced by the FFPE procedure.

Clinical biospecimens are typically stored as FFPE 
blocks, representing an invaluable source of material 
for biomedical research. FFPE blocks enable prolonged 

storage of clinical samples, preserving both tissue mor-
phology and nucleic acids information. However, FFPE 
processing and tissue storage have been shown to affect 
RNA quality, thus limiting gene expression quantifica-
tion by technologies like RNA sequencing. Our study 
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provides a guideline for future research that utilizes FFPE 
samples for RNA-seq. By following these recommenda-
tions, sequencing samples with RNA and library input 
higher than our recommended values will not only help 
yield a better success rate for RNA sequencing, but also 
help to prevent unnecessary cost for sequencing.

There are several limitations for our study. Firstly, we 
benchmarked two commonly used library preparation 
protocols for FFPE samples using bioinformatics met-
rics, including SNP confirmation rate. SNP confirmation 
rate (precision) was calculated as the percentage of true 
SNPs (called by WES data) within the SNPs identified 
by RNA-seq for the same sample. This does not consider 
RNA specific mutations introduced by events like RNA 
editing. However, RNA editing events are considered 
very rare and the expected SNP confirmation rate should 
be very close to our calculation in Additional file 1 [25]. 
Allele specific gene expression could lead to discordance 
between SNP calls generated from RNA-seq and WES, 
e.g., RNA-seq might fail to capture mutations where the 
non-mutant allele is expressed [26]. This is also the rea-
son that we are focusing on precision rather than sen-
sitivity of SNPs called by RNA-seq and WES. Secondly, 
when performing bioinformatics QC using replicate 
samples, due to the limited number of replicate samples 
with median_cor_expr around 0.7 and 0.8 range, we arbi-
trarily selected a cutoff value (0.75) around the inflection 
point of the loess-fitted curve between median_cor_expr 
and FPR. This criterion will potentially affect our defini-
tion of qc pass/fail as determined by those bioinformat-
ics metrics. To provide the user with more flexibility in 
selecting cutoffs for those bioinformatics metrics, we 
have provided a documentation that enables the end-user 
to define customized cutoffs based on their preference 
of stringency: https://​github.​com/​Liuy12/​FFPEi​nput. 
Thirdly, the concentration of RNA in the original samples 
is highly dependent on the amount of input tissue, origi-
nal handling and storage of the sample, the extraction 
method used, and perhaps most importantly, the elu-
tion volume used following extraction and purification. It 
is difficult to compare these amounts across samples or 
studies unless all these factors are controlled. The library 
concentrations are more comparable since they are based 
on a consistent total RNA amount going into the library 
prep. Finally, bioinformatics metrics in this study were 
derived from breast tissue and might not be readily appli-
cable to other tissue types, but our recommendations for 
study design and bioinformatics QC procedure can be 
tailored for other studies involving different tissue types.

Other than RNA and library input metrics, we also 
investigated other pre-sequencing lab metrics including 
DV50, DV100, DV200 values. The recommended quan-
tities of starting FFPE material according to the vendor 

corresponds to a range of DV200 values, with the low-
est recommended quality at DV200 of 30–50%. Rec-
ommendations for input using DV50 or DV100 values 
has not been evaluated by the vendor. Due to the RNA 
input limit, we were only able to quantify around 70% of 
all study samples for DV metrics. Based on those lim-
ited data, we observed that DV50 is highly correlated 
with DV100 values. Both DV50 and DV100 have mod-
erate correlation with DV200, a conventional metric for 
measuring RNA quality (Additional file 6). DV50 value is 
identified as the top predictive feature for sample failure 
using a recursive feature elimination algorithm. Including 
DV50 in building the decision tree model showed similar 
performance compared to using RNA/library input met-
rics alone (Additional file 7). We suspect that this could 
be due to the decreased sample size with available DV 
values. According to the model, samples with DV50 val-
ues bigger than 82 are more likely to generate successful 
RNAseq data. We have included a detailed table contain-
ing all sample-related metrics (Additional file 8).

Conclusions
We benchmarked two commonly used library prepa-
ration protocols for FFPE samples. The TruSeq RNA 
exome capture protocol showed a superior performance. 
We also provide a common bioinformatics quality con-
trol recommendation for FFPE samples. Based on our 
defined bioinformatics criteria, we recommend a mini-
mum of 25  ng/ul for RNA concentration and 1.7  ng/ul 
for pre-capture library concentration for FFPE samples 
to achieve adequate RNA-seq data for downstream bio-
informatics analysis.
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