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Abstract

The single-cell revolution in the field of genomics is in full bloom, with clever new molecular 

biology tricks appearing regularly that allow researchers to explore new modalities or scale up 

their projects to millions of cells and beyond. Techniques abound to measure RNA expression, 

DNA alterations, protein abundance, chromatin accessibility, and more, all with single cell 

resolution and often in combination. Despite such a rapidly changing technology landscape, there 

are several fundamental principles that are applicable to the majority of experimental workflows to 

help users avoid pitfalls and exploit the advantages of the chosen platform. In this overview article, 

we describe a variety of popular single-cell genomics technologies and address some common 

questions pertaining to study design, sample preparation, quality control, and sequencing strategy. 

Since the majority of relevant publications currently revolve around single-cell RNA-seq, we will 

prioritize this genomics modality in our discussion.
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1. Introduction

The single-cell era of genomics debatably began in 2009 with the sequencing of the 

transcriptome from a single mouse blastomere (Tang et al., 2009). Since then, a plethora of 

new laboratory devices and clever barcoding techniques have emerged that enable ‘omics’-

scale experiments in increasingly larger numbers of individually resolved cells. “Single-cell” 

varieties of nearly every conceivable type of genomics assay have now been developed, 

some of which have been commercialized with huge success and brought into widespread 

use. A variety of these techniques have been deployed to build colossal organism-wide cell 

atlases, starting with tractable model organisms like worms (Cao et al., 2017) and flies 

(H. Li et al., 2021), with ongoing efforts to build increasingly comprehensive references 

for more developmentally complex species such as mice (Han et al., 2018; Tabula Muris 

Consortium, 2020; Tabula Muris Consortium et al., 2018) and humans (Domcke et al., 2020; 
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Regev et al., 2017; K. Zhang et al., 2021). As more studies employ single cell technology 

in specialized research areas, these reference atlases serve as essential touchstones to guide 

our understanding of the normal range of cellular states and perturbations that happen during 

development and disease.

The study of tumor evolution via DNA copy number alterations (CNA) was one of the 

earliest applications of single-cell genomics technologies (Baslan et al., 2012; Navin et al., 

2011). Since then, genomic DNA-based single-cell assays for CNAs, point mutations, and 

methylation have seen several cycles of innovation, but the challenges inherent to exploring 

gigabase-scale genomes in thousands of cells have limited their adoption. In contrast, single-

cell RNA sequencing (scRNA-seq) has proven to be scalable, simple to perform and expand 

upon, and able to address a broad range of biological questions (Aldridge & Teichmann, 

2020; Lim, Lin, & Navin, 2020; Tanay & Regev, 2017). Recently, single-cell assays of 

chromatin accessibility (scATAC-seq) have seen increasing usage, especially in combination 

with scRNA-seq in ‘multi-modal’ or ‘multi-omic’ workflows that capture both readouts 

from the same cells. Recent commercialization of a combined snRNA-seq/scATAC-seq 

protocol by 10X Genomics has lowered the barrier to entry for this type of assay, and is 

already seeing widespread adoption across immunology and neurobiology (Allaway et al., 

2021; Granja et al., 2019; Trevino et al., 2021; You et al., 2021). Likewise, clever tricks to 

measure protein abundance have been developed and commercialized that can be combined 

with nearly any other genomic assay (Mimitou et al., 2021; Peterson et al., 2017; Stoeckius 

et al., 2017). The trend toward combining additional layers of single-cell data is always 

increasing, as sequencing costs drop and innovations emerge.

Unsurprisingly, experimental methods capable of making thousands of measurements within 

thousands or even millions of individual cells are, by their nature, complex and challenging 

to undertake. Single-cell studies also tend to be much more expensive and time consuming 

than their bulk-tissue counterparts, providing few opportunities to revise and retry should 

the data turn out to be unsatisfactory. Careful consideration must thus be put toward every 

step of a project: study design philosophy, sample collection logistics, tissue dissociation, 

sample cleanup, cell-type enrichment, sequencing depth and format, and other steps that are 

universal regardless of the specific molecular biology of a given method.

The intent of this Overview is to provide guidance to experimental design, execution, and 

analysis of single cell genomics experiments as a general class whenever possible, but with 

an intentional bias towards discussing the particulars of scRNA-seq, due to its dominance 

in the current literature. Most single-cell genomics assays will share certain similarities 

with regards to sample preparation and study design considerations, and we will attempt to 

provide a general perspective on these topics. We will not attempt to walk through the core 

steps of any given single-cell workflow, as this level of technical detail is beyond the scope 

of this article. Instead, we will focus on the “interstitial” protocol considerations, that is, on 

general best practices and guidelines that are common across a variety of experiment types, 

which are often glossed over in step-by-step protocols. Cumulatively, we hope these basic 

principles will help build the foundation for a successful experiment. At the time of writing 

this overview, commercial droplet microfluidics instruments, particularly the 10X Genomics 

Chromium platform, comprised the majority of newly published single-cell experiments; 
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as such, this guide will prioritize discussing issues relevant to these platforms while also 

touching upon competing or alternative technologies.

2. Technology Platforms

When planning a single-cell experiment, the choice of which technology to use should be 

influenced by the goals of the analysis: what modalities are being measured, and can this 

platform be adapted for the required readout? How much sensitivity is required to detect the 

molecules of interest? How many cells are needed? How difficult is it to get started using the 

protocol? Is integrating your results with published datasets on the same platform a priority? 

Some general characteristics of different technology platforms are summarized in Table 1 

and are discussed in this section.

The primary factor separating different technology platforms is the means by which single 

cells are partitioned and barcoded (Figure 1 and Table 1). These platforms range in 

complexity and cost: some require no specialized equipment but large amounts of skilled 

hands-on time and optimization, while others require expensive commercial devices that 

greatly simplify and speed up the workflow. The partitioning method, in turn, influences 

the practicality and scalability of different enzymatic reactions for generating libraries 

targeting mRNA, open chromatin, transcription factors, or others. Some platforms may be 

fundamentally incapable of certain genomics readouts, while other more flexible ones may 

never achieve the cell numbers possible with high-throughput methods.

2.1. Plate-based/Sorted Cells

The earliest examples of single-cell genomics used the straightforward strategy of carefully 

depositing cells individually into separate reaction chambers, and this approach still remains 

popular because of its simplicity and flexibility. Cells can be sorted into 96- or 384-well 

plates with conventional flow sorters, or even by mouth pipetting (Dong et al., 2018; 

Eberwine et al., 1992; Fan et al., 2020; Spaethling et al., 2017). Enzymatic steps are 

processed separately in each well, which allows for nearly any conceivable genomics 

workflow, but this comes at high reagent cost, due to volume limitations of pipets. Robotic 

automation, however, can increase throughput where available, and ultra-low volume 

acoustic liquid handlers can be used to minimize reagent costs (Minussi et al., 2021). Unlike 

other approaches, plate-based methods are easily adapted to sequencing full-length mRNA 

transcripts rather than short sequence tags, but at high cost per cell. Plate-based methods also 

tend to provide richer data per captured cell, and are frequently used to complement larger 

—but sparser— atlas-scale datasets produced by other technology platforms.

2.2. Droplet Microfluidics

In this strategy, cells are partitioned by a microfluidic device into picoliter-sized droplets 

within an oil emulsion. DNA-barcoded beads are co-encapsulated along with cells, and 

barcodes are enzymatically coupled to target molecules, usually by reverse transcription 

of polyadenylated RNA or by ligation to fragmented DNA. The approach was pioneered 

in academic labs under the names ‘Drop-seq’ (Macosko et al., 2015) and ‘inDrop’, and 

was later commercialized by 10X Genomics, Bio-Rad, and others. Cell yields are limited 
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by the statistics of random co-encapsulation of barcoded beads and cells (see section 4.2 

for more detail), and by the overall diversity of barcodes available in the bead pool. Since 

the synthesis of a highly diverse library of barcoded beads is non-trivial, this is generally 

left to commercial vendors. Several methods have been described for generating them 

in the laboratory (De Rop et al., 2022; Delley & Abate, 2021), albeit with significant 

start-up, labor, and quality control costs. This makes custom workflows with user-designed 

primer/adapter sequences a challenge, but the availability of robust and highly standardized 

commercial solutions greatly facilitates cross-study integrated analyses. Droplet-based 

experiments account for the majority of single-cell datasets published in recent years, 

including the Tabula Muris (Tabula Muris Consortium et al., 2018) and Tabula Sapiens 

(Consortium & Quake, 2021) projects, and much of the Human Cell Atlas (Regev et al., 

2017).

2.3. Micro/nanowell

Here, nanoliter-sized reaction wells are patterned onto a fabricated chip and cells are 

typically randomly seeded into wells as a dilute suspension obeying Poisson-distributed 

statistics. Barcoded beads are deposited into the same wells, cells are lysed, and barcodes 

are then coupled enzymatically to their target molecules. Custom microwell devices can 

be synthesized from PDMS or other polymers, but, as in droplet methods, barcoded bead 

synthesis is typically outsourced to commercial vendors. Costs per cell and total cell 

numbers are similar to droplet methods. Commercialized platforms include the Rhapsody 

(BD Biosciences) and Matrix (Singleron Biosciences). Of note, the >500K Mouse Cell Atlas 

utilized a custom Microwell-Seq platform (H. Chen et al., 2021; Han et al., 2018).

2.4. Split/Pool

In this strategy, a barcode is built directly onto RNA/DNA in fixed cells through either serial 

ligation, reverse transcription (RT), transposition, or a combination of reactions. Barcode 

diversity is achieved through splitting a cell pool into random batches and appending 

a unique barcode to each batch, followed by pooling and then randomly splitting and 

barcoding again during one or more subsequent rounds, such that no two cells receive 

the same combination of barcode segments. In this way, RNA or DNA molecules from a 

given cell all share a unique string of barcodes that distinguishes it from all other cells in 

the starting pool. Many split/pool barcoding strategies have been implemented to sequence 

mRNA, open chromatin regions, and methylated DNA, and for multimodal applications. 

In addition, they require no specialized equipment for partitioning, but barcode sets and 

enzymes can add up to a significant up-front investment. The combinatorial nature of this 

barcoding strategy can theoretically be used to construct an enormous variety of unique 

sequences and, thus, can be used to capture several times more cells in a given experiment 

than other methods. By exploiting economies of scale, they can achieve extremely low 

per-cell costs, but can have the downside of requiring longer and more expensive sequencing 

run lengths to fully cover the barcode region. Examples of this strategy include sci-RNA-seq 

(Cao et al., 2017), sci-ATAC-seq (Cusanovich et al., 2015), SPLiT-seq (Rosenberg et al., 

2018), Quantum Barcoding (QBC), CoBATCH (Q. Wang et al., 2019), and BAG-seq (S. Li 

et al., 2020).
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3. Study Design Considerations

The availability of robust commercial solutions has triggered a boom in new single-

cell studies across a wide range of disciplines. The analytical goals of these studies 

can, similarly, span a wide range, from descriptive atlas-making efforts to quantitative 

comparisons across conditions and cell types and beyond. When designing a new single-

cell experiment, it is important to consider the capabilities and limitations of available 

technology platforms together with the goals of the analysis. In this section, we will 

discuss some basic study design considerations, including differences in resource allocation 

for coverage- versus counting-based applications, statistical power analysis, biological 

replicates, batching processing, multiplexing, and accounting for sex variations across 

samples.

3.1. Resource Allocation.

Single-cell genomics experiments are expensive, and it is important to understand the 

breakdown of how money and resources are spent across the various steps of a workflow. 

Different platforms and modalities can vary dramatically in their bottom-line costs per 

sequenced cell, and proper experimental design will depend heavily on the breakdown of the 

necessary library construction, sequencing, and analysis costs. For the majority of currently 

popular scRNA-seq methods, a helpful rule-of-thumb for cost planning is to expect that 

sample preparation and sequencing will each consume roughly 50% of the available budget. 

This ratio, of course, can be adjusted relative to the goals of the study: is surveying a broader 

sample of single cells the priority, or rather the depth of sequencing given to each cell? In 

contrast, some applications require a much larger proportion to be spent on sequencing. One 

example is DNA copy number variation analysis, which requires up to 20 times more reads 

per cell than scRNA-seq for a standard analysis (Minussi et al., 2021).

Microfluidic technologies have made it easy to scale a project to larger cell numbers, 

with the obvious tradeoff being that it becomes more expensive to sequence each cell 

deeply. “Depth-first” and “Breadth-first” philosophies each have their respective use cases, 

so it is important to evaluate the experimental goals and optimize the study design to 

best match them. For instance, a study focusing on weakly expressed lineage-determining 

transcription factors may require high reads-per-cell to improve detection of rare transcripts. 

In contrast, a study exploring global gene expression changes across cell types in response 

to perturbations may benefit more from larger cell numbers with modest sequencing depth. 

Several studies have proposed general principles for optimal budget allocation, and should 

be considered prior to planning an experiment, regardless of the sequencing platform used 

(Schmid et al., 2021; Svensson, Beltrame, & Pachter, 2019; M. J. Zhang, Ntranos, & Tse, 

2020).

3.2. Cost per cell

The total cost per cell is an aggregate function of the capital or start-up investment, the 

complexity of the cell partitioning step, overall reagent consumption, and the necessary 

sequencing coverage. Digital counting-based methods (10X Genomics, Drop-Seq, CEL-

seq2, Quartz-Seq2, SPLiT-seq) are vastly more cost efficient that gene coverage-based 
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methods (Smart-seq2, NEBNext), due to both the lower sequencing depth requirements 

and the more efficient reagent utilization given the ability to pool reaction mixtures 

at an earlier stage. Cost estimates can vary dramatically depending on institutional or 

service provider price structures, but to a first approximation, droplet-based digital counting 

methods range from USD $0.40 to $1.50 per sequenced cell, while a plate-sorted coverage-

based method might cost $20–$60 per cell. Self-built microfluidic apparatuses such as those 

designed for DropSeq and InDrop can help save on barcoding costs and provide experiment 

flexibility, but such custom equipment has begun to fall out of favor because of limitations 

in standardization, consistency, scalability, challenges in training and maintenance, and 

trailing performance compared to newer chemistry versions being released by commercial 

competitors.

For extremely large-scale experiments, combinatorial split-pool approaches to cell barcoding 

boast excellent economies of scale and can be used upstream of a variety of genomics 

modalities (Cao et al., 2017; S. Li et al., 2020; Rosenberg et al., 2018). In principle, such 

methods can be used to build >1M cell datasets at extremely low barcoding costs per cell 

(as low as $0.01), but they present some trade-offs compared with microfluidic approaches, 

namely 1) they tend to be labor intensive and require significant initial investment to set 

up and validate, 2) sequencing costs tend to be higher due to requirements for the longer 

reads necessary to deconvolute the combinatorial barcodes, and 3) their bioinformatics 

pipelines tend to require more expertise, especially compared with commercial alternatives. 

While widespread adoption of split-pool workflows has been slow, commercial vendors 

such as Parse Biosciences are now beginning to offer optimized kits and analysis tools that 

promise to streamline the split/pool workflow and lower the barriers to entry for extremely 

large-scale experiments.

3.3. Coverage- vs Counting-Based Applications

If isoform specificity, allelic expression, or mutation detection are a priority, full-length 

scRNA-seq methods such as SMART-seq or NEBNext are required. In these workflows, 

each single-cell library is processed separately in its own tube or plate well, cumulatively 

requiring larger volumes of expensive enzymes and barcodes. Barcoded libraries are pooled 

at the end of the workflow and sequenced together, providing full-transcript coverage 

akin to conventional bulk RNA-seq. In contrast, digital gene expression approaches opt 

to incorporate barcodes at an early step, allowing samples to be pooled and conveniently 

processed in a single tube rather than in dozens or hundreds of separate reaction chambers. 

In digital scRNA-seq, barcodes are appended to mRNAs at the RT step, then fragmented and 

PCR-amplified such that only the barcoded end is retained. Only a small, strongly biased 

portion of a given mRNA is covered by sequencing (either 3’- or 5’-biased, depending 

on the chemistry); hence, isoform utilization is poorly represented, and gene expression 

data tends to be collapsed to the gene level. Robust quantification of mRNA abundance 

is achieved by tallying molecular barcodes, commonly referred to as “unique molecular 

identifiers” (UMIs, see below).
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3.4. UMIs

Counting-based applications such as scRNA-seq generally rely on UMIs, also known as 

molecular barcodes or varietal tags (Levy & Wigler, 2014). Typically, a UMI is a short 

stretch of 8–12 random synthetic nucleotides embedded within one of the DNA oligos in 

the sequencing workflow, typically, the reverse-transcription primer. PCR amplification from 

the same molecule will reproduce an identical UMI; these are tracked bioinformatically, and 

duplicate UMIs associated with a common cell barcode and parent molecule (e.g., mRNA) 

are collapsed into a single tally. UMIs significantly improve accuracy of counting-based 

applications (G. K. Fu, Hu, Wang, & Fodor, 2011; Y. Fu, Wu, Beane, Zamore, & Weng, 

2018; Hafemeister & Satija, 2019), but are impractical for full-length cDNA sequencing 

methods that require fragmentation of the parent cDNA molecule for short-read Illumina 

sequencing.

3.5. Statistical power analysis

Ideally, one should plan a single-cell study from the outset, with a clear statement of goals 

and a plan for adequately powering downstream statistical analysis. Employing a power 

calculation or study simulation tool such as powsimR (Vieth, Ziegenhain, Parekh, Enard, & 

Hellmann, 2017), scPower (Schmid et al., 2021), scDesign2 (Sun, Song, Li, & Li, 2021), 

and POWSC (Su, Wu, & Wu, 2020) can be a useful way to predict the feasibility of 

the stated goals, (e.g. detection of rare cell types, differential expression testing, eQTL 

analysis) and allocate resources to additional biological replicates, higher cell counts, deeper 

sequencing, or the like, as needed. Bear in mind that such calculations rely heavily on 

assumptions about the sources and extent of technical noise, which can vary dramatically 

across different types of samples. Solid tumors, in particular, tend to have highly variable 

morphology that makes the cell type composition of a given surgical section difficult to 

predict, making reliable prediction of statistical power a challenge.

3.6. Biological Replicates

Not unexpectedly, the first wave of single-cell genomics papers was heavily skewed to map-

making efforts describing every tractable model organism and tissue. In these “landscape” 

exploratory studies, biological replicates generally serve a less important role compared 

with hypothesis-driven experiments. Replicates might be used to add richness and diversity 

to the superset of observed cell types and states, but are not used directly for statistical 

tests comparing experimental conditions, and might even be pooled and treated as a single 

large sample. As single cell technologies approach maturity, more studies are taking on the 

challenges of hypothesis-driven research that require rigorous application of good statistical 

practice. Inevitably, one faces the question: how many replicates are necessary?

Unfortunately, there is no straightforward answer to this question. Best practices in single-

cell differential expression analysis have been established that argue for the superiority 

of using biological replicates binned into ‘pseudobulk’ pools (Squair et al., 2021). Thus, 

scRNA-seq will benefit from additional biological replicates similar to bulk RNA-seq 

methods using count-based data such as DESeq2 (Love, Huber, & Anders, 2014) and edgeR 

(Robinson, McCarthy, & Smyth, 2010) for certain hypothesis-driven analysis goals. For 

instance, in a study where the goal is to ascertain the effect of treatment “X” on cell type 
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“A”, the statistical power is limited both by the number of independent replicates of the 

treatment conditions as well as the frequency of cell type “A” within the population. If 

each sample contains few type “A” cells, then the pseudobulk pool of type “A” will contain 

relatively few mRNA counts, and the statistics of differential expression will suffer. This can 

be improved by enriching the single-cell preparation for type “A” cells to increase the total 

pseudobulk mRNA counts from each individual, with the tradeoff of sacrificing some of the 

cellular heterogeneity in the overall sample.

However, single-cell genomics techniques are exorbitantly expensive and inefficient for 

formulating a statistical argument. While single-cell data has unparalleled utility as an 

exploratory tool, if one’s goal is to test a relatively straightforward preconceived hypothesis 

(for instance, “Treatment with ‘Compound X’ increases the production of inflammatory 

cytokines in macrophages.”), a single-cell experiment may not only be an overkill, but 

also underpowered compared with other more sensitive, repeatable, and affordable assays. 

High technical variance during the sample preparation and barcoding phases can easily 

overshadow biological variation (Tung et al., 2017), often more severely than in simpler, 

more traditional types of experiments, such as western blot, qPCR, or bulk RNA-seq. Worse, 

each additional biological replicate of a single-cell experiment can cost thousands of USD, 

while alternative methods might cost one or two orders of magnitude less per replicate. 

Nevertheless, studies comparing tissue composition and gene expression programs across 

independent variables are increasingly becoming the norm, as techniques become more 

robust and protocols are standardized.

3.7. Batch Processing

In an experiment involving multiple independent samples, as much care as possible 

should be taken to balance batches of samples across the experimental variables. As an 

example of unbalanced design, consider an experiment investigating gene expression in the 

hippocampus of treated and control mice: sacrificing, dissecting, dissociating, washing, and 

counting each animal can take significant time, and might need to be spread across days or 

even into morning and afternoon batches. Idiosyncrasies accumulate within a given batch 

that can add significant technical variation to the data that might mask subtle biological 

variation (i.e., batch effects). Balancing each batch with an equal number of treatment and 

control animals can greatly improve downstream analysis by using statistical methods that 

can compensate for the batch as a covariate, provided it is not confounded with the treatment 

variable through poor study design.

3.8. Multiplexing

Several clever multiplexing strategies have been designed to ameliorate a portion of the 

exorbitant costs of biological replicates (Figure 2). These generally rely on some mechanism 

to separately track or barcode independent samples through the steps of library preparation. 

Two popular methods include genetic demultiplexing and cell hashing, which we discuss 

below.

Genetic Demultiplexing.—For experiments in humans or other genetically 

heterogeneous model systems, variant calls gathered from independent DNA-seq or RNA-
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seq data can be exploited to probabilistically assign each barcode to its likely matching 

donor. Several open-source tools, including Demuxlet (Kang et al., 2018), Vireo (Huang, 

McCarthy, & Stegle, 2019), SoupOrCell (Heaton et al., 2020), scSplit (J. Xu et al., 2019), 

and Demuxalot (Rogozhnikov et al., 2021) can robustly bin cells into distinct donor 

populations, even with the limited coverage and shallow depth offered by 3’-enriched 

scRNA-seq and, in some cases, without the requirement of a pre-built variant reference 

for each donor.

Cell Hashing.—In circumstances where genetic variation cannot reliably be exploited for 

sample demultiplexing, for instance, in longitudinal studies where multiple samples are 

drawn from the same individual, or in genetically homogeneous animal models, a clever 

barcoding scheme called “cell hashing” can be used to exogenously couple a DNA or 

RNA barcode to cells in a given sample (Stoeckius et al., 2018). Here, antibodies targeting 

universally expressed cell surface epitopes are conjugated to barcoded DNA oligos and 

used to decorate the surface of every cell in a given batch. Batches can comprise replicate 

individuals, treatment conditions, tissue location, time points, or any other conceivable 

variable to be separately tracked in the single-cell data. The latent DNA-templated DNA 

polymerase activity of RT enzymes allows these “Hash tag oligos” to be incorporated into 

the barcoded single-cell library as if it were a standard mRNA, allowing for efficient post 

facto demultiplexing.

One limitation of antibody-based cell hashing, however, is the challenge of building a 

truly universal panel of antibodies that will detect every cell in a heterogeneous mixture. 

Even highly expressed, near-ubiquitous markers, such as the widely used class I MHC 

complex, can be unpredictably downregulated in certain stem-like lineages, cancer cells, 

or other special cases. To solve this problem, lipid- or cholesterol-anchored oligos have 

been employed that can non-specifically incorporate into generic lipid bilayers, including 

the nuclear envelope (McGinnis et al., 2019). Lipid-targeted “Hash-tags” can, thus, be 

easily adapted for scRNA-seq, snRNA-seq, scATAC-seq, or even other workflows. A similar 

chemistry has recently been commercialized by 10X Genomics under the product name 

“CellPlex”.

The “cell hashing” concept has since been extended to other single cell modalities and 

chemistries, including ATAC-seq and multi-omic approaches (K. Wang et al., 2021). The 

proliferation of new batch-barcoding methodologies highlights the pressing need for single-

cell technologies to be able to address the concerns of replicability and statistical robustness 

at manageable cost.

3.9. Sex balance

Much recent attention has been brought to the desirability of minimizing sex bias in 

biological research (Lee, 2018; Woitowich, Beery, & Woodruff, 2020). Unfortunately, the 

exorbitant costs of single cell genomics make adding this extra variable (and the associated 

replicates) challenging. Strong sex-driven differences in gene expression derived both from 

sex chromosomes and autosomes exist in every human tissue (Lopes-Ramos et al., 2020) 

and, even in the absence of other confounders, these differences will heavily influence 
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unsupervised clustering and visualization methods. Given unlimited resources, experiments 

should ideally be carried out with enough replicates to adequately control for sex-specific 

variation in the data, particularly in studies exploring the effect of an independent variable 

(e.g. “treated vs untreated”) across individuals, where underlying variation due to sex can 

confound the signal from the experimental variable. Given limited resources, it maybe be 

tempting to opportunistically populate a study with a random sampling of sexes and rely 

on informatic correction methods such as linear regression to minimize variation due to 

sex-related gene expression. This practice, however, should be avoided, since without large 

numbers of biological replicates to properly control for sex, attempts to regress away the 

sex covariate are unlikely to achieve the desired result. Even in a study design incorporating 

equal numbers of male and female replicates for each experimental condition, spurious 

differences in cell capture efficiency from sample to sample can lead to strongly imbalanced 

numbers of cells deriving from each sex. The simplest and most pragmatic solution is to 

judiciously isolate sex from the independent variable. For example, a pilot animal single-cell 

study exploring the effects of an experimental compound might begin by first including 

only sex-matched individuals (that have naturally also been matched for other confounding 

variables such as age, cage conditions, etc.) and then following up with further experiments 

to explore sex-specific variation.

3.10. Proteogenomics

Most types of single-cell genomics chemistries have now been adapted to be able to 

simultaneously measure the abundance of targeted protein panels along with mRNA or 

chromatin profiles. Generally, antibodies targeting proteins of interest are conjugated to 

barcoded oligonucleotide adapters that contain priming sites compatible with the specific 

chemistry of the primary assay, for instance, a short synthetic poly(A) tail for standard 

oligo-(dT) primed scRNA-seq. Developed concurrently by two groups under the names 

“CITE-seq” (Cellular Indexing of Transcriptomes and Epitopes, (Stoeckius et al., 2017)) and 

“REAP-seq” (RNA Expression and Protein Sequencing, (Peterson et al., 2017)), commercial 

versions of the strategy have now been released by 10X Genomics and Becton-Dickinson, as 

“Feature Barcoding” and “AbSeq”, respectively.

The key advantage of proteogenomics approaches is the superior dynamic range compared 

with mRNA measurements. Most mRNAs in scRNA-seq are detected with only a handful 

of UMIs per cell; in contrast, hundreds of protein molecules may accumulate per mRNA, 

and the resulting expression signal scales in turn. Proteogenomic labeling can exhibit very 

similar sensitivity and dynamic range for surface markers as flow cytometry, and the 

resulting protein counts matrices can closely mimic FACS plots (Stoeckius et al., 2017), 

making cross-disciplinary comparisons with FACS-driven fields, such as immunology, more 

sound.

Antibody-oligo tags for proteogenomics can, in principle, be synthesized in any laboratory, 

—using streptavidin conjugation kits or Click chemistry (Stoeckius et al., 2018), with no 

specialized equipment. Commercial vendors such as BioLegend are continually expanding 

their catalog of validated conjugated antibodies compatible with a variety of single-cell 

genomics applications, including pre-made panels comprising dozens of protein targets.
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4. Sample Handling Considerations

While the molecular biology of single-cell genomics protocols can vary dramatically, every 

method is fundamentally limited by the quality and appropriateness of the methods used to 

prepare the single cell suspension. The choice of dissociation method, cleanup strategy, and 

even cell counting approaches can mean the difference between generating a publishable 

dataset and a sub-standard, artifact-riddled mess. In many cases, these decisions must be 

made on the day of the capture and barcoding, after sample processing has already begun, 

in response to differences in the condition of the sample compared to what was expected. 

Below, we discuss tissue dissociation, cell counting, and enrichment strategies that can be 

used to meet the needs of different single cell experiments.

4.1. Tissue dissociation

Preparation of a viable single-cell suspension is arguably the most challenging step of any 

single-cell workflow. Dissociation methods can radically affect the composition and quality 

of the final sample, and different approaches can be exploited to bias a sample towards a 

desired cell type. For microfluidics approaches, clearance of non-cellular debris is of critical 

importance, as large or oblong particles can lead to clogs or “wetting failures”, wherein the 

disruption of steady laminar flow prevents droplet formation and prevents formation of the 

emulsion required for barcoding.

4.1.1. Enzymatic dissociation.—Proteolytic extraction of cells from the extracellular 

matrix is a near-universal first step of any single-cell experiment. Different proteases and 

dissociation conditions can be optimized for specific tissues to obtain the best possible 

viability (discussed in more detail in section 4.2), while effectively releasing the desired 

cell types of interest into a uniform, clump-free single cell suspension. The specificity 

of different commonly used enzymes makes them amenable to different tissue types. For 

instance, dispases cleave fibronectin and type IV collagen (Stenn, Link, Moellmann, Madri, 

& Kuklinska, 1989), collagenases break down collagen in the extracellular matrix (Frantz, 

Stewart, & Weaver, 2010), trypsin degrades proteins in the cell-cell junctions at the lysine 

and arginine residues, and papain degrades tight junctions (Reichard & Asosingh, 2019). 

The right dissociation enzyme or mix of enzymes can be optimized for different tissue 

types, extracellular matrix compositions, and desired cell types. Gentler protease blends of 

collagenases and other enzymes release more immune cells, while harsher blends release 

more stromal cells (including fibroblasts), and the addition of trypsin to dissociations can 

increase the recovery of certain other cell types, like epithelial cells (Waise et al., 2019). 

Many comparison studies of various commercial enzyme blends have been done in different 

tissues, highlighting the variation in viability and cell type composition that can result from 

these various dissociation protocols. These findings, however, tend to be extremely tissue 

specific (Fischer et al., 2018; Slyper et al., 2020; Volovitz et al., 2016). Among the more 

broadly used enzymes are trypsin and commercial trypsin variants such as TrypLE. They 

are widely used in many single-cell publications across many tissues as the primary enzyme 

for dissociation, often in combination with EDTA and/or DNase-1. These tissues include 

esophagus epithelium (Madissoon et al., 2019), pancreatic islet cells (Tatsuoka et al., 2020), 

human kidney (H. Wu et al., 2018), embryonic mouse tissue (Cheng et al., 2019), mouse 
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cornea (Kaplan et al., 2019), and many others. When performing multimodal experiments, 

additional consideration must be taken when optimizing a dissociation protocol. Dispase, 

trypsin, and papain can degrade the antigens on the cell surface, while collagenases and 

certain commercial trypsin blends like TrypLE can leave cell surface markers intact enough 

for analysis by flow cytometry (Reichard & Asosingh, 2019).

4.1.2. Chelating Agents.—EDTA and EGTA are frequently included in dissociation 

and flow cytometry buffers to block divalent cation-dependent cell adhesion molecules 

such as integrins and cadherins, which mediate high-affinity interactions between cells and 

anchor them to extracellular matrix proteins (Reichard & Asosingh, 2019; Sheridan & 

Lefrançois, 2012; Tsuji et al., 2017). EDTA, however, inhibits some enzymes, including 

collagenase (Swann, Reynolds, & Galloway, 1981), and when used for dissociation before 

scRNA-seq, it must be washed out of any buffers before the reverse transcription reaction, 

as high concentrations of EDTA will inhibit it (10x Genomics recommends no more than 

0.1mM EDTA to be used in the cell buffer).

4.1.3 DNase treatment.—DNA released by dead cells is a major contributor to 

clumping and aggregation in dissociated tissue (Reichard & Asosingh, 2019). Degrading 

this exposed DNA with enzymes such as DNAse-1 can be very effective in rescuing low-

viability samples from total sample loss. However, DNases must be removed before the 

reverse transcription step, as it can degrade the cDNA and, therefore, may not be useful 

when cell numbers are limited and additional washing steps must be avoided.

4.1.4. Cold-adapted (psychrophilic) proteases (CAPs).—CAPs have been shown 

to reduce the impact of a dissociation signature on scRNA-seq. While most enzyme 

dissociation protocols are performed at 37 °C, cold-adapted protease-based protocols use 

enzymes active at low temperatures, so that the dissociation can be performed at 6 °C. The 

most commonly used CAP is a serine protease derived from Bacillus licheniformis, a soil 

bacterium that grows on Himalayan glaciers (Adam, Potter, & Potter, 2017). Psychrophilic 

proteases from other Bacillus species as well as trypsin from Atlantic cod have also been 

tested for single cell dissociations (Potter & Steven Potter, 2019). When compared with 

collagenase digestion at 37 °C, the low temperature protocol with the cold-adapted protease 

yielded the same cell types but lower overall expression of potential artifacts, such as 

immediate early response genes, and without inducing a measurable cold-shock response 

(Adam, Potter, & Potter, 2017; Denisenko et al., 2020; Machado, Relaix, & Mourikis, 

2021; O’Flanagan et al., 2019). Ironically, the widespread use of warm dissociation methods 

can make data comparison with cold-dissociated samples challenging due to the large 

differential in the stress signature and, thus, some investigators may prefer to adhere to warm 

protocols. Forward-looking atlas-making efforts would be well advised to consider cold-

dissociation methods, as they likely better reflect the true ground state of the transcriptome.

4.1.5. Plants and cell walls.—Most high-throughput scRNA-seq methods rely on 

detergent-based lysis of the plasma membrane to solubilize mRNA. Plants, algae, and fungi 

have thick, detergent-resistant polysaccharide cell walls that must first be permeabilized 

or removed using established protocols for the relevant model organism. The resulting 
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protoplasts and spheroplasts are often quite fragile and, thus, it is recommended to 

minimize shear stress and centrifugal force during handling. Many successful reports 

of high-throughput, droplet-based scRNA- and scATAC-seq for Arabidopsis (Dorrity et 

al., 2021; Jean-Baptiste et al., 2019; Lopez-Anido et al., 2021; Ryu, Huang, Kang, & 

Schiefelbein, 2019), maize (Marand, Chen, Gallavotti, & Schmitz, 2021; X. Xu et al., 2021), 

budding yeast (Jariani et al., 2020), and other organisms now exist.

4.2. Cell Counting and Visual Inspection

In most single cell workflows, including microfluidic, microwell, and split-pool approaches, 

cells and barcodes are brought together by random statistical processes rather than by 

manual, controlled pipetting. Though random, the distribution of cells in suspension during 

the partitioning step tends to obey simple Poisson statistics, thus giving the experimenter the 

ability to control and predict the outcome of the barcoding process merely by controlling the 

sample concentration. Thus, precise quantification of the concentration of high-quality cells 

in the preparation is paramount in these protocols. In our experience, poor cell counting is a 

leading cause of low-quality data, and is a topic worthy of further discussion. In this section, 

we will discuss the instrumentation, staining reagents, and guiding principles necessary to 

properly count cells for a single-cell experiment, and accurately distinguish live cells from 

dead cells and debris.

4.2.1. Counting instruments.—Image-based cell counters, as opposed to flow- or 

electrical impedance-based counters, are nearly essential for single-cell workflows. Manual 

hemocytometers and automated image-based cell counters are suitable for both visually 

inspecting the sample preparation and accurately measuring cell concentration. Typically, 

tissue dissociation carries through extensive undigested debris that can easily be mistaken 

for viable cells without expert guidance. Inspection of the preparation for cell integrity, 

aggregation, and debris, in conjunction with an accurate cell count, is critical for the success 

of any single-cell experiment. Below we discuss both sorter- and imaging-based counting 

approaches.

Sorter-based counting.: While it is common to carry out sample enrichment using a flow 

cytometer as an initial step to many single-cell workflows, the estimated counts produced 

by most flow sorting strategies are inadequate for precise tuning of the statistically-driven 

random capture process. Jet-in-air sorters are prone to some amount of cell breakage during 

the sort step, and imperfect gating strategies and sorter inefficiencies compound to make this 

a generally unreliable counting method (kb.10xgenomics.com - a, n.d). Moreover, sorters 

deposit cells along with a non-trivial volume of sheath fluid, which can result in a sample 

that is too dilute for direct loading into a microfluidics device or other single-cell workflow. 

Thus, sorted samples often have to be concentrated and re-counted by hemocytometer 

or image-based counters prior to use. While this provides an opportunity to revise the 

count and check for cell integrity before running an expensive experiment, some cells are 

invariably lost to breakage, failure to pellet, or adherence to pipet or tube wells during 

handling. When possible, it is best to carry out a few “dry-runs” to become familiar with 

the expected amount of sample loss at this final stage. Sorting a considerable excess of the 
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desired number of cells is the safest way to ensure that enough remain after washing and 

resuspension to achieve an optimal cell concentration.

Imaging cell counters.: Automated, microscopy-based cell counters are a workhorse 

instrument of any laboratory carrying out single-cell experiments, and are available from 

a number of commercial vendors. An ideal cell counter will produce a high-resolution 

brightfield image of the cell preparation and, ideally, offers multi-color fluorescence 

imaging, for use of a variety of viability stains. Since single-cell preparations are frequently 

precious and limited in quantity, a low-volume counting chamber that minimizes the amount 

of sample spent for counting can be essential. Many comparable devices are available that 

satisfy these requirements, including the ThermoFisher Countess, Nexcelom Cellometer, 

DeNovix CellDrop, and Logos Luna product lines. Perhaps more important than the specific 

choice of instrument, is a tight integration of the counting instrument into the sample 

preparation workflow, and an empirical understanding of how its cell counting results can be 

used to predict cell yields and experimental outcomes.

Direct imaging of the cell preparation also affords the chance to identify an inadequate 

single-cell suspension. Incomplete tissue digestion can produce a high fraction of small 

aggregates containing two or more cells that would likely be co-captured with a single 

barcode in droplet, microwell, or any other single-cell workflow. Manual inspection of 

several microscopic fields to assess the overall aggregation level is recommended before 

proceeding. Doublet and larger aggregate quantification can, in principle, be carried out with 

FACS instruments and other counting methods, but are generally a poor substitute for direct 

observation with an imaging system.

4.2.2. Viability Stains.—Cell viability screening is a critical decision point in any 

scRNA-seq protocol, where the data is extremely sensitive to the consequences of cell death. 

The rate at which cells begin to die varies dramatically across tissue types and dissociation 

conditions. Thus, viability should be monitored as frequently as possible throughout 

handling: immediately after dissociation, after column-based enrichment steps, after flow 

cytometry, and after any other significant handling step where cells may have begun to 

trigger cell death pathways. There is no firm rule for the minimum acceptable sample 

viability; an experimenter needs to weigh for themself the tradeoff between collecting 

data with a known amount of dead-cell contamination versus collecting new specimens, 

optimizing the protocol for better viability, and trying again down the road.

An ideal viability protocol should be rapid, to minimize handling and cell stress and, 

thus, dye exclusion methods tend to be preferred. For mammalian models, standard Trypan 

Blue exclusion is fast, accessible, and adequate for single-cell workflows. Alternatively, 

fluorescent counterstains such an Acridine Orange / Propidium Iodide (AO/PI) mixture 

provide contrasting colors for live, intact cells vs dye-permeable dead cells. Some evidence 

suggests that AO/PI stain outperforms Trypan Blue as a viability marker (Hanamsagar et 

al., 2020; Mascotti, McCullough, & Burger, 2000), so this method is preferred if a suitable 

cell counter is available. Assays that require enzymatic conversion of fluorogenic molecules 

such as Calcein AM or caspase substrates can, in principle, provide better sensitivity versus 
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background staining, but with the tradeoff of requiring relatively long incubation times 

during which the cell state is being artificially perturbed.

Digestion of plant tissues into protoplasts for scRNA-seq can frequently produce cell 

suspensions with brightly staining or autofluorescent cell wall components and organelles 

that can obfuscate counting with certain nucleic acid stains like AO/PI. Fluorescein diacetate 

(FDA) has been proposed as an alternative dye that mitigates some of these issues (Noland 

& Mohammed, 1997). In general, for plant tissue preps where large debris is unavoidable, 

manually counting unstained or Trypan Blue-stained cells with a hemocytometer may be 

preferred as a means of discriminating cells from artifacts. Whatever the counting method, it 

is important to optimize and perfect this step prior to running a very expensive and delicate 

scRNA-seq experiment.

4.2.3. Debris.—Amorphous and rigid non-cellular debris is a common byproduct of most 

tissue dissociation protocols, due to incomplete solubilization of the dense extracellular 

matrix. While this debris is generally inert from the standpoint of interfering with most assay 

chemistries, debris can lead to failure for a few reasons:

a. Large debris or too much debris can cause microfluidics or sorters to clog. Large 

debris may be removed using filters, while smaller debris can often be partially 

removed by washing with low-speed centrifugation.

b. Amorphous debris may be erroneously mistaken for cells, leading to an 

inaccurate cell count and underloading of the sample.

c. Debris may contain DNA or RNA, which will contaminate the data. This could 

be cellular debris that has DNA or RNA associated with it, or it could be red 

blood cells, which often skew cell counts on automated counters, leading to 

inappropriate sample loading. Alternatively, it could be contamination of another 

organism, such as bacteria or yeast.

If excessive debris is a recurring problem, cleanup by density gradient columns or cushions 

is probably the most reliable and broadly applicable approach (see section 4.4.4 below).

4.3. Problematic cell types

Certain cell types have biological properties that make them a challenge, particularly for 

scRNA-seq. Neutrophils and other granulocytes contain relatively few mRNA molecules, 

and high amounts of RNAses and proteolytic enzymes, making them exceedingly difficult to 

study without proper handling (Deerhake, Reyes, Xu-Vanpala, & Shinohara, 2021; Qi et al., 

2021; Xie et al., 2020). For microfluidic applications, extremely large or irregularly shaped 

cells such as hepatocytes or cardiomyocytes could have trouble fitting through narrow flow 

channels, causing clogs or shearing the cells apart. This is even more problematic for 

pancreatic acinar cells, which are large, fragile, full of digestive enzymes, and can burst and 

contaminate the entire sample, causing widespread cell death and RNA degradation. The 

intricate architecture of neurons generally causes problems when attempting to dissociate 

them intact from brain tissue and, as a consequence, single-nucleus RNA-seq has been 

widely adopted as a harsh but more reproducible work-around (see, “Single Nucleus RNA-
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seq” section below). It is always important to assess the compatibility of a given workflow 

with the cell types to be examined, and whether any alternative isolation strategy or protocol 

alterations can be attempted to mitigate the challenges.

4.4. Cell Type Enrichment and Sample Cleanup

The high cost-per-cell for even the most economical single-cell methods means that 

it is usually well worth the time and effort to perform some type of enrichment to 

sequence only the desired cells in the sample. Most commonly, one may wish to enrich 

for live and intact cells, though it may also be beneficial to enrich for certain cell 

types of interest to improve the representation of heterogeneous cell states and statistical 

significance in differential expression calculations. This can be done by using commercial 

immunomagnetic enrichment or depletion kits, sorting, or specialized enrichment steps like 

gradient fractionation. Each additional manipulation added to a single-cell isolation presents 

advantages and disadvantages, which must be considered carefully with respect to the goals 

of the experiment and the nature of the biological sample. In this section, we will discuss 

some helpful guidelines that are relevant to most single-cell methodologies.

4.4.1. Affinity Enrichment and Depletion.—Magnetic, antibody-based affinity 

columns are potentially the quickest and gentlest means of enriching cells of interest. 

Popular commercial solutions known to be compatible with single-cell workflows include 

the MACS (Miltenyi Biotec) and EasySep (Stem Cell Technologies) product lines. Pre-

designed antibody panels are available to enrich or deplete a variety of common cell types 

but, in principle, any combination of antibodies can be provided by the end user.

Positive vs. Negative Selection.: In some cases, antibodies used for cell type enrichment 

can have the undesirable side-effect of triggering signaling cascades via interactions with 

surface markers. To avoid perturbations in scRNA-seq gene expression signatures caused 

by antibody labeling, negative selection can be used to selectively deplete all or most of 

the other unwanted cell types in the sample, leaving the population under study untouched. 

Negative selection also allows more flexibility when using proteogenomic (e.g. CITE-seq, 

REAP-seq) approaches, since the surface epitopes were not blocked during the enrichment 

step.

If positive selection is preferred, it is important to consider whether the enrichment method 

introduces complications with any delicate downstream steps. For instance, magnetic bead-

based protocols tightly bind the targeted cells and beads together, and they remain associated 

for the duration of the experiment. In most cases, these beads are quite small compared with 

the diameter of the cell and, generally, do not interfere with downstream chemistry steps. 

However, it is important to first confirm with the manufacturer that the bead size will not 

interfere with size-restricted applications, and should generally be smaller than a typical cell 

diameter.

Dead cell depletion.: Dead and dying cells lose the ability to maintain phospholipid 

asymmetry on their plasma membranes, and phosphatidylserine (PS) that is normally 

restricted to the inner leaflet rapidly begins to translocate to the outer leaflet, where it is 
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exposed to the extracellular medium. This can provide a handle for affinity depletion using 

Annexin V, which tightly and specifically binds PS (Fadok et al., 1992; Koopman et al., 

1994). Rapid magnetic dead-cell depletion kits are available that can be applied to most 

cell types if the viability of the cell suspension is low. In many cases, the resulting column 

flow-through can be dramatically enriched for live cells. However, these methods can hurt 

overall cell recovery, and are risky to employ if working with low cell numbers. Moreover, 

in preparations where cell death is proceeding rapidly during handling, even the short time 

taken for enrichment may not offset the rate at which cells are dying. One should also 

be cautious of buffer compatibility: in particular, EDTA is present in some buffers, which 

chelates divalent cations and must be washed away prior to reverse transcription or other 

Mg2+ dependent enzymatic steps.

4.4.2. Red Blood Cells (RBCs).—Most animal tissue preparations will contain many 

RBCs, which harbor a significant number of mRNA and are often seen as a nuisance in 

scRNA-seq studies. If left alone, RBCs might co-encapsulate with other cell types, or burst 

during sample handling and release RNAs that contaminate other cells in the batch. Affinity-

based RBC depletion kits are available from many manufacturers. Alternatively, RBCs can 

be selectively lysed in ammonium chloride buffer (Miller, 2016) during preparation of the 

single-cell suspension. Such RBC lysis steps are generally well tolerated for scRNA-seq 

provided residual ammonium chloride or other potentially incompatible compounds are 

removed by washing, and that they are rapid enough that gene expression profiles are 

unlikely to be perturbed significantly.

4.4.3. Fluorescence-activated cell sorting (FACS).—Employing an upstream flow 

sorting step in any single-cell workflow can serve three purposes simultaneously: 1) 

Enrichment of desired cells based on fluorescent markers, 2) Elimination of problematic 

debris, and 3) Concentration of cells without the need for additional risky centrifugation 

steps. With a streamlined staining workflow and a validated gating strategy, sorting can often 

provide the quickest route to a clean, usable sample.

Flow sorting is also more customizable than the magnetic enrichment and depletion kits. 

Consider a hypothetical experiment where two distinct cell types must be enriched from the 

same sample, but one of the cell types is comparatively rare, and the sample is precious. 

Most sorters can simultaneously sort two or more gated populations, wasting nothing 

as the sample passes through the instrument. The final sorted populations can then be 

re-combined in any desired ratio, boosting the representation of the rarer cell type. Such 

sample re-composing would be extraordinarily difficult without FACS. Moreover, cells can 

be sorted by additional features such as viability, size, granularity, and multiple endogenous 

and exogenous fluorescent markers.

Instrumentation.: While many high-end sorters such as the BD FACSAria line can 

spectrally resolve dozens of fluorophores, single-cell experiments may be more amenable 

to simpler, low-dimensional color panels to preserve heterogeneity for the downstream 

experiment. Sony Biotechnology offers a lower-cost alternative (the SH800 family) that can 

use up to six colors and sort into both tube and plate formats, making it flexible for a variety 

of workflows. More recently, several manufacturers have released specialized microfluidics-

Regan and Preall Page 17

Curr Protoc. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based sorters with fewer color options and output formats, but are optimized for ease-of-use 

and much gentler conditions, which minimize cell death during handling. These include 

the MACSQuant Tyto (Miltenyi), WOLF product line (Nanocellect), the Sort (On-Chip 

Bio), and the S3e (Bio-Rad). These sorters are aimed at individual labs and single-cell core 

facilities rather than specialized flow cytometry facilities, and can help streamline workflow 

logistics, avoid queuing for sorter time, and minimize the need for trained sorting specialists.

Drawbacks.: Most conventional flow sorters subject cells to relatively high pressures and 

shear stresses that, if not handled carefully, could lead to premature lysis or trigger an 

acute stress response that alters the transcriptome. Antibody staining also requires additional 

incubation times that may further alter gene expression patterns, though generally these 

steps can be performed on ice, to minimize perturbations. After sorting, it is critical to verify 

the cell counts prior to single-cell processing, as the count estimates produced by sorters are 

often unreliable, unless the sorting strategy has been extensively validated.

4.4.4. Optiprep/Gradient Enrichment.—Centrifugation through a density gradient 

medium can be used to separate cell types based on buoyancy, as well as deplete dead 

cells or debris from a single cell suspension. Specifically in scRNA-seq applications, 

stepwise iodixanol (Optiprep) gradients have been used to enrich for live Drosophila 

hemocytes (Tattikota et al., 2020), enrich for stellate cells during dissociation of pancreatic 

tissue (Dominguez et al., 2020), and to remove myelin and other debris for snRNA-seq 

(Del-Aguila et al., 2019). Other density gradient media have also been validated for 

single-cell applications, including sucrose (Ayhan, Douglas, Lega, & Konopka, 2021), 

Nycodenz (Dominguez et al., 2020), Percoll (Guldner, Golomb, Wang, Wang, & Zhang, 

2021), and Ficoll (Mereu et al., 2020). Gradients are also effective means of separating 

nuclei and debris, and are generally well tolerated for snRNA-seq, especially in challenging 

tissue such as postmortem human brain (Maitra et al., 2021). Bear in mind that the high 

solute concentrations may interfere with downstream enzymatic steps, and may need to be 

extensively washed or diluted before processing. Serumwerk, a provider of density gradient 

media, offers a collection of cell type–specific isolation protocols that may serve as a helpful 

resource when designing a new sample prep workflow: https://diagnostic.serumwerk.com/

downloads/.

4.4.5. Low Speed Centrifugation.—Live and dead cells can have differing buoyancies 

even in standard wash buffers, and this can be exploited as a simple enrichment step. 

Spinning at or below 200xg can gently pellet large, dense live cells, while dead cells are 

retained in suspension (Hanamsagar et al., 2020). Centrifugation speed is an important 

consideration, as it can cause the unintentional enrichment of certain cell types, as certain 

cell populations will pellet at lower speeds while others will pellet at higher speeds. 

Moreover, higher speed centrifugation can result in lower cell viability of the sample (Pavel, 

Sandra, Jaroslav, Mikael, & Radek, 2019), so empirical optimization is required.

5. Cryopreservation and Fixation

Performing scRNA-seq on fresh tissue is not always possible, so cryopreservation or 

chemical fixation can, in many cases, be used to temporarily preserve cells prior to the 
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single-cell experiment (Figure 3). Preservation has many advantages: it facilitates sample 

batching to reduce some types of technical artifacts, particularly in longitudinal or time-

course studies; it allows flexibility in the case of human tissues collected from surgeries 

at remote sites or during unusual hours; it aids in logistics across multi-center studies; it 

enables sample pre-screening and confirmation, e.g. via histology; and greatly simplifies 

splitting of the tissue across multiple assay types. Recently, this practice has been put 

to good use in collecting cohorts of frozen COVID-19 infected lung biopsies that were 

aggregated into a large-scale, multi-patient atlas of lethal disease (Melms et al., 2021).

In exchange for this flexibility, however, the overall quality of the data tends to suffer 

relative to fresh samples, and it risks imparting biases in favor of cells that fare better under 

the preservation method used. Preservation protocols often need to be optimized for specific 

tissues and, critically, validated for the subsequent single-cell workflow. In this section, 

we discuss the methods and trade-offs of storing cells by cryopreservation, hypothermic 

preservation, and fixation. Using flash frozen tissue to perform snRNA-seq will be discussed 

in a later section.

5.1. Cryopreservation

Cryopreservation techniques have been well optimized for most single-cell genomics 

workflows, including scRNA-seq (D. Chen et al., 2021; Denisenko et al., 2020; Guillaumet-

Adkins et al., 2017; Morsey et al., 2021; Wohnhaas et al., 2019; S. Z. Wu et al., 

2021) and ATAC-seq (Fujiwara, Baek, Varticovski, Kim, & Hager, 2019; Rocks et al., 

2021). In general, standard cell-culture cryopreservation practices can be applied to a 

single-cell suspension for downstream scRNA-seq; i.e., slow freezing in media containing 

cryoprotectants such as DMSO and high serum content (Kielberg, n.d.). Ideal freezing 

conditions should be determined empirically for each type of sample, optimizing for 

cell viability and yield after thawing. Many types of tissue samples can be effectively 

preserved either as solid, finely separated chunks or as enzymatically dissociated single cell 

suspensions, with only minor effects on sample quality (S. Z. Wu et al., 2021).

The biological consequences of cryopreservation, while minor, should not be neglected 

during proper study design. In heterogeneous tissues, cell types may show differing 

sensitivity to the freeze-thaw process, leading to potential skewing of the sample 

composition towards the hardier cell types that remain viable after thawing. In scRNA-seq, 

global gene expression levels are roughly comparable between fresh and frozen samples, 

though acute changes in stress-related gene expression programs can confound analysis 

across preservation methods. Induction of immediate-early response genes such as the 

transcription factors FOS and JUN during handling can obscure biological variability and 

must be corrected for with computational methods (Morsey et al., 2021; van den Brink 

et al., 2017). Additionally, the freeze/thaw process can result in cell breakage, which can 

contaminate the cell suspension with dissolved RNA unless extensively washed (see the 

“Ambient RNA” section, below), requiring further care in handling. As with any element 

of good experimental design, it is critical to closely match the preservation conditions and 

handling across samples in a large, multi-sample study.
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5.2. Hypothermic Preservation

As an alternative to cryopreservation, several groups have reported controlled studies 

demonstrating the feasibility of short-term (< 3d) storage of intact tissue in specialized 

hypothermic storage media at 4°C (Madissoon et al., 2019; W. Wang, Penland, Gokce, 

Croote, & Quake, 2018). In these studies, both 10X Genomics and Smart-Seq2 scRNA-seq 

protocols seem to be highly tolerant to hypothermic storage, evidenced by very minor 

changes in both gene expression profiles and cell viability. Longer storage duration does 

correlate with a higher fraction of ambient RNA (see section below) released from lysed 

cells, but this relatively minor tradeoff makes hypothermic storage a favorable protocol for 

coordinating human patient samples that often are collected on irregular schedules.

5.3. Fixation

As an alternative to freezing, some tissues and genomics applications may be amenable to 

preservation by fixation. Both chemical crosslinking and methanol dehydration methods of 

fixation have been reported in single-cell workflows, with varying levels of success. It is 

important to note that fixation methods tend to introduce substantial biases to the molecular 

readout, making data integration with non-fixed samples more challenging. Here, we will 

discuss advantages and disadvantages of two commonly used fixation techniques, chemical 

fixation and methanol fixation.

5.3.1. Chemical fixation.—Fixation by covalent crosslinkers is required for many 

split-pool barcoding methods in scRNA-seq and multiomic methods such as SHARE-seq 

(Ma et al., 2020), but is not frequently used for droplet based scRNA-seq that rely on 

first-strand cDNA synthesis from intact RNA. In split-pool methods, the fixation is critical 

to the barcoding step, and the fixation step may need to be optimized to improve library 

complexity and reduce background RNA contamination (Ma et al., 2020; Rosenberg et 

al., 2018). Paraformaldehyde solutions of 1–4% v/v are most commonly used, though 

alternative fixatives such as glyoxal (Bageritz et al., 2021) and dithio-bis(succinimidyl 

propionate) (DSP, a.k.a. Lomant’s reagent) (Attar et al., 2018) have been reported. The 

main challenge with chemical fixations is the reduced accessibility of poly-A RNA substrate 

to RT enzyme and impaired processivity, which can severely reduce cDNA yield, length, 

and mappability. This can be circumvented by reversing crosslinks by treating with high 

temperature and proteases at a point between initial barcoding reactions and final cDNA 

amplification. Split-pool methods such as SPLiT-seq have a step-wise workflow that 

provides an easy opportunity to reverse crosslinks. Recently, a derivative of Drop-seq called 

FD-seq introduced a technique to enable crosslink reversal after droplet encapsulation (Phan 

et al., 2021), but popular droplet platforms that rely on conventional poly-A-primed library 

construction such as 10X Genomics do not seem amenable to formaldehyde fixation without 

significant protocol modifications. In 2022, 10X Genomics announced a new fixed RNA 

workflow that uses a panel of hybridization probes that are ligated in situ to quantify unique 

mRNA molecules, rather than using standard cDNA library chemistry.

5.3.2. Methanol fixation.—Somewhat more widespread success has been reported for 

methanol-based fixation methods, which immobilize proteins and nucleic acids by a mixture 

of dehydration and precipitation (Alles et al., 2017a; Troiano, Ciovacco, & Kacena, 2009). 
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Generally, a prepared single-cell suspension is brought drop-wise to 80% methanol before 

cryopreservation or refrigerated storage for an indefinite duration. Cells are later recovered 

by controlled rehydration, but recovery of intact RNA is strongly dependent on the tissue 

type and buffer conditions. Buffers comprising PBS + 0.01% w/v bovine serum albumin 

or saline sodium citrate (SSC) have been compared and contrasted for various cell types, 

with mixed results (Alles et al., 2017a; Denisenko et al., 2020). Thus, this process should be 

thoroughly optimized prior to a single-cell experiment.

Methanol-based fixation has also recently been demonstrated to enable a novel intracellular 

proteogenomic strategy called INS-seq (Katzenelenbogen et al., 2020). Here, cells are 

fixed with methanol and ammonium sulfate, and permeabilized to allow binding of oligo-

conjugated antibodies to intracellular antigens, similar to CITE-seq and REAP-seq. The 

method is compatible with the 10X Genomics platform, thus enabling joint measurement of 

transcriptomes and intracellular protein abundance in the same cells.

5.4. Fixation vs. Preservation.

The ideal choice of preservation technique may vary depending on the tissues of 

interest and other nuances, but most comparison studies have found cryopreservation to 

better recapitulate the gene expression profiles of fresh tissue (Wohnhaas et al., 2019). 

Cryopreservation has sometimes been found to deplete certain cell types if the freezing 

conditions are not optimized for the specific tissue (Denisenko et al., 2020), but returned 

similar cell type percentages to the fresh tissue in other studies. In contrast, fixation methods 

have been found in multiple studies to result in more ambient RNA background (see section 

7.2.2), and have sometimes been reported to significantly reduce RNA yield compared with 

fresh tissue (Alles et al., 2017b; Denisenko et al., 2020; Wohnhaas et al., 2019). Fixation can 

also interfere with other downstream steps, such as cell type enrichment by flow cytometry 

or screening for viability.

6. Quality Control and Key Decision Points

Careful monitoring of key quality control (QC) metrics throughout a single-cell experiment 

is critical to avoid wasteful expenditure of resources on poor quality samples. There are 

three main QC-driven decision points in a typical scRNA-seq workflow that provide an 

opportunity to cut losses and try again. These decision points naturally fall at points along a 

workflow where significant amounts of resources (in terms of time, money, or preciousness 

of the samples) are about to be committed to the subsequent step. Briefly, these QC 

checkpoints are: 1) sample preparation and single cell suspension quality, 2) cDNA/library 

quality, and 3) pilot-sequencing quality (Figure 4). Deciding whether to proceed with or to 

abort a borderline experiment depends chiefly on how quickly a replacement sample can be 

prepared, but even in the case of one-of-a-kind samples, certain minimum thresholds should 

be met to avoid wasting resources on utterly useless data. In this section, we will discuss 

how to make effective use of each of these three checkpoints and avoid the familiar pitfall of 

“garbage in, garbage out.”
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6.1. Single Cell Suspension Quality

Failure to properly optimize tissue dissociation can manifest in several ways: poor viability, 

low cell counts, high levels of non-cellular debris, and large cellular aggregates. If any 

of these parameters are unsatisfactory, recovering from the problem in a ‘live-experiment’ 

setting is often fruitless and endangers all samples in an experiment through extended 

exposure to stress conditions.

It is essential to inspect sample preparations under a microscope before committing to 

any expensive protocol steps. Clumpy or aggregated suspensions result from incomplete 

enzymatic digestion. Large aggregates are especially problematic for droplet-based systems, 

as they can clog the microfluidics channels and ruin the emulsion. An excessive number of 

small, 2–3 cell clumps will also severely confound downstream data analysis, since they will 

be barcoded together and display a blend of transcriptomes. While it is impossible to remove 

all such ‘sticky doublets’ from your sample, the observed ratio of clumps to singlets should 

be evaluated prior to committing to the experiment (Figure 5). Many single-cell protocols 

suggest filtering out clumps using a standard 40 μm flow cytometry cell strainer or similar 

filter device. While these can remove larger aggregates, it is essential to visually inspect the 

results after straining. Often, such strainers do not adequately filter away small cell clusters, 

in which case further enzymatic dissociation or doublet discrimination via flow cytometry 

may be called for.

6.2. cDNA / library quality

Once the initial barcoding step has been performed, the second checkpoint comes when 

assessing the quality of the resulting cDNA or ATAC tagmentation pattern, generally using 

Agilent Bioanalyzer or Tapestation electrophoresis systems (Picelli et al., 2014).

In scRNA-seq workflows, a high-quality full-length cDNA library can be visualized as a 

broad peak from 1kb-10kb, spanning the natural range of cDNA lengths in the cells of origin 

(Figure 6A). The mass yield and average molarity of this library can be estimated by the 

instrument software, and used to normalize and adjust sample input for the downstream 

steps of library finalization. Low cell viability can be distinguished by broader and lower 

molecular-weight peaks of several hundred base pairs, indicating RNA degradation. Large 

spikes at the < 150bp range generally arise from PCR adapter artifacts, and are especially 

pronounced in low-quality libraries with insufficient input cDNA. A library displaying 

low-QC characteristics at this stage may still produce a valid, sequenceable library after 

fragmentation, but will generally contain high levels of PCR duplication, few UMIs, and few 

unique genes per cell (Figure 6B). Considering the cost, low-quality samples are generally 

better left unsequenced.

ATAC-based workflows should also be screened for appropriate quality. Ideally, chromatin 

tagmentation should produce a characteristic nucleosome “ladder”, with broad peaks of 

~250 bp (~150 bp for each nucleosome monomer, plus 50–100 bp for the adapter sequence, 

depending on the protocol). Over-fragmentation, mainly caused by a molar excess of 

Tn5 enzyme, will produce a single mononucleosome peak, while under-fragmentation will 

produce 1 kb+ poly-nucleosomal fragments (Figure 6C, left). Longer library fragments will 
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grossly underperform on Illumina sequencing instruments due to kinetic competition during 

cluster formation.

In many cases, measures can be taken to deplete problematic artifacts prior to sequencing. 

Bead-based DNA size selection protocols (e.g. Ampure XP or SpriSelect, Beckman Coulter) 

can be tailored to deplete low- or high-molecular weight contaminants with good yield on 

the desired size range (Figure 6C, right). Bead-based depletions, however, have imprecise 

cutoff thresholds, and if more precision is required to remove an artifact with similar 

molecules weight to a desired band, agarose or acrylamide gel electrophoresis should be 

used. Generally, careful intervention at this stage can dramatically improve sequencing 

performance later on.

6.3. Pilot-Sequencing Quality

For large-scale projects requiring several billions of reads, performing a low-depth first 

sequencing pass can act as a final quality-control checkpoint. The purpose here is to address 

some basic questions about library quality, for example: Is the barcode structure correct? 

What is the fraction of duplicated reads? What is the overall genome mapping rate? How 

many unique cell barcodes are detected, and how are the reads distributed among them? 

Many of these concerns can be satisfactorily addressed with only a few million sequencing 

reads per library, or about 5–10% of the final required depth needed for the project.

A typical single-cell project might involve many separate biological samples, each 

comprising thousands of single cells. When pooling samples together for a sequencing run, 

it is difficult to accurately estimate relative molarities of each library based only on average 

molecular weight and concentration. Additionally, samples may comprise dramatically 

different numbers of cells, leading to varying amounts of reads per cell across each of the 

samples in the pool. Pilot sequencing can provide a valuable opportunity to assess sample 

quality, re-pool according to new molarity estimates, or drop samples altogether.

Even at very low depths, “skim” sequencing can provide a useful estimate for the number 

of successfully captured cells in each sample. The relative molar ratios of each sub-library 

in the pooled sample can be used to estimate the yield for larger scale sequencing runs, 

which can, in turn, be divided among the rough cell number estimate to provide a projection 

of the final expected number of reads per cell. At this stage, adjusting the pooling ratios 

of individual under- or over-represented samples can dramatically improve the odds of 

achieving a well-balanced study after the expensive final sequencing step.

7. Batch Artifacts

In any genomics experiment, the cumulative effects of minor, often intangible, technical 

differences across sample batches prepared at different times or under different conditions 

can contribute a non-trivial amount of variation in the resulting data. The exact definition of 

a sample “batch” is commonly debated, and the term is often used as a catch-all describing 

a variety of technical covariates, including the date and time of the experiment, the 

individual(s) handling samples, reagent lots, among others. Batch artifacts can be especially 

pronounced in single-cell experiments, which usually entail delicate, sensitive workflows 
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that provide ample opportunities for unintended variation. It is important to keep in mind 

the potential sources of technical, batch-dependent variation, and minimize them wherever 

possible using a combination of good laboratory practice, robust experimental design, and 

bioinformatic compensation.

7.1. Common sources of batch artifacts.

Nearly every step of a single-cell workflow presents potential sources of batch variation. 

During tissue dissociation, slight alterations in digestive enzyme concentration, incubation 

time, temperature, or agitation method can bias the liberation of certain cell types over 

others, leading to different single-cell suspension compositions from ostensibly similar 

tissues (Denisenko et al., 2020). Prolonged dissociation at higher temperatures can also 

induce stress response pathways, the extent of which can differ substantially across batches 

(Adam, Potter, & Potter, 2017). The exponential kinetics of PCR steps are particularly 

sensitive to subtle variations in master mix formulation, temperature control, and cycle 

numbers, which can influence the uniform representation of unique molecules in the library. 

Fragmentation steps, such as enzymatic or sonication-based methods used in 3’-digital 

RNA-seq or Tn5 transposition in ATAC-seq, are highly sensitive to incubation time and 

temperature. Many library workflows also include one or more cleanup steps that make use 

of nucleic acid binding beads. Efficient and reproducible binding and elution from such 

beads requires mindful adherence to the manufacturer’s protocol; for example, allowing 

them to overdry before elution can dramatically reduce yields and cause precious UMIs to 

be permanently lost from the pool.

Minimizing variation in these time-sensitive steps can be as simple as setting up a sensible, 

well laid-out workspace with reliable access to necessary items and using laboratory timers 

to strictly adhere to reproducible intervals. Temperature variation can be mitigated by pre-

setting thermal cyclers or heating blocks, and moving samples directly to and from wet 

ice. Samples should be processed in parallel whenever possible, potentially even at the 

time of euthanizing and dissecting in the case of animal studies, where large differences in 

post-mortem interval could perturb the underlying biology.

Batch effects can technically also be introduced at the sequencing step, though this has 

become less of an issue in recent years as DNA sequencing technology matures. Modern 

libraries typically use DNA barcodes to distinguish pooled samples rather than splitting 

across physical lanes that could suffer from manufacturing defects or pipetting errors. Using 

barcodes, all samples of a given study can be easily pooled and sequenced together, such 

that any technical variation is shared across the study. Barcoded libraries can be repeatedly 

sequenced to achieve greater depth, and the performance of current sequencing instruments 

is such that flow cell differences do not significantly contribute to batch effects (Tung et al., 

2017). The main consideration is to ensure that no samples in the study are grossly under- or 

over-sequenced in terms of UMIs per cell, reads per cell, or whatever the appropriate metric 

for the application.
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7.2. Ambient RNA

Of all potential sources of batch-related noise in single-cell RNA-seq, contamination of 

the extracellular medium with dissolved, “ambient” RNA is possibly the most significant. 

Ambient RNA is released from dying or mechanically lysed cells and becomes uniformly 

distributed in the sample medium. Following controlled lysis, it is co-barcoded along with 

the desired intracellular RNA, mixing with the captured cell’s own transcriptome. In an 

unoptimized workflow, the extent of ambient RNA contamination can vary dramatically 

across samples, even on the same day and in the hands of a single experimenter. Large, 

fragile cells with high mRNA content are the most problematic, particularly secretory cell 

types such as plasma cells, pancreatic acinar cells, and others, depending on the tissue being 

studied. To avoid ambient RNA contamination, it can be helpful to minimize mechanical 

stress (e.g. over-pipetting) during sample preparation and to finish with one or more low-

speed centrifugal washing steps just prior to loading the single-cell capture device.

With high ambient RNA contamination, cross-sample comparisons become highly batch-

confounded, and ambient genes will dominate differential expression tests across all 

cell types in the study. Informatically minimizing the consequences of ambient RNA is 

an idiosyncratic challenge that usually requires domain knowledge of the tissues being 

studied. In droplet-based platforms such as 10X Genomics, the extent of ambient RNA 

contamination can be estimated by carefully examining the residual gene counts detected 

in “empty” droplets, but only if this raw data can be accessed. Most publicly available 

datasets exclude empty droplet information unless raw sequencing data is requested from the 

original authors. Several statistical and machine learning-based tools have been published 

that perform subtraction of the estimated ambient RNA fraction (Fleming, Marioni, & 

Babadi, 2019; Yang et al., 2020; Young & Behjati, 2020), and produce improved differential 

expression analysis and data integration results. Ambient RNA subtraction methods have 

proven useful for data integration across large scale tissue atlases assembled under varying 

conditions in different labs, such as the recently released Fly Cell Atlas (H. Li et al., 2021).

8. Single Nucleus RNA Sequencing (snRNA-seq)

snRNA-seq is an increasingly popular protocol variant that can produce results when 

preparing a freshly dissociated single cell suspension is non-optimal (Nadelmann et al., 

2021; Thibivilliers, Anderson, & Libault, 2020). In cases of fragile cell types, such as 

neurons, nuclear dissociation is strongly preferred, in order to avoid biases in recovered 

cell types or fragmentation of cell bodies, since it bypasses standard enzymatic dissociation 

steps. Perhaps the biggest advantage of working with nuclei, is that it greatly facilitates 

working with frozen tissues that have not been fixed or cryopreserved as single cells. This 

allows for easy batching of samples across time or location by flash-freezing small tissue 

punches at the time of harvest for parallel processing later for snRNA-seq. This advantage 

has been exploited for a number of large-scale tissue atlas projects (Bakken et al., 2018; 

Eraslan et al., 2021; Kanton et al., 2019; Lake et al., 2018).

The other key advantage to snRNA-seq is compatibility with additional genomics modalities 

in high-throughput “multi-omics” applications. After plasma membrane removal, native 

histone-wrapped genomic DNA is accessible for tagmentation by Tn5 or other enzymatic 
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manipulations. Nuclear isolation also exposes intracellular antigens to barcode-conjugated 

antibodies, which can be quantified simultaneously with mRNA after light fixation 

(Katzenelenbogen et al., 2020). All three modalities can even be combined from single 

nuclei to capture a combined readout of transcriptome, protein expression, and chromatin 

state (Mimitou et al., 2021; Swanson et al., 2021). It should be noted that some multiomics 

approaches such as SHARE-seq have demonstrated that nuclear isolation is not a strict 

requirement, and one can rely on gentle fixation and permeabilization of whole cells to 

expose chromatin during transposition (Ma et al., 2020).

8.1. General Protocol Considerations for Nuclei

General methods for isolating nuclei prior to single-cell analysis have been extensively 

described (Krishnaswami et al., 2016; Nadelmann et al., 2021; Nott, Schlachetzki, Fixsen, 

& Glass, 2021; Santos et al., 2021; Slyper et al., 2020). In general, snRNA-seq requires no 

substantial change to the chemistry of standard scRNA-seq, aside from adjusting the number 

of cycles during the cDNA amplification stage to account for the lower mRNA content 

of nuclei. Even when following published guidelines, it is good practice to thoroughly 

optimize a nuclear isolation protocol to maximize yield, nuclear integrity (see QC, below), 

and RNA recovery. Aside from the reduced mRNA yield, another disadvantage is that very 

few lineage-selective protein markers exist to facilitate sorting or affinity purification of 

nuclei for cell type enrichment. Thus, enrichment will generally have to be carried out on 

dissociated, intact cells prior to nuclear isolation and can generally not be achieved with 

nuclei prepared directly from solid tissue.

8.2. Tissue-Specific Considerations for Nuclei

Like dissociation protocols for standard scRNA-seq, snRNA-seq nuclei isolation should 

be optimized to address tissue specific challenges like differences in extracellular matrix 

composition or cell type composition. Here, we will focus on a few common tissue types 

and the necessary considerations that must be taken to isolate nuclei for snRNA-seq from 

them.

Brain.—Due to the challenge of dissociating brain tissue into live intact single cells, 

and because both fresh and frozen brain tissue lends itself well to detergent-based nuclei 

extraction, many researchers choose snRNA-seq over scRNA-seq. Compared with other 

organs, brain tissue readily disintegrates in most lysis buffers, and mechanical or enzymatic 

breakup of the tissue is less important; tissue can generally be disrupted by mild pipetting. 

The resulting single nuclei suspension will contain debris, which is not compatible with 

droplet-based snRNA-seq and, therefore, the most critical step is its removal, generally 

through gradient centrifugation or positive selection of nuclei by FACS (Krishnaswami 

et al., 2016; Thrupp et al., 2020; Welch et al., 2019). Excessive myelin fragments can 

also be cleared by commercially available bead-depletion kits (Pennartz, Reiss, Biloune, 

Hasselmann, & Bosio, 2009; Yamazaki et al., 2021).

Nuclease-rich tissue.—Nuclear RNA-seq of nuclease-rich tissue such as pancreas, 

present additional challenges due to rapid degradation of exposed RNA not protected by 

a plasma membrane. In these tissues, FACS upstream of the lysis may be necessary to 
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remove problematic cell types and to clean the preparation of degradative enzymes. Rapid 

processing under strictly ice-cold conditions in the presence of high concentrations of 

RNAse inhibitors may also help improve RNA yield.

8.3. Sorting Nuclei

Sorting away the myelin and debris can be an effective one-step strategy to prepare 

nuclei for snRNA-seq. A wide range of intercalating DNA dyes can clearly mark nuclei 

versus debris, including DAPI, propidium iodide (PI), 7-AAD, and others. Since nuclei are 

somewhat hardier to shear stresses than intact cells, smaller sorter nozzles or chip diameters 

can be exploited to increase sort rates and reduce dead volume in the final sorted sample 

(Santos et al., 2021). The more concentrated eluate can allow users to skip risky downstream 

wash steps and sort directly into the sample loading buffer, e.g., for 10X Genomics, without 

diluting the reaction mixture beyond optimal levels.

Lineage enrichment can also be carried out directly on nuclei, though to a lesser extent than 

with intact-cell sorting. Some FACS-compatible lineage markers have been widely validated, 

such as the pan-neuronal marker NeuN (Dammer et al., 2013), while other marker panels 

to further distinguish microglia and oligodendrocytes have been explored with some success 

(Nott et al., 2021).

For workflows involving ATAC-seq, it should be noted that some nuclear stains used for 

sorting, including DAPI and ethidium homodimer, have been reported to interfere with 

Tn5-mediated transposition (kb.10xgenomics.com - b, n.d.). Careful optimization of both 

the type of sorting stain and its concentration should be performed prior to a single-cell 

experiment.

8.4. Disadvantages of snRNA-seq

When choosing to perform snRNA-seq over scRNA-seq there are a few disadvantages to 

take into consideration. In this section, we will discuss how RNA degradation and the 

differences between cytoplasmic and nuclear RNA may make snRNA-seq less optimal for 

certain types of tissues and studies.

Degradation.—Removal of the plasma membrane exposes mRNAs to RNAses that may 

be present in the tissue homogenate (Slyper et al., 2020), which, in the cases of digestive 

tissues like the pancreas, can dramatically increase the challenge of recovering intact RNA 

for sequencing. Nuclei also tend to be more susceptible to aggregation than intact cells, and 

careful optimization of detergent, salt, and carrier protein concentrations must be performed 

if working with an unfamiliar tissue type, to prevent total sample loss by catastrophic 

clumping.

Nuclear vs cytoplasmic RNA.—While a large portion of the cellular mRNA content 

is contained within the cytoplasm, enough nascent pre-mRNA is present in the nucleus 

to produce a transcriptome that is largely representative of the full complement of mature 

mRNAs (Bakken et al., 2018). As expected, nuclear RNA contains a much higher proportion 

of unspliced pre-mRNA, which due to the degenerate nature of the sequences that often 
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comprise introns, can lead to generally lower mapping rates (Bakken et al., 2018; Broseus 

& Ritchie, 2020; Thrupp et al., 2020). Importantly, nuclei preparations can be fine-tuned by 

carefully adjusting detergent conditions to optimize co-purification of mature mRNAs that 

are stably bound to the outer nuclear membrane or rough ER (Drokhlyansky et al., 2020). 

Such preparations can increase total mRNA recovery and boost the exon/intron detection 

ratio, which may better reflect the functional transcriptome of the cells of interest. Despite 

the advantages some protocol variants may offer, it may be better, in some cases, to match 

the isolation conditions of a chosen reference study than to improve the results by changing 

the protocol and introducing systematic challenges for integrated data analysis.

8.5. QC and Counting of Nuclei

High-quality nuclei appear as smooth circles with well-defined borders under high 

magnification, with no signs of shriveling, fragmentation, or leakage of nuclear contents, 

the latter as evidenced by a diffuse blur of irregular material around the nuclear periphery. 

Dyes that stain nucleic acids such as PI and Ethidium Homodimer are effective at staining 

nuclei for accurate counting, as they do not stain debris. In contrast, Trypan Blue may 

not provide sufficient contrast between large debris fragments and nuclei for the purposes 

of automated cell counters. After counting, snRNA-seq is largely the same as scRNA-seq. 

Some protocols such as DroNc-seq may optimize flow rates and microfluidics specifically 

for nuclei (Habib et al., 2017). However, commercial microfluidic platforms, including the 

Chromium scRNA-seq products, are compatible with snRNA-seq without modification and 

are now used more broadly than those requiring specialized equipment. The main change 

to the library preparation that may be needed is an increase in the number of cDNA 

amplification cycles to account for the lower RNA content of nuclei.

9. Sequencing considerations

Once a single-cell library is generated, the question still remains of how to properly 

sequence it to achieve the desired goals without wasting resources. Since sequencing can 

account for roughly half of the budget of a single-cell experiment, it is important to 

economize wherever possible, and use only the minimal sequencing strategy that satisfies 

the needs of the project. For instance, certain applications will require longer reads to 

improve mappability or coverage, while others can tolerate shorter reads, freeing up budget 

for additional depth. Each single-cell methodology also utilizes its own barcode structure, 

creating a wide variety of required read formats, some more cost-efficient than others. 

Libraries will also vary in composition, depending on both biological and technical factors, 

and choosing the appropriate sequencing depth requires knowledge of each. In this section, 

we will discuss these considerations and provide insight on how to design an effective 

sequencing strategy.

Single-cell experiments demand a lot of sequencing depth. As studies grow to the million-

cell scale and beyond, the only viable sequencing platforms are those capable of delivering 

tens of billions of sequencing reads at an affordable cost. Illumina instruments are the 

current standard for the majority of single-cell applications because they yield the highest 

numbers of high-accuracy reads per unit cost, with the tradeoff that the reads are relatively 
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short compared with competing technologies like Oxford Nanopore (ONT) and Pacific 

Biosciences (PacBio). The throughput of Illumina sequencers spans a range from 1M to 20B 

reads per run, and sequencing kits are sold in discrete read length scales ranging from 50 

to 600 bp, depending on the instrument. A typical single-cell experiment with thousands 

of cells will require hundreds of millions to billions of reads to adequately saturate the 

analysis so, in practice, Illumina’s largest scale instrument families, NextSeq and NovaSeq, 

are the most common choices. Recently, however, alternative single-cell library construction 

strategies have begun to emerge to take advantage of the long-read capabilities of ONT 

and PacBio. Understanding how to properly tailor a sequencing strategy to suit the goals 

and requirements of the project by selecting the optimal read lengths, sequencing depth, 

and technology platform is critical to maximizing the return on investment and producing 

high-quality data.

9.1 How Deeply Should I Sequence?

Planning an appropriate sequencing strategy depends both on the scientific goals of the 

project, as well as the technical constraints of the single-cell library type. Is the main 

objective to conduct a survey of cell types across different conditions? Is it to discover new 

gene expression patterns and cell states within a subtly varying heterogeneous population? 

To pick out a few rare cells from the tissue milieu? Or to quantify certain lowly-expressed 

genes? Will this particular library benefit from ultra-deep sequencing, or will it suffer from 

diminishing returns as money is spent on more reads?

9.1.1. Sequencing saturation.—The first thing to consider when planning a targeted 

sequencing depth is the expected complexity of the libraries. Even a very low-quality batch 

of input cDNA can be amplified by PCR to produce enough DNA for sequencing: such 

libraries, however, are full of duplicate molecules and will typically saturate the detection 

of novel UMIs very quickly, and over-sequencing would be a waste of resources. Likewise, 

certain cell types naturally contain fewer mRNA transcripts than others and, thus, can 

be expected to yield lower total UMI counts and reach saturation more quickly. Library 

saturation is easily estimated by downsampling using tools such as Picard (Broad Institute, 

n.d.; Daley & Smith, 2013), and the resulting asymptotic saturation curve can provide a 

reliable estimate for the recovery rate of new UMIs with additional sequencing (Figure 7). 

When planning an experiment, it may be beneficial to first examine sequencing saturation 

curves for similar experiments (both in terms of tissue type and technology platform) using 

publicly available data. This can give an idea for the expected number of UMIs for a given 

amount of sequencing, and how to budget accordingly for the appropriate depth. Depending 

on the single-cell technology used, appropriate sequencing depths can range anywhere from 

10,000 to millions of reads per cell.

9.1.2. Sequencing Depth and Analysis Goals.—Frequently, the goal of a single-cell 

genomics project is to survey the landscape of cell types within a tissue or across conditions. 

Unsupervised clustering methods are surprisingly robust to data sparsity, and sometimes 

these goals can be met with relatively modest per-cell sequencing depth. In heterogeneous 

tissues comprising cells from an assortment of lineages (immune, epithelial, mesenchymal, 

etc.), adequate cell-type assignment might be achieved with as few as 1,000 UMIs per cell, 
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with diminishing returns in clustering accuracy at higher depths (Figure 8A, B). In contrast, 

deeper sequencing provides a better return on investment for detecting novel marker genes 

(Figure 8C). These relationships are strongly dependent upon cell type, both in terms of 

overall mRNA content and their transcriptional complexity (e.g., secretory cells expressing 

thousands of copies of only a handful of genes). scATAC-seq and other modalities show 

similar robustness to downsampling (Fang et al., 2021), suggesting that easier tasks like cell 

type assignment can be accomplished with relatively sparse sequencing. For scRNA-seq, 

a convenient optimal depth of one read per protein coding gene in the genome per cell 

(e.g., approximately 25,000 reads for a typical human cell) has been proposed as a general 

guideline that covers the most common use cases (M. J. Zhang et al., 2020). In practice, 

scATAC-seq libraries are generally sequenced to a similar depth.

If the goal is to capture and quantify weakly expressed genes, then an alternative sequencing 

approach is required, to increase the sensitivity to these low-abundance molecules. One 

option could be to simply expend more resources to sequence the entire library as deeply 

as possible in the hopes of detecting rare transcripts. This may be, however, a doomed 

endeavor for some experiments, if the genes of interest are below the detection limits of the 

method being used. Estimates of the mRNA detection efficiency of scRNA-seq platforms 

vary. For example, the current 10X Genomics chemistry is able to recover only in the range 

of 10–15% of the mRNA molecules within a given cell (M. J. Zhang et al., 2020), whereas 

the plate-based Quartz-Seq2 protocol can detect 30% or more (Sasagawa et al., 2018). Given 

that some mRNAs are present at only a few copies per cell, they may often escape reverse 

transcription altogether, and no amount of sequencing can be expected to uncover them. 

Similarly, rare mRNAs could be initially barcoded but subsequently lost or swamped out 

during PCR and library clean-up steps, making them exceedingly difficult to detect during 

sequencing.

Rather than wasting resources trying to quantify rare transcripts by brute force using 

ultra-deep sequencing, it may be preferable to enrich the library for a subset of genes of 

interest. Reduced-complexity libraries enriched for target genes can be fully saturated with 

shallower sequencing and still provide valuable, curated information (see below). Targeted 

gene enrichment can also improve the dynamic range and limit of detection of certain 

digital counting methods by capturing molecules at an early step in library construction, 

where fewer unique molecules have been lost due to stochastic processes in the enzymatic 

workflow. Target gene panel enrichment is emerging as a useful strategy in a growing 

number of single-cell applications and is discussed in more detail below.

9.1.3. Targeted panel sequencing.—The growing scale of single-cell experiments is 

a double-edged sword: larger cell numbers fuel more robust discoveries but simultaneously 

drive up costs associated with sequencing. Unbiased whole-transcriptome libraries include 

data from tens of thousands of genes, but for many applications, a focused panel of relevant, 

highly informative genes can effectively capture cell type heterogeneity and changes in gene 

expression for select pathways of interest. Targeted panels can reduce sequencing costs 

by as much as 90% and simplify downstream bioinformatic analysis, and have become 

an important part of the forward-looking strategy for commercial vendors such as 10X 

Genomics and BD Biosciences.
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In scRNA-seq, targeted panel enrichment is generally achieved by one of two methods: 

gene-specific priming during the RT step, or hybridization capture of amplified cDNA. The 

BD Rhapsody platform has standardized the gene-specific priming approach, and offers a 

set of pre-designed panels as well as a design tool for custom gene sets. Oligo-dT priming 

followed by two rounds of nested PCR with gene-specific panels are used to generate 

low-background libraries (Fan, Fu, & Fodor, 2015). In contrast, the 10X Genomics solution 

first carries out unbiased cDNA amplification and standard whole-transcriptome library 

generation. Biotinylated bait oligos tiling the genes of interest are then hybridized to the 

library and enriched on streptavidin-coated beads, and the target genes are then amplified 

with a final PCR step prior to sequencing. A key advantage of this protocol is that since 

a standard whole-transcriptome library is produced, it also has the option to be fully 

sequenced or queried with alternative panels at a later date. In contrast, the gene-specific 

priming approach may offer increased sensitivity and dynamic range, but the practical 

benefit remains to be rigorously demonstrated.

Reducing sequencing costs and analytical complexity is especially important for functional 

genomics applications, which often aim to profile phenotypic changes in hundreds or 

even thousands of genetically perturbed populations in a single experiment (Replogle et 

al., 2020). Likewise, atlas-making efforts aspiring to the million-cell scale and beyond 

can leverage targeted panel sequencing to keep costs under control while providing the 

flexibility for deeper exploration in the future.

9.2. Read Format

Many single-cell libraries have strict length requirements for the barcode and UMI portions 

of the read, but somewhat looser recommendations about the length of the genomic 

insert read, provided some minimal mappable length is met. Exploiting knowledge of the 

sequencing platform and bioinformatic requirements can help squeeze the most out of your 

sequencing budget.

9.2.1. Kit “Hacking”.—Every Illumina sequencing kit with a given advertised cycle 

number also contains “extra” reagents to accommodate for different kinds of paired-end 

barcoding strategies. For example, the NextSeq 500 75-cycle kit is actually packaged with 

92 cycles worth of consumables: these can be assigned freely to the cell barcode/UMI and 

sample index reads as per the required structure of the library (e.g. 28bp and 8bp for current 

10X Genomics 3’ Gene Expression chemistries), reserving the remaining cycles (56bp) for 

the genomic insert read(s). Maximizing reagent utilization in this way can dramatically 

improve the cost-effectiveness of sequencing kits, provided a suitable run type can be 

constructed (see below for a discussion of read length considerations).

Table 2 summarizes some common Illumina kits and their actual packaged reagent content, 

according to the manufacturer’s website: (https://support.illumina.com/bulletins/2016/10/

how-many-cycles-of-sbs-chemistry-are-in-my-kit.html):

Regan and Preall Page 31

Curr Protoc. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://support.illumina.com/bulletins/2016/10/how-many-cycles-of-sbs-chemistry-are-in-my-kit.html):
https://support.illumina.com/bulletins/2016/10/how-many-cycles-of-sbs-chemistry-are-in-my-kit.html):


9.2.2 Genomic Insert Read Length.

The minimum required read length will depend on the modality, organism, and analysis 

goals. Longer reads will generally improve mappability, but for counting-based applications, 

the return on investment may not be justified beyond a certain length. For example, 

standard digital gene expression libraries are heavily enriched for non-degenerate, easily 

mappable sequences, and a cost-saving optimum of 50 bp has been recommended for 

differential expression applications (Chhangawala, Rudy, Mason, & Rosenfeld, 2015). This 

contrasts with the official recommendation from 10X Genomics of 90 bp for their scRNA-

seq libraries. Judiciously opting for a shorter kit size can dramatically save on overall 

experiment costs, in the right circumstances.

Optimal read lengths can be determined empirically by carrying out a pilot experiment 

or finding a relevant public dataset that employs longer reads, then trimming these reads 

in silico to observe the tradeoff in mapping rates for using less expensive run types. For 

example, Figure 9A (top) illustrates the modest 10% reduction in mapping rate when 

simulating the step down from longer reads to 50 bp for a publicly available human PBMC 

dataset. Considering that shorter reads could generate a 50% or greater cost savings, the 

protocol modification seems justified. Here, the best use of resources may come from 

investing in additional lanes of shorter-read sequencing to maximize the recovery of unique 

molecules sequenced per dollar spent. Similarly, scATAC-seq libraries can be very forgiving, 

suffering virtually no loss in mapping rate when downsampling to paired-end 34bp reads 

(Figure 9A, bottom).

9.2.3 Barcode Length Efficiency.—The proportion of sequencing dedicated to 

barcode regions can vary dramatically depending on the protocol and how the barcodes 

are synthesized. Split-pool methods that build barcodes by serial addition of hybridizing 

oligos can have barcodes extending up to 100 bp, while other methods can have barcodes 

as short as 12–16 bp. Since sequencing cost scales proportionally with read lengths, longer 

barcodes can significantly drive up the total cost of a single-cell project, which should be 

accounted for in advance. In order to achieve a minimal mappable genomic read length (e.g. 

50 or more high-quality bases), some protocols require kit sizes of 150 cycles or more, while 

others can fit mappable reads into a 75 cycle kit (Figure 9B).

9.3. Long Read Sequencing for scRNA-seq

The majority of single-cell genomics protocols have been designed to be compatible with 

and sequenced on an Illumina platform, because of its unmatched throughput and low 

error rate, which facilitates counting of short barcodes. Digital gene expression methods 

necessarily sacrifice transcript coverage for quantifiability, but recent advances in long-read 

sequencing have made full-length, isoform-discriminating cDNA sequencing in single-cell 

workflows a possibility. Adapting a scRNA-seq library for long-read sequencing is generally 

trivial: in the case of 10X Genomics, full-length, amplified cDNA is already produced 

during the workflow, so it is simply a matter of reserving a portion of this material as 

input for a standard commercial long-read library kit. In some cases, it may be beneficial to 

lengthen the extension time during cDNA amplification to favor longer cDNAs (Long et al., 

2021).
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The Oxford Nanopore (ONT) Promethion platform has the capability of sequencing tens 

of millions of unique, multi-kilobase long molecules per run at a cost comparable to 

an Illumina flow cell, but with a much higher per-base error rate (Sahlin & Medvedev, 

2021). These high error rates greatly hinder the unambiguous assignment of cell barcodes 

and UMIs, but can be compensated for by sequencing the same library in parallel using 

high-fidelity Illumina chemistry in order to build a restricted ‘whitelist’ of observed cell 

barcodes in the experiment. Computational strategies to jointly assign long and short reads 

to shared cell barcodes have been developed by several groups and used to profile gene 

expression with isoform specificity from droplet-based single-cell platforms (Gupta et al., 

2018; Lebrigand, Magnone, Barbry, & Waldmann, 2020; Long et al., 2021; Singh et al., 

2019).

In contrast to ONT instruments, the Pacific Biosciences (PacBio) Single Molecule Real-

Time (SMRT) platform can achieve extremely low error rates, but generates 5- to 10-fold 

fewer unique reads. As with ONT, PacBio-based sparse isoform sequencing can be used 

to augment Illumina-based gene expression from the same sample (Gupta et al., 2018). 

The accuracy of PacBio has been leveraged for other single-cell applications such as 

characterizing genetic and transcriptional variation in influenza (Russell, Elshina, Kowalsky, 

Velthuis, & Bloom, 2019), and for lineage tracing of hematopoietic stem cells (Pei et al., 

2020). Recently, a novel library concatemerization strategy has been reported that enables 

multiple cDNA molecules to be linked together and sequenced with high fidelity from 

one long molecule, increasing the throughput of PacBio-based scRNA isoform sequencing 

severalfold (Zheng et al., 2020).

10. Concluding Remarks

The landscape of technology platforms for single-cell genomics is evolving rapidly. 

Continuous improvements in the scalability, sensitivity, and costs of easy-to-use commercial 

products have lowered the barrier to entry for many laboratories. While it is easier than ever 

before to generate complex single-cell datasets, it is critical for inexperienced investigators 

to research and adhere to the current best practices to avoid common pitfalls, unnecessary 

failures, and confounded data. Each technology platform will have its own unique set of 

strengths and limitations, but we have attempted to highlight here the general principles of 

good experimental design that apply to the broadest possible set of study types. Considering 

the current trend toward multi-modal workflows, new guidelines will undoubtedly emerge 

to address the unique challenges of combining different chemistries. Before embarking 

on any expensive single-cell project, it is critical to adopt a ‘measure twice, cut once’ 

mindset and carefully plan each stage of the study, from statistical power analysis and batch 

design to sample preparation and sequencing strategy, to best ensure high quality data at its 

conclusion.
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Figure 1. Summary of common single-cell technology platforms.
(A) Plate-based methods involve sorting or manually depositing cells into wells of a 

standard microplate, which are then processed as individual libraries by hand or with 

automation. (B) Droplet microfluidic devices such as the 10X Genomics Chromium 

Controller partition cells into emulsion droplets along with gel beads containing barcoded 

primers. Enzymatic barcoding by reverse transcription or ligation occurs in the emulsion, 

and subsequent library steps can be performed as a single pool. (C) Micro- and nanowell 

approaches allow a dilute cell suspension to settle into picoliter-sized wells along with oligo-

conjugated beads under conditions that favor one bead and cell per well. (D) Combinatorial 

split/pool methods generally start with fixed and permeabilized cells that are distributed 

across a starting plate. A well-specific DNA barcode is appended, and all cells are then 

pooled to allow uniform mixing before re-distributing to a new plate, where a second 

barcode is added serially.

Regan and Preall Page 44

Curr Protoc. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Multiplexing strategies.
For large-scale studies involving multiple individuals or conditions, samples can be 

multiplexed using methods such as “Cell Hashing” or “Genetic Demultiplexing” to 

minimize costs and batch-related artifacts. (Top) In Cell Hashing, batches are labeled by 

coupling DNA-barcoded hashing reagents to the surface of cells. Examples of hashing 

reagents include antibodies targeting ubiquitous surface proteins that are chemically 

conjugated to a DNA oligonucleotide, or lipid- and/or cholesterol-modified oligos that 

can be embedded within the plasma membrane. Following batch labeling, samples can 

be pooled and co-captured in the same single cell reaction using, for example, the 10X 

Genomics platform. Batch barcodes (a.k.a. “hash tags”) are extracted and counted from the 

resulting sequencing library, and then used to demultiplex the sample downstream. (Bottom) 

Alternatively, genetically diverse samples such as human patients can be demultiplexed 

based on their unique single nucleotide variant (SNV) profile. Cells from different donors 

can be mixed, co-captured, and sequenced as a single sample. Donor-specific SNV profiles, 

if available, can be compared with the read-level data from each cell, and a probability 

score is assigned for each of the donors. These probability scores are used to assign cells 

to different donors, and also to identify and reject “doublet” barcodes that likely contain 

mRNA from two or more cells. If SNV profiles have not been previously generated, read-

level variant calls can still be used to assign cells into different genotype bins, though these 

bins cannot be matched back to the actual identity of the donors.
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Figure 3. Preservation strategies.
Cells or tissue can often be preserved prior to a single cell experiment to allow for samples 

to be acquired at different times or locations and then processed synchronously. Either fully 

dissociated cell suspensions or partially intact, minced tissue can be frozen in liquid nitrogen 

and stored for weeks or months prior to thawing. If minced tissue pieces were frozen 

initially, single cell suspensions can be prepared after thawing by standard dissociation 

protocols used for fresh tissue. Alternatively, cells can be chemically preserved with a 

variety of fixatives that have been demonstrated to be compatible with many single-cell 

workflows, such as paraformaldehyde (PFA), glyoxal, or methanol (MeOH). Protocols to 

reconstitute the fixed single cells prior to sequencing vary depending on the fixative and the 

chemistry of the single-cell application.
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Figure 4. Overview of a generalized single-cell workflow: resource investment and key 
checkpoints.
Most single-cell experimental workflows can be subdivided into three distinct phases: 

sample prep, barcoding and library prep, and sequencing. Each phase entails a significant 

investment of resources and presents a critical quality control checkpoint that provides 

opportunities to abort and retry if the samples appear suboptimal. (A) The sample prep 

stage encompasses all aspects of study design, sample acquisition, storage, and processing 

upstream of the “genomics” portion of the workflow, and can comprise the majority of the 

time investment involved in a project. On the day of the experiment, samples are dissociated 

into single-cell suspensions, and potentially passed through a flow sorter or magnetic 

column to obtain an enriched population of interest. The cell suspensions should be assessed 

(e.g., by microscopy) for relevant parameters including purity, viability, cleanliness of the 

suspension, and clumping. If the suspension looks unsatisfactory or if there are too few 

intact cells, this is the best time to abort before large amounts of resources are committed 

in the downstream steps. (B) Barcoding and library prep involves a series of enzymatic 

reactions that take place in emulsion droplets, PCR plates, nanowells, or other type of 

isolated compartment. Depending on the library chemistry, this step can consume roughly 

half of the costs associated with the experiment. Libraries are generally amplified by PCR 

with the addition of barcoded adapters, and should be assessed at a second QC checkpoint 

by electrophoresis (e.g., using a Bioanalyzer). (C) Sequencing of the single-cell libraries 

also consumes a significant percentage of the overall budget. Depending on the application, 

libraries are sequenced using either short reads (for gene expression, ATAC, CNV, immune 

profiling, or other applications) on an Illumina instrument, or long reads (e.g., for isoform-

resolved RNA-seq, immune profiling) using an Oxford Nanopore or PacBio instrument. For 

large projects, an optional “skim-sequencing” step can be added for quality control. A few 

million reads per library is often sufficient to tell whether barcoding proceeded properly, and 

can provide a crude estimate of captured cell numbers and predicted sample quality.
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Figure 5. Cell suspension quality control.
A well-dissociated single cell suspension will be largely free of debris, and cells will 

have a smooth, round appearance (top left). Cells can be stained with AOPI to visualize 

live cells as green and dead cells as red (bottom left). A poorly dissociated suspension 

(middle) will leave many aggregated clumps of several cells, which is not ideal for single-

cell methods. Preparations with excessive non-cellular debris (right) should be cleaned 

by gradient centrifugation, FACS, or some other method to avoid microfluidic clogs or 

cross-contamination due to material stuck to cell fragments or other non-cellular debris.
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Figure 6. Library quality control.
Libraries should be screened using an electrophoresis instrument such as the Agilent 

Bioanalyzer prior to sequencing to verify that the DNA fragment size falls within the 

expected range of the protocol. (A) One common pitfall of scRNA-seq libraries is degraded 

cDNA from dead or lysed cells, visualized by a shift in the molecular weight towards 1,000 

bp and below. (B) Abundant PCR adapter artifacts can also swamp out gene-body reads, 

resulting in poor quality libraries, as visualized by reduced estimated number of genes 

detected per cell. (C, right) Likewise, ATAC-seq libraries should be checked for the expected 

“nucleosome ladder” pattern. Under-tagmented libraries (C, left) can be size-selected to 

yield an acceptable profile for sequencing.
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Figure 7. Sequencing saturation curve.
In any sequencing experiment, the yield of new, non-duplicated molecules follows an 

asymptotic saturation curve (left). With deeper and deeper sequencing, fewer unique 

molecules are observed, and the return on the investment drops accordingly (right). 

Saturation curves can be estimated from an initial round of low-yield sequencing, or by 

comparing with similar sample and library types, which can be used to guide the choice of 

final targeted depth.
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Figure 8. Depth requirements.
Ideal sequencing depth is dependent upon the project’s goals. For example, clustering and 

cell type identification tasks in scRNA-seq are relatively robust to shallower sequencing, 

modeled here by in silico downsampling of a mouse pancreatic tumor dataset (Elyada et al., 

2019) to different median numbers of UMIs per cell. Dimensionality reduction by UMAP 

(A) and clustering confidence (B) demonstrate the impact of sequencing depth on resolving 

cell types. Distinct clusters (A, colored points) become resolvable with only a few hundred 

UMIs per cell, with rarer cell types emerging as separate clusters only at higher depths. (B) 

Unsupervised clustering was run on the downsampled datasets, and inter-cluster silhouette 

score was calculated as a measure of confidence in cluster assignments. Higher sequencing 

depth returns only a modest improvement in unsupervised clustering confidence as median 

UMI counts increase beyond ~2,000/cell. (C) Marker gene detection scales roughly linearly 

over the full range of subsampled depths. Cell type labels were fixed, and differential 

expression was performed to detect marker genes across cell types at each subsampled 

depth. Cell types with high mRNA content, such as epithelial and fibroblast cells, yield 

more marker genes at low sequencing depth compared with other types (left panel). This 

phenomenon is typically the result of the fact that a greater proportion of the total UMIs in 

the dataset come from mRNA-rich cells. Nonetheless, marker gene detection as a function 

of depth is roughly linear for all cell types, as visualized by normalizing the trend to the 

maximum number of recovered markers for each type (right panel). This illustrates how 

sequencing more deeply can help recover more marker genes in cell types with low mRNA 

content or which comprise only a small proportion of the total library.
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Figure 9. Read length requirements.
Single-cell modalities require different read lengths for optimal performance. For example, 

using the 10X Genomics scRNA-seq platform, longer reads return modestly higher mapping 

rates above a certain minimum threshold length of the gene body read (A, top). The example 

shown represents human peripheral blood mononuclear cells prepared using 10X Genomics 

Single Cell 3’ Gene Expression version 3 chemistry and sequenced on an Illumina NextSeq 

500 with a 132 bp gene-body read (unpublished data). Reads were trimmed in silico and 

remapped to assess overall mappability as a function of gene-body read length. Similarly, 

commonly used read lengths for scATAC-seq are largely indistinguishable in mapping 

rate (A, bottom). Here, 10X Genomics Single Cell ATAC libraries were created from 

dissociated mouse pancreatic tumors and sequenced on an Illumina NextSeq 500 with 

symmetric paired-end reads, informatically trimmed to various lengths (unpublished data). 

(B) Required read lengths also differ by technology platform as a consequence of their 

barcode design. Single-cell protocols use a variety of library design strategies, resulting in 

different required read lengths to cover key library features. For instance, split/pool methods 

such as BAG-seq, SHARE-seq, and SPLiT-seq generally require 100 or more bases to cover 

all barcode regions, while droplet methods employ compact barcodes requiring fewer bases, 

leaving more sequencing reagents available to dedicate to the gene-body or other features in 

the library amplicon. Combined barcode and minimum mappable genomic read lengths help 

determine the most efficient kit size to select for sequencing.
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Table 1.
Comparing technology platforms.

Each broad class of single-cell technology offers advantages and disadvantages in terms of throughput and 

cost, flexibility to be adapted to different modalities (RNA, ATAC, DNA methylation, etc.), sensitivity, 

protocol simplicity (often owing to robust commercialized kits), and widespread adoption rate, which expands 

the existing knowledgebase about the platform and allows for easy comparison with other similar datasets.

Throughput (cost/labor 
per cell)

Flexibility Sensitivity / Max 
Depth

Protocol Simplicity / 
Accessibility

Adoption / Available 
public datasets

Droplet ++ + ++ +++ +++

Sorted/Plate-
based

+ +++ +++ ++ ++

Microwell ++ ++ ++ + +

Split / Pool +++ ++ ++ ++ ++
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Table 2.
Usable cycle numbers in common Illumina sequencing kits.

The combined lengths of the barcode and genomic portions of a given single-cell library type must fit within 

the reagent constraints of available sequencing kits. Most Illumina kits include additional cycles to allow for 

reading barcodes, including the common kit types listed here. Use this information to maximize kit utilization: 

for instance, a NextSeq2000 “100-cycle” kit can be used to sequence a 10X Genomics 3’ Gene Expression 

library in the following format: 28-bp UMI/barcode + 10-bp i5 index + 10-bp i7 index + 90-bp gene body = 

138 total bases. Exploiting this information can improve mapping rates, variant calling, transcript assembly, or 

other applications.

Kit Type Billion Read Pairs Kit Size Max Cycle Num.

NextSeq 500/550 High Output
0.4 75 92

0.4 150 168

NextSeq 2000

P2 v3
0.4 100 138

0.4 200 238

P3 v3

1.2 50 88

1.2 100 138

1.2 200 238

NovaSeq 6000

SP v1.5
0.8 100 138

0.8 200 238

S1 v1.5
1.6 100 138

1.6 200 238

S2 v1.5
4.1 100 138

4.1 200 238

S4 v1.5 20 200 238
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