Table 3.
Comparing performance of five kernel-based dimensionality reduction algorithms
| Uni-Biometric Iris Recognition Right-CASIA Dim reduction algorithm|Kernel Function | Future extraction: Daugman Algorithm. Classification: Dis-Angle (%) | Future Extraction: Hough Tr. Classification: Dis-Angle (%) Dimensionality of feature space Dimensionality of feature space | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | |||||||||||||||
| 3 | 5 | 15 | 35 | 50 | 80 | 100 | 150 | 3 | 5 | 15 | 35 | 50 | 80 | 100 | 150 | |
| Kernel LDA | ||||||||||||||||
| Gaussian | 75.93 | 86.11 | 90.74 | 93.52 | 93.52 | 92.59 | 92.59 | 93.52 | 75 | 83.33 | 87.96 | 93.52 | 94.44 | 97.22 | 95.37 | 95.3 | 
| PolyPlus | 14.81 | 40.74 | 78.70 | 90.74 | 93.52 | 93.52 | 94.44 | 94.44 | 12.92 | 26.85 | 78.70 | 87.96 | 89.81 | 95.37 | 97.22 | 97.22 | 
| Polynomial | 12.4 | 38.89 | 81.48 | 94.44 | 94.44 | 94.44 | 95.37 | 94.44 | <10 | 31.48 | 73.15 | 84.26 | 92.60 | 95.37 | 96.30 | 97.22 | 
| Linear | 11.11 | 25.93 | 78.70 | 92.59 | 92.59 | 94.44 | 94.44 | 94.44 | <10 | 25.93 | 68.52 | 87.04 | 87.04 | 92.59 | 95.37 | 97.22 | 
| Hamming | <10 | 24.07 | 76.85 | 87.96 | 91.67 | 92.59 | 94.44 | 94.44 | <10 | 234.07 | 76.85 | 86.11 | 86.11 | 95.37 | 96.30 | 97.22 | 
| Kernel PCA | ||||||||||||||||
| Gaussian | <10 | <10 | 14.81 | 27.78 | 37.04 | 53.70 | 64.81 | 78.70 | <10 | <10 | 26.85 | 42.60 | 50 | 62.56 | 69.44 | 82.42 | 
| PolyPlus | <10 | 21.30 | 71.30 | 90.74 | 92.59 | 96.30 | 96.30 | 95.37 | <10 | 21.30 | 62.56 | 87.90 | 91.67 | 94.44 | 93.52 | 93.52 | 
| Polynomial | <10 | 21.30 | 71.30 | 90.74 | 92.59 | 96.30 | 96.30 | 95.37 | <10 | 21.30 | 62.56 | 87.90 | 91.67 | 94.44 | 93.52 | 93.52 | 
| Linear | <10 | 22.22 | 69.44 | 89.81 | 92.59 | 95.37 | 95.37 | 94.44 | <10 | 21.30 | 67.60 | 87.90 | 92.59 | 95.37 | 94.44 | 96.30 | 
| None | ||||||||||||||||
| Dim-9600 | 93.52 | 93.52 | ||||||||||||||
LDA – Linear discriminant analysis; PCA – Principal component analysis