Skip to main content
. 2022 Jul 26;12(3):177–191. doi: 10.4103/jmss.jmss_103_21

Table 3.

Comparing performance of five kernel-based dimensionality reduction algorithms

Uni-Biometric Iris Recognition Right-CASIA Dim reduction algorithm|Kernel Function Future extraction: Daugman Algorithm. Classification: Dis-Angle (%) Future Extraction: Hough Tr. Classification: Dis-Angle (%) Dimensionality of feature space Dimensionality of feature space


3 5 15 35 50 80 100 150 3 5 15 35 50 80 100 150
Kernel LDA
 Gaussian 75.93 86.11 90.74 93.52 93.52 92.59 92.59 93.52 75 83.33 87.96 93.52 94.44 97.22 95.37 95.3
 PolyPlus 14.81 40.74 78.70 90.74 93.52 93.52 94.44 94.44 12.92 26.85 78.70 87.96 89.81 95.37 97.22 97.22
 Polynomial 12.4 38.89 81.48 94.44 94.44 94.44 95.37 94.44 <10 31.48 73.15 84.26 92.60 95.37 96.30 97.22
 Linear 11.11 25.93 78.70 92.59 92.59 94.44 94.44 94.44 <10 25.93 68.52 87.04 87.04 92.59 95.37 97.22
 Hamming <10 24.07 76.85 87.96 91.67 92.59 94.44 94.44 <10 234.07 76.85 86.11 86.11 95.37 96.30 97.22
Kernel PCA
 Gaussian <10 <10 14.81 27.78 37.04 53.70 64.81 78.70 <10 <10 26.85 42.60 50 62.56 69.44 82.42
 PolyPlus <10 21.30 71.30 90.74 92.59 96.30 96.30 95.37 <10 21.30 62.56 87.90 91.67 94.44 93.52 93.52
 Polynomial <10 21.30 71.30 90.74 92.59 96.30 96.30 95.37 <10 21.30 62.56 87.90 91.67 94.44 93.52 93.52
 Linear <10 22.22 69.44 89.81 92.59 95.37 95.37 94.44 <10 21.30 67.60 87.90 92.59 95.37 94.44 96.30
None
 Dim-9600 93.52 93.52

LDA – Linear discriminant analysis; PCA – Principal component analysis