Table 5.
Comparing performance of uni-biometric and multi-instance systems for five kernel functions
| Multi-instance recognition system | Uni-biometric face Shahed (%) | Iris multi-instance system | Thumbprint multi-instance system | ||||||
|---|---|---|---|---|---|---|---|---|---|
|  |  | ||||||||
| Iris | Fusion strategy | Fingerprint | Fusion strategy | ||||||
|  |  |  |  | ||||||
| Right CASIA (%) | Left CASIA (%) | Serial (%) | Dimensionality reduction (%) | Right-thumb (%) | Left-thumb (%) | Serial (%) | Dimensionality reduction (%) | ||
| Database dimensionality | 100 | 100 | 100 | 200 | 80 | 100 | 100 | 200 | 80 | 
| Kernel LDA | |||||||||
| Gaussian | 92 | 92.5 | 92.59 | 99.07 | 99.07 | 57 | 54 | 87 | <10 | 
| PolyPlus | 71 | 94.44 | 94.44 | 99.07 | 71 | 60 | 87 | ||
| Polynomial | 89 | 95.37 | 94.44 | 99.07 | 71 | 60 | 87 | ||
| Linear | 89 | 94 | 94.44 | 100 | 72 | 67 | 87 | ||
| Hamming | 93 | 94 | 95.37 | 89.81 | 75 | 69 | 49 | ||
| Kernel PCA | |||||||||
| Gaussian | 84 | 64.81 | 63.89 | 100 | 97.22 | <10 | <10 | 62 | <10 | 
| PolyPlus | 74 | 96.40 | 94.44 | 99.07 | 62 | 59 | 61 | ||
| Polynomial | 74 | 96.40 | 94.44 | 50 | 62 | 59 | 61 | ||
| Linear | 84 | 95.37 | 94.44 | 97.22 | 63 | 59 | 69 | ||
LDA – Linear discriminant analysis; PCA – Principal component analysis