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Neuroimaging, neuropsychological, and psychophysical evidence indicate that concept retrieval selectively engages specific
sensory and motor brain systems involved in the acquisition of the retrieved concept. However, it remains unclear which
supramodal cortical regions contribute to this process and what kind of information they represent. Here, we used represen-
tational similarity analysis of two large fMRI datasets with a searchlight approach to generate a detailed map of human brain
regions where the semantic similarity structure across individual lexical concepts can be reliably detected. We hypothesized
that heteromodal cortical areas typically associated with the default mode network encode multimodal experiential informa-
tion about concepts, consistent with their proposed role as cortical integration hubs. In two studies involving different sets of
concepts and different participants (both sexes), we found a distributed, bihemispheric network engaged in concept represen-
tation, composed of high-level association areas in the anterior, lateral, and ventral temporal lobe; inferior parietal lobule;
posterior cingulate gyrus and precuneus; and medial, dorsal, ventrolateral, and orbital prefrontal cortex. In both studies, a
multimodal model combining sensory, motor, affective, and other types of experiential information explained significant var-
iance in the neural similarity structure observed in these regions that was not explained by unimodal experiential models or
by distributional semantics (i.e., word2vec similarity). These results indicate that during concept retrieval, lexical concepts
are represented across a vast expanse of high-level cortical regions, especially in the areas that make up the default mode net-
work, and that these regions encode multimodal experiential information.
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Significance Statement

Conceptual knowledge includes information acquired through various modalities of experience, such as visual, auditory, tac-
tile, and emotional information. We investigated which brain regions encode mental representations that combine informa-
tion from multiple modalities when participants think about the meaning of a word. We found that such representations are
encoded across a widely distributed network of cortical areas in both hemispheres, including temporal, parietal, limbic, and
prefrontal association areas. Several areas not traditionally associated with semantic cognition were also implicated. Our
results indicate that the retrieval of conceptual knowledge during word comprehension relies on a much larger portion of the
cerebral cortex than previously thought and that multimodal experiential information is represented throughout the entire
network.

Introduction
Conceptual knowledge is essential for everyday thinking, plan-
ning, and communication, yet few details are known about
where and how it is implemented in the brain. Assessments of
patients with brain lesions have shown that deficits in the re-
trieval and use of conceptual knowledge can result from dam-
age to parietal, temporal, or frontal cortical areas (Warrington
and Shallice, 1984; Gainotti, 2000; Neininger and Pulvermüller,
2003; Damasio et al., 2004). Such neuropsychological findings
have been extended by functional neuroimaging studies, which
implicate a set of heteromodal cortical regions including the
angular gyrus (AG), the anterior, lateral, and ventral aspects of
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the temporal lobe; the inferior frontal gyrus (IFG) and superior
frontal gyrus (SFG); and the precuneus (PreCun) and posterior
cingulate cortex (pCing), all showing stronger activations in the
left hemisphere (Binder et al., 2009; Hodgson et al., 2021).
However, there is still debate on whether some of these areas—
particularly the angular gyrus, the superior frontal gyrus, and
the precuneus/posterior cingulate—are indeed involved in process-
ing conceptual representations. It has been suggested, for example,
that confounding factors such as task difficulty may be responsible
for the angular gyrus activations found in the aforementioned stud-
ies (Humphreys et al., 2021).

Functional MRI (fMRI) studies also show that in addition to
these heteromodal areas, cortical areas involved in perceptual
and motor processing are selectively activated when concepts
related to the corresponding sensory-motor aspects of experience
are retrieved (Meteyard and Vigliocco, 2008; Binder and Desai,
2011; Kiefer and Pulvermüller, 2012; Kemmerer, 2014). These
findings are in agreement with grounded theories of concept
representation, which predict that sensory-motor and affec-
tive representations involved in concept formation are reac-
tivated during concept retrieval (Damasio, 1989; Barsalou,
2008; Glenberg et al., 2009).

Various models propose a central role for multimodal or
supramodal hubs in concept processing, though both the
anatomic location and information content encoded in these
hubs remain unclear (Mahon and Caramazza, 2008; Binder
and Desai, 2011; Lambon Ralph et al., 2017). One prominent
theory postulates widespread and hierarchically organized
convergence zones in multiple brain locations (Damasio,
1989; Mesulam, 1998; Meyer and Damasio, 2009). We previ-
ously proposed (Fernandino et al., 2016a) that these conver-
gence zones are neurally implemented in the multimodal
connectivity hubs identified with the default mode network
(DMN; Buckner et al., 2009; Sepulcre et al., 2012; Margulies
et al., 2016). These areas closely correspond to those identi-
fied in a neuroimaging meta-analysis of semantic word proc-
essing (Binder et al., 2009). This idea is further supported by
neuroimaging findings suggesting that the precuneus, poste-
rior cingulate gyrus, angular gyrus, dorsomedial and ventro-
lateral prefrontal cortex, and lateral temporal areas encode
multimodal information about the sensory-motor content
of concepts (Bonner et al., 2013; Fernandino et al., 2016a,b,
2022; Murphy et al., 2018).

In the present study, we used representational similarity
analysis (RSA) with a whole-brain searchlight approach to
identify cortical regions involved in multimodal conceptual
representation. For a given set of stimuli (e.g., words), RSA
measures the level of correspondence between the similarity
structure (i.e., the set of all possible pairwise similarity distan-
ces) observed in the stimulus-related multivoxel activation
patterns and the similarity structure for the same stimuli com-
puted from an a priori representational model (Kriegeskorte
et al., 2008). In contrast with previous RSA studies of concept
representation, which used models based on taxonomic rela-
tions or word-co-occurrence statistics (Bruffaerts et al., 2013;
Devereux et al., 2013; Anderson et al., 2015; Liuzzi et al., 2015;
Martin et al., 2018; Carota et al., 2021), we used an experien-
tial model of the information content of lexical semantic repre-
sentations (hereafter referred to as conceptual content) based
on 65 sensory, motor, affective, and other experiential dimen-
sions (Binder et al., 2016). Although not an exhaustive account
of conceptual content, the experiential model addresses many
relevant aspects of the phenomenological experience and the

information content associated with lexical concepts. We used
a searchlight approach (Kriegeskorte et al., 2006; Kriegeskorte
and Bandettini, 2007) to generate a map of cortical regions
where this multimodal experiential model predicted the neural
similarity structure of hundreds of lexical concepts. Identical
analyses were conducted on two large datasets to assess replica-
tion across different word sets and participant samples.

Materials and Methods
Participants. Participants in experiment 1 were 39 right-handed,

native English speakers (21 women, 18 men; mean age, 28.7; range,
20–41). Experiment 1 included data from 36 participants used in
Fernandino et al. (2022), with three new participants added. Participants
in experiment 2 were 25 native English speakers (20 women, 5 men;
mean age, 26; range, 19–40). None of the participants in experiment
2 took part in experiment 1. All participants in experiments 1 and 2
were right-handed according to the Edinburgh Handedness Inventory
(Oldfield, 1971) and had no history of neurologic disease. Participants
were compensated for their time and gave informed consent in confor-
mity with a protocol approved by the Institutional Review Board of the
Medical College of Wisconsin.

Stimuli. The stimulus set used in experiment 1 is described in detail
in Fernandino et al. (2022). It consisted of 160 object nouns (40 each of
animals, foods, tools, and vehicles) and 160 event nouns (40 each of social
events, verbal events, non-verbal sound events, and negative events);
mean length = 7.0 letters, mean log-transformed frequency according to
Hyperspace Analog to Language (HAL) = 7.61. Stimuli in experiment 2
consisted of 300 nouns (50 each of animals, body parts, food/plants,
human traits, quantities, and tools; mean length, 6.3 letters; mean log
HAL frequency, 7.83), 98 of which were also used in experiment 1.

Experiential concept features. Experiential representations for these
words were available from a previous study in which ratings on 65
experiential domains were used to represent word meanings in a
high-dimensional space (Binder et al., 2016). In brief, the experiential
domains were selected based on known neural processing systems
such as color, shape, visual motion, touch, audition, motor control,
and olfaction, as well as other fundamental aspects of experience whose
neural substrates are less clearly understood, such as space, time, affect,
reward, numerosity, and others. Ratings were collected using the crowd
sourcing tool Amazon Mechanical Turk, in which volunteers rated the
relevance of each experiential domain to a given concept on a 0–6
Likert scale. The value of each feature was represented by averaging
ratings across participants. This feature set was highly effective at cluster-
ing concepts into canonical taxonomic categories (e.g., animals, plants,
vehicles, occupations, etc.; Binder et al., 2016) and has been used suc-
cessfully to decode fMRI activation patterns during sentence reading
(Anderson et al., 2017, 2019).

Procedures. In both experiments, words were presented visually in a
fast event-related procedure with variable inter-stimulus intervals. The
entire list was presented to each participant six times in a different pseu-
dorandom order across three separate imaging sessions (two presenta-
tions per session) on separate days.

On each trial, a noun was displayed in white font on a black back-
ground for 500ms, followed by a 2.5 s blank screen. Each trial was fol-
lowed by a central fixation cross with variable duration between 1 and
3 s (mean, 1.5 s). Participants rated each noun according to how often
they encountered the corresponding entity or event in their daily lives
on a scale from 1 (rarely or never) to 3 (often). This familiarity judgment
task was designed to encourage semantic processing of the word stimuli
without emphasizing any particular semantic features or dimensions.
Participants indicated their response by pressing one of three buttons
on a response pad with their right hand. Stimulus presentation and
response recording were performed with Psychopy 3 software (Peirce,
2007) running on a Windows desktop computer and a Celeritas fiber
optic response system (Psychology Software Tools). Stimuli were dis-
played on an MRI-compatible LCD screen positioned behind the scan-
ner bore and viewed through a mirror attached to the head coil.
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MRI data acquisition and processing. Images were acquired with a
3T GE Premier scanner at the Medical College of Wisconsin. Structural
imaging included a T1-weighted MPRAGE volume (FOV = 256 mm,
222 axial slices, voxel size = 0.8 � 0.8 � 0.8 mm3) and a T2-weighted
CUBE acquisition (FOV = 256 mm, 222 sagittal slices, voxel size = 0.8 �
0.8 � 0.8 mm3). T2*-weighted gradient-echo echoplanar images
were obtained for functional imaging using a simultaneous multi-
slice (SMS) sequence (SMS factor = 4, TR = 1500 ms, TE = 33ms,
flip angle = 50°, FOV = 208 mm, 72 axial slices, in-plane matrix =
104 � 104, voxel size = 2 � 2 � 2 mm3). A pair of T2-weighted spin
echo echoplanar scans (five volumes each) with opposing phase-
encoding directions was acquired before run 1, between runs 4 and
5, and after run 8, to provide estimates of EPI geometric distortion
in the phase-encoding direction.

Data preprocessing was performed using fMRIPrep 20.1.0 software
(Esteban et al., 2019). After slice timing correction, functional images
were corrected for geometric distortion, which implemented nonlinear
transformations estimated from the paired T2-weighted spin echo
images. All images were then aligned to correct for head motion
before aligning to the T1-weighted anatomic image. All voxels were
normalized to have a mean of 100 and a range of 0 to 200. To opti-
mize alignment between participants and to constrain the searchlight
analysis to cortical gray matter, individual brain surface models were
constructed from T1-weighted and T2-weighted anatomic data using
FreeSurfer and the Human Connectome Project (HCP) pipeline
(Glasser et al., 2013). We visually checked the quality of reconstructed
surfaces before carrying out the analysis. Segmentation errors were
corrected manually, and the corrected images were fed back to the
pipeline to produce the final surfaces. The cortex ribbon was recon-
structed in standard grayordinate space with 2 mm spaced vertices,
and the EPI images were projected onto this space. A general linear
model was built to fit the time series of the functional data via multi-
variable regression. Each word (with its six presentations) was treated
as a single regressor of interest and convolved with a hemodynamic
response function, resulting in 320 (experiment 1) or 300 (experiment
2) beta coefficient maps. Regressors of no interest included head motion
parameters (12 regressors), response time (z scores), mean white matter
signal, and mean cerebrospinal fluid signal. A t statistical map was gener-
ated for each word, and these maps were subsequently used in the
searchlight RSA.

Surface-based searchlight representational similarity analysis. RSA
was conducted using custom Python and MATLAB scripts. Searchlight
RSA typically employs spherical volumes moved systematically through
the brain or the cortical gray matter voxels. This method, however,
does not exclude signals from white matter voxels that happen to fall
within the sphere and that may contribute noise. Spherical volumes
may also erroneously combine noncontiguous cortical regions across
sulci. Surface-based searchlight analysis overcomes these shortcomings
using circular two-dimensional patches confined to contiguous vertices
on the cortical surface. At each vertex, a 5 mm radius patch around the
seed vertex on the midthickness surface was created, resulting in a
group of vertices making up each patch.

Representational dissimilarity matrices (RDMs) were calculated for
the multimodal experiential model (the model RDM) and for each
searchlight region of interest (ROI; the neural RDM). Each entry in
the neural RDM represented the correlation distance between fMRI
responses evoked by two different words. Neural RDMs were computed
for each of the 64,984 searchlight ROIs. For the model RDM, we calculated
the Pearson correlation distances between each pair of words in the 65-
dimensional experiential feature space. Ten additional RDMs were com-
puted using pairwise differences on nonsemantic lexical variables, namely,
number of letters, number of phonemes, number of syllables, mean
bigram frequency, mean trigram frequency, orthographic neighborhood
density, phonological neighborhood density, phonotactic probability for
single phonemes, phonotactic probability for phoneme pairs, and word
frequency (https://www.sc.edu/study/colleges_schools/artsandsciences/
psychology/research_clinical_facilities/scope/). These RDMs were
regressed out of the model-based RDM and the neural RDM before
computing the RSA correlations to remove any effects of orthographic

and phonological similarity. An RDM computed from the Jaccard
distance between bitmap images of the word stimuli was also used
to control for low-level visual similarity between words. Spearman
correlations were computed between the residual model-based
RDM (after regressing out the RDMs of no interest) and the neural
RDM for each ROI, resulting in a map of correlation scores on the
cortical surface for each participant.

Finally, second-level analysis was performed on the correlation score
maps after alignment of each individual map to a common surface tem-
plate (the 32k_FS_LR mesh produced by the HCP pipeline), Fisher z-
transformation, and smoothing of the maps with a 6 mm FWHM
Gaussian kernel. A one-tailed, one-sample t test against zero was applied
at all vertices. The Functional MRI of the Brain Software Library
Permutation Analysis of Linear Models was used for nonparametric per-
mutation testing to determine cluster-level statistical inference (10,000
permutations). We used a cluster-forming threshold of z . 3.1 (p ,
0.001) and a cluster-level significance level of a , 0.01. The final data
were rendered on the group-averaged HCP template surface.

Partial correlation analyses controlling for unimodal models. To test
whether the cortical areas identified by the multimodal experiential
model indeed encoded information about multiple sensory-motor
modalities, we conducted partial correlation RSAs in which RDMs
encoding the effect of a single experiential modality were partialed
out, one at a time, from the full-model RDM and from the neural
RDM before computing the correlation between the two. This analy-
sis tested whether the multimodal model predicted the neural simi-
larity structure of lexical concepts at each searchlight ROI, above
and beyond what could be predicted by any unimodal model.
Subsets of experiential features corresponding to specific modalities were
selected to form the following unimodal models: (1) visual (Color, Bright,
Dark, and Pattern), (2) auditory (Sound, Loud, Low, and High), (3) tactile
(Touch, Temperature, Weight, and Texture), (4) olfactory (Smell), (5)
gustatory (Taste), (6) motor (Manipulation, Upper Limb, Lower Limb,
and Head/Mouth), and (7) affective (Happy, Sad, Fearful, and Angry).
In these analyses, all model-based RDMs were calculated using the
Euclidean distance. The RDM representing the unique contribution
of a given modality (say, visual) was obtained by partialing out the
RDMs based on each of the other unimodal feature subsets (e.g., audi-
tory, tactile, olfactory, gustatory, motor, and affective) from the RDM
based on that modality to create an RDM that captured modality-spe-
cific content. The residual unimodal RDM was then partialed out of
the full-model and the neural RDMs used in the RSA. We conducted
seven searchlight RSAs, each controlling for the effect of a single
modalilty (as well as for the lexical and visual RDMs of no interest),
resulting in seven partial correlation maps. These analyses were con-
strained to a region of interest defined by the areas in which the RSA
searchlight with the full experiential model reached significance in
both experiments (see Fig. 2, red area). Each partial correlation map
was thresholded at a false discovery rate corrected p , 0.01. The con-
junction of the seven thresholded maps revealed the areas in which
the multimodal model explained significant variance that was not
explained by any of the unimodal models.

Partial correlation analyses controlling for nonexperiential models.
Because previous studies have found significant RSA correlations with
concept similarities computed from distributional semantics, we con-
ducted a whole-brain RSA searchlight analysis using pairwise similarity
values computed from word2vec word embeddings to verify whether it
would identify the same regions found with the experiential model. We
also conducted a partial correlation RSA searchlight analysis to identify
areas in which the multimodal experiential model predicted the neural
similarity structure of concept-related activation patterns while control-
ling for the similarity structure predicted by the word2vec technique. In
this analysis, significant RSA correlations indicate that multimodal expe-
riential information accounts for a degree of similarity among neural
activation patterns that is not explained by the distributional model. The
word2vec RDM was computed as the pairwise cosine distances between
300-dimensional word vectors trained on the Google News dataset
(;100 billion words), based on the continuous skip-gram algorithm and
distributed by Google (https://code.google.com/archive/p/word2vec).
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Finally, we evaluated the performance of the multimodal expe-
riential model relative to the taxonomic structure of the word set
(i.e., concept similarity based on membership in superordinate
semantic categories) by computing mean semipartial RSA correla-
tions averaged across all searchlight ROIs that reached significance
in the main analysis. That is, searchlight RSAs were conducted for
the experiential RDM after regressing out the categorical RDM and
vice versa, and the resulting RSA scores were averaged across

searchlight ROIs. The difference in mean RSA scores between
models was tested via a permutation test with 10,000 permutations.
This procedure was also used to evaluate the experiential model
relative to word2vec.

Peak identification in the combined dataset across the two experi-
ments. We combined the data from the two experiments by computing
the mean RSA correlation with the multimodal experiential model
across all 64 participants. This allowed us to identify distinct regions

Figure 1. Searchlight RSA results for the multimodal experiential model from experiment 1 (left) and experiment 2 (right). All results are significant at p, 0.001 and cluster corrected at
a, 0.01. Colors represent t values. L, Left, R, right.

Figure 2. A, Cortical areas where the RSA score for the multimodal experiential model reached significance in experiment 1 (yellow), in experiment 2 (blue), or in both experiments (red). B,
Vertices that also reached significance when RSA for the multimodal experiential model was controlled for the effects of each of seven unimodal experiential models representing visual, audi-
tory, somatosensory, smell, taste, action, and affective experiential content.
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with high multimodal information content across all semantic categories
investigated.

Results
Experiment 1
The mean response rate on the familiarity judgment task
was 98.7% (SD 1.9%). Intraindividual consistency in famili-
arity ratings across the six repetitions of each word was
evaluated using intraclass correlations (ICCs) based on a
single measurement, two-way mixed effects model, and the
absolute agreement definition. Results suggested generally
good overall intraindividual agreement, with individual ICCs
ranging from fair to excellent (mean ICC, 0.671; range, 0.438–
0.858, all p values, 0.00001; Cicchetti, 1994). To examine con-
sistency in familiarity ratings across participants, responses to
the six repetitions were first averaged within individuals, and
the ICC across participants was calculated using the consistency
definition. The resulting ICC of 0.586 (95% confidence interval,
0.548 and 0.625; p , 0.00001) suggested fair to good interindi-
vidual consistency.

Group-level searchlight RSA showed a bilateral, distrib-
uted network of regions where neural similarity correlated
with the semantic similarity index computed from the ex-
periential model (Fig. 1, left). In the temporal lobe, these

regions included the temporal pole, STG, and STS, posterior
middle temporal gyrus (pMTG), posterior inferior temporal
gyrus (pITG), and parahippocampal gyrus (PHG), all bilater-
ally. The left fusiform gyrus (FG) was also involved. Parietal
lobe involvement included AG and supramarginal gyrus
(SMG), posterior superior parietal lobule (pSPL), intraparie-
tal sulcus (IPS), PreCun, and pCing, all bilaterally. Frontal
lobe regions included the IFG, middle frontal gyrus (MFG),
and SFG; ventral precentral sulcus (vPreCS), rostral anterior
cingulate gyrus (rACG), and orbital frontal cortex (OFC), all
bilaterally. The left anterior insula was also implicated.

Experiment 2
The mean response rate on the familiarity judgment task was
99.2% (SD = 0.63%). Intraindividual consistency analysis showed
generally good overall intraindividual agreement, with individual
ICCs ranging from fair to excellent (mean ICC, 0.667; range,
0.464–0.843, all p values , 0.00001; Cicchetti, 1994). The ICC
across participants was 0.533 (95% confidence interval, 0.548
and 0.625; p , 0.00001), suggesting fair to good interindividual
consistency.

As with experiment 1, group-level searchlight RSA showed
a bilateral, distributed network of regions where neural simi-
larity correlated with semantic similarity as defined by the

Figure 3. Representational similarity matrices for the multimodal experiential and word2vec models in experiment 1 (left) and experiment 2 (right), with words sorted by superordinate cat-
egories. Both models capture categorical structure to varying degrees depending on category, as demonstrated by higher similarity values (red) for item pairs within categories. The Quantity
items in experiment 2, which included concepts of time, distance, size, area, volume, amplitude, and so forth, do not appear to form a coherent category in either model.
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experiential model (Fig. 1, right). These areas largely coin-
cided with those identified in experiment 1, including tempo-
ral pole, STG, STS, pMTG, pITG, FG, PHG, AG, SMG, IPS,
pSPL, pCing, PreCun, IFG, MFG, SFG, vPreCS, rACG, and
OFC, all bilaterally, and left anterior insula. Areas of overlap
between the two experiments are shown in red in Figure 2A.
The percentage of overlapping vertices between the two experi-
ments, as measured by the Jaccard index, was 73.2%.

Partial correlation analyses controlling for unimodal models
In both experiments, we found that all cortical areas detected in the
main analysis showed significant RSA correlations for the RDM
based on the multimodal model after controlling for the effects of
each unimodal experiential model (Fig. 2B). These results indicate
that the relationships observed between themultimodal experiential
model and neural similarity patterns in these heteromodal regions
could not be fully explained by any of the unimodal models.

Figure 4. A, Searchlight RSA results for the word2vec model from experiments 1 (left) and 2 (right). B, Searchlight RSA results for the multimodal experiential model controlling for the
effects of the word2vec model from experiments 1 (left) and 2 (right). This analysis identified areas in which the experiential model accounted for patterns of neural similarity that were not
explained by word2vec. All results are significant at p, 0.001 and cluster corrected at a, 0.01. Colors represent t values.
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Partial correlation analyses controlling for nonexperiential
models
Visual inspection of the representational similarity matrices for
the multimodal experiential and word2vec models (Fig. 3) shows
that both models reflect the taxonomic structure of lexical con-
cepts to some extent. In experiment 1, searchlight RSA for the
word2vec model revealed a set of cortical areas similar to those
found for the multimodal experiential model, although with sub-
stantially less extensive clusters (Fig. 4A). In experiment 2, the
results for word2vec were very similar to those for the experi-
ential model. In both experiments, we found that even when
word2vec similarity was controlled for, the multimodal expe-
riential model predicted the neural similarity pattern for lex-
ical concepts in the same regions found in the main analysis
(Fig. 4B). The extent of the clusters was appreciably reduced
relative to the main analysis only in experiment 2, particu-
larly in the right hemisphere.

The mean semipartial RSAs comparing the performances of
the two models showed that in both experiments the neural simi-
larity structure of concepts was significantly closer to the similar-
ity structure predicted by the multimodal experiential model
than that predicted by word2vec (p, 0.0001; Fig. 5A). Similarly,
in both experiments, mean semipartial RSAs showed a signifi-
cant advantage for the experiential model compared with the cat-
egorical structure model (p, 0.0001; Fig. 5B).

Peak identification in the combined dataset
The combined RSA searchlight map for the experiential model,
averaged across participants from both experiments, clearly

shows the existence of distinct regions
of high multimodal information content
within the semantic network (Fig. 6). In
the left hemisphere, local peaks were
evident in the IFG, posterior MFG, pos-
terior superior frontal sulcis (SFS), mid-
SFG, vPreCS, lateral OFC, AG, posterior
intraparietal sulcus (pIPS), pMTG/pSTS,
PreCun, pCing, retrosplenial cortex (RSC),
anterior STS (aSTS), lateral temporal
pole, PHG, and anterior FG, with smaller
peaks in similar right hemisphere regions.
Stereotaxic coordinates, RSA scores, and
parcel labels (Glasser et al., 2016) are shown
in Table 1.

Discussion
We sought to clarify the large-scale archi-
tecture of the concept representation sys-
tem by identifying cortical regions whose
activation patterns encode multimodal
experiential information about individ-
ual lexical concepts. Across two inde-
pendent experiments, each involving a
large number and a wide range of con-
cepts (for a total of 522 unique lexical
concepts), we detected multimodal con-
cept representation in widespread hetero-
modal cortical regions bilaterally, including
anterior, posterior, and ventral tempo-
ral cortex; inferior and superior parie-
tal lobules; medial parietal cortex; and
medial, dorsal, ventrolateral, and orbital
frontal regions. In all of these areas, the
multimodal experiential model accounted

for significant variance in the neural similarity structure of
lexical concepts that could not be explained by semantic struc-
ture derived from unimodal experiential models, categorical
models, or word co-occurrence patterns. These results con-
firm and extend previous neuroimaging studies indicating
that the concept representation system is highly distributed
and that multimodal experiential information is encoded
throughout the system. The present study identified several
distinct regions displaying relatively high conceptual infor-
mation content, including regions not typically associated with
lexical semantic processing, such as the orbitofrontal cortex,
superior frontal gyrus, precuneus, and posterior cingulate
gyrus. We propose that these regions with strong multimodal
information content are good candidates for the convergence
zones postulated by certain models of concept representation
and retrieval (Damasio, 1989; Mesulam, 1998; Meyer and
Damasio, 2009).

The network of brain regions identified in the current study
closely resembles the network identified previously in a meta-
analysis of 120 functional imaging studies on semantic process-
ing (Binder et al., 2009). It has been argued that some of these
regions, such as the angular gyrus, do not actually contribute to
conceptual processing, only appearing to be activated in
semantic tasks because of differences in task difficulty (e.g.,
Humphreys et al., 2021). The present results provide direct
evidence that all brain regions highlighted in the previous
meta-analysis indeed represent conceptual information

Figure 5. A, Unique prediction performance of the multimodal experiential model and of the word2vec model relative to
each other. The box plots show the mean semipartial RSA correlation for the experiential model controlling for the word2vec
model (blue) and vice versa (orange), averaged across all searchlight ROIs that reached significance in the main analysis (Fig.
2, red areas at right). Each paired data point corresponds to one participant. Both experiments showed a significant advant-
age for the experiential model (p, 0.0001, permutation test). B, Unique prediction performance of the multimodal experi-
ential model and of the categorical model relative to each other. The box plots show the mean semipartial RSA correlation
for the experiential model controlling for the categorical model (blue) and vice versa (orange), averaged across all searchlight
ROIs that reached significance in the main analysis. Both experiments showed a significant advantage for the experiential
model (p, 0.0001, permutation test).
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during semantic word processing. Unlike previous studies
based on cognitive subtraction paradigms, our RSA results
cannot be explained by systematic differences in difficulty or
task requirements.

In contrast to previous RSA studies of concept representa-
tion (Devereux et al., 2013; Anderson et al., 2015; Martin et
al., 2018; Carota et al., 2021), the network identified in the
present study includes extensive cortex in the anterior tem-
poral lobe, a region strongly implicated in high-level seman-
tic representation (Lambon Ralph et al., 2017). Although the
present study did not show significant RSA correlations in
the anterior ventrolateral temporal lobes, it is important to
note that these regions (as well as the ventromedial prefron-
tal cortex), exhibit typically low BOLD signal-to-noise ratios
because of magnetic susceptibility effects. Therefore, the pres-
ent data do not allow us to derive conclusions about concep-
tual information content in these areas. Further studies using
echoplanar imaging parameters optimized for detecting BOLD
signal in these areas are needed to address this issue.

The concept representation network identified in the current
study also closely resembles the set of cortical regions referred to
as the DMN (Buckner et al., 2008). Several functional connectiv-
ity studies indicate that these areas function as hubs, or conver-
gence zones, for the multimodal integration of sensory-motor
information (Buckner et al., 2009; Sepulcre et al., 2012; van den
Heuvel and Sporns, 2013; Margulies et al., 2016; Murphy et al.,
2018). They have been shown to be equidistant from primary
sensory and motor areas in stepwise functional connectivity
analyses, sitting at the end of the principal gradient of cortical
connectivity going from unimodal to heteromodal areas. Activity
in these areas has also been shown to correlate positively with
the relevance of multiple sensory-motor features of word mean-
ing (Fernandino et al., 2016a) and to be associated with the level

of experiential detail present in ongoing thought (Smallwood et
al., 2016; Sormaz et al., 2018). The current results provide novel
evidence that activity patterns in DMN regions also reflect con-
ceptual content conveyed by individual words. This further sup-
ports the view that concept retrieval is a major component of the
brain’s ‘default mode’ of processing (Binder et al., 1999, 2009;
Andrews-Hanna et al., 2014; Yeshurun et al., 2021).

Our results confirm and extend previous RSA studies that
identified portions of this network using semantic models and
word stimuli. Three studies implicated anteromedial temporal cor-
tex, particularly perirhinal cortex, as a semantic hub (Bruffaerts et
al., 2013; Liuzzi et al., 2015; Martin et al., 2018). All used semantic
models based on crowd-sourced feature production lists, and all
used a feature verification task during fMRI (e.g., “WASP—Does
it have paws?”). Prior studies combining searchlight RSA with ei-
ther taxonomic (Devereux et al., 2013; Carota et al., 2021) or dis-
tributional (Anderson et al., 2015; Carota et al., 2021) semantic
models have implicated more widespread regions, including
posterior lateral temporal cortex, inferior parietal lobe, posterior
cingulate gyrus, and prefrontal cortex. The two studies using
taxonomic models (Devereux et al., 2013; Carota et al., 2021)
showed similar involvement of the left posterior STS and MTG,
with extension into adjacent AG and SMG. In contrast, the
two studies using distributional models (Anderson et al., 2015;
Carota et al., 2021) found little or no posterior temporal

Figure 6. RSA scores for the multimodal experiential model averaged across all partici-
pants in experiments 1 and 2 (n = 64). The RSA peaks reported in Table 1 are indicated.

Table 1. Peaks in the combined RSA correlation map, averaged across all par-
ticipants from both experiments

Label

Experiment 1 Experiment 2 MNI coordinates

Glasser parcelr t r t x y z

L aSTS 0.0310 9.6846 0.0164 5.4968 �52 �5 �13 L_STSda
L pMTG 0.0231 5.7031 0.0495 6.2388 �62 �54 6 L_PHT
L FG 0.0149 6.2614 0.0109 4.8774 �38 �22 �24 L_TF
L PHC 0.0130 5.9539 0.0169 5.2829 �33 �33 �15 L_PHA2
L TP 0.0122 7.8297 0.0186 4.5259 �50 9 �31 L_TGd
L AG 0.0375 10.4097 0.0591 7.8860 �45 �67 23 L_PGi
L pIPS 0.0240 9.3430 0.0465 7.7980 �32 �73 40 L_IP1
L aIPS 0.0133 7.0900 0.0214 5.8797 �45 �43 46 L_IP2
L RSC 0.0338 10.7437 0.0322 5.6788 �7 �54 22 L_v23ab
L pCing 0.0264 8.4923 0.0240 7.1624 �3 �33 40 L_d23ab
L IFGTri 0.0710 7.9189 0.0672 7.2980 �46 32 14 L_IFSa
L OFC 0.0369 7.6686 0.0407 6.0822 �33 33 �13 L_47m
L IFGOrb 0.0276 7.0624 0.0427 4.7093 �46 24 �9 L_47l
L SFG 0.0262 6.2200 0.0418 6.8846 �12 51 37 L_9p
L MFG 0.0230 7.9763 0.0324 5.8356 �39 6 49 L_55b
L SFS 0.0216 7.2827 0.0346 5.6016 �31 15 52 L_8Av
L PreCS 0.0177 5.5801 0.0336 4.7628 �47 4 27 L_6r
L dMPFC 0.0289 6.6695 0.0357 6.8968 �4 53 33 L_9m
R pSTS 0.0122 5.5690 0.0132 6.1890 61 �41 5 R_TPOJ1
R AG 0.0236 6.7504 0.0181 6.6492 48 �62 28 R_PGi
R pIPS 0.0143 5.9380 0.0129 6.8306 36 �66 48 R_IP1
R aIPS 0.0105 5.0085 0.0103 5.6255 50 �38 45 R_PFm
R pCing 0.0166 7.2148 0.0160 5.0762 3 �41 30 R_d23ab
R PreCun 0.0131 4.2406 0.0183 4.7893 12 �51 39 R_31pd
R RSC 0.0130 6.5836 0.0169 4.6987 5 �51 9 R_POS1
R IFGTri 0.0319 5.5993 0.0323 5.1412 51 35 12 R_IFSa
R OFC 0.0266 6.2474 0.0180 4.6262 33 34 �12 R_47m
R SFG 0.0137 6.1271 0.0180 5.3041 17 34 51 R_8BL
R SFS 0.0128 6.1521 0.0146 4.5023 33 17 52 R_8Av
R dMPFC 0.0204 5.2188 0.0175 6.0391 7 57 23 R_9m

Peak labels correspond to those used in Figure 6. Coordinates refer to the Montreal Neurological Institute
(MNI) 152 2009 template space. Parcel labels are taken from the surface-based atlas in Glasser et al.,
(2016). R, Right; L, left; aIPS, anterior IPS; IFGOrb, pars orbitalis of the IFG; IFGTri, pars triangularis of the IFG;
PHC, parahippocampal cortex; TP, temporal pole. dMPFC, dorsal medial prefrontal cortex.
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involvement, and inferior parietal involvement was confined
mainly to the left SMG. Frontal cortex involvement was uni-
formly present but highly variable in extent and location across
those studies. Two studies reported involvement of the posterior
cingulate/precuneus (Devereux et al., 2013; Anderson et al.,
2015).

Several factors may have had a negative impact on sensitivity
and reliability in those studies. First, ROI-based RSAs show that,
relative to experiential models of concept representation, taxo-
nomic and distributional models are consistently less sensitive to
the neural similarity structure of lexical concepts (Fernandino et
al., 2022). Furthermore, most of the prior studies used volume-
based spherical searchlights, which typically sample a mix of gray
and white matter voxels, while the surface-based approach used
in the present study ensures that only contiguous cortical gray
matter voxels are included, thus reducing noise from uninforma-
tive voxels. Finally, the nature of the task and the particularities
of the concept set used as stimuli can affect both the sensitivity of
the analysis and the cortical distribution of the RSA searchlight
map, and variations in these properties may underlie some of the
variation in results across studies. We dealt with this last issue by
(1) using large numbers of concepts from diverse semantic cate-
gories and (2) analyzing data from two independent experiments
to identify areas displaying reliable representational correspon-
dence with the semantic model across different concept sets and
different participant samples.

The finding of extensive frontal lobe involvement in concept
representation deserves comment. Studies of brain-damaged
individuals and functional imaging experiments in the healthy
brain have long been interpreted as supporting the classic view
that ascribes to frontal cortex an executive control rather than
an information storage function in the brain (Stuss and Benson,
1986; Kimberg and Farah, 1993; Thompson-Schill et al., 1997;
Wagner et al., 2001). Nevertheless, nearly all RSA studies of
concept representation have observed similarity structure cor-
relations in prefrontal regions. Although these observations do
not directly address the distinction between storage and control
of information, we believe they can be reconciled with the
classic view by postulating a fine-grained organization of
control systems, in which prefrontal cortex is tuned, at a
relatively small scale, to particular sensory-motor and affec-
tive features. Neurophysiological studies in nonhuman pri-
mates provide evidence for tuning of prefrontal neurons to
preferred stimulus modalities (Romanski, 2007), as well as differ-
ential connectivity across the prefrontal cortex with various sen-
sory systems (Barbas and Mesulam, 1981; Petrides, 2005). A few
human functional imaging studies provide similar evidence for
sensory modality tuning in prefrontal cortex (Greenberg et al.,
2010; Michalka et al., 2015; Tobyne et al., 2017). If conceptual
representation in temporal and parietal cortex is inherently
organized according to experiential content, it seems plausible
that controlled activation and short-term maintenance of this
information would require similarly fine-grained control mech-
anisms. We propose that the information represented in these
prefrontal regions reflects their entrainment to experiential rep-
resentations stored primarily in temporoparietal cortex, provid-
ing context-dependent control over their level of activation.

Related to this issue is the question of how similar the many
regions identified by RSA are to each other in terms of their rep-
resentational structure. Although RSA ensures that the neural
similarity structure of all these regions is related to the similarity
structure encoded in the semantic model, representational struc-
ture should be expected to vary to some degree across distinct

functional regions, given their unique computational properties
and connectivity profiles. More research is needed to investigate
potential regional differences in representational content.
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