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Abstract

Interpolators—estimators that achieve zero training error—have attracted growing attention in 

machine learning, mainly because state-of-the art neural networks appear to be models of this 

type. In this paper, we study minimum ℓ2 norm (“ridgeless”) interpolation least squares regression, 

focusing on the high-dimensional regime in which the number of unknown parameters p is of 

the same order as the number of samples n. We consider two different models for the feature 

distribution: a linear model, where the feature vectors xi ∈ ℝp are obtained by applying a linear 

transform to a vector of i.i.d. entries, xi = Σ1/2zi (with zi ∈ ℝp); and a nonlinear model, where the 

feature vectors are obtained by passing the input through a random one-layer neural network, xi 

= φ(Wzi) (with zi ∈ ℝd, W ∈ ℝp × d a matrix of i.i.d. entries, and φ an activation function acting 

componentwise on Wzi). We recover—in a precise quantitative way—several phenomena that 

have been observed in large-scale neural networks and kernel machines, including the “double 

descent” behavior of the prediction risk, and the potential benefits of overparametrization.
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1. Introduction.

Modern deep learning models involve a huge number of parameters. In many applications, 

current practice suggests that we should design the network to be sufficiently complex 

so that the model (as trained, typically, by gradient descent) interpolates the data, that is, 

achieves zero training error. Indeed, in a thought-provoking experiment, Zhang et al. [71] 

showed that state-of-the-art deep neural network architectures are complex enough that they 

can be trained to interpolate the data even when the actual labels are replaced by entirely 

random ones.

Despite their enormous complexity, deep neural networks are frequently observed to 

generalize well in practice. At first sight, this seems to defy conventional statistical 

wisdom: interpolation (vanishing training error) is commonly taken to be a proxy for poor 

generalization (large gap between training and test error), and hence large test error. In an 

insightful series of papers, Belkin et al. [8, 10, 11] pointed out that these concepts are in 

general distinct, and interpolation does not contradict generalization. For example, recent 

work has investigated interpolation—via kernel ridge regression—in reproducing kernel 

Hilbert spaces [30, 47]. While in low dimension a positive regularization is needed to 

achieve good interpolation, in certain high-dimensional settings interpolation can be nearly 

optimal.

In this paper, we investigate these phenomena in the context of simple linear models. We 

assume to be given i.i.d. data (yi, xi), i ≤ n, with xi ∈ ℝp a feature vector and yi ∈ ℝ a 

response variable. These are distributed according to the model (see Section 2 for further 

definitions)

xi, ϵi Px × Pϵ,     i = 1, …, n, (1)

yi = xiTβ + ϵi,     i = 1, …, n, (2)

where Px is a distribution on ℝp such that E xi = 0, Cov(xi) Σ, and Pϵ is a distribution on ℝ
such that E ϵi = 0, Var(ϵi) σ2.

We estimate β by linear regression. Since our focus is on the overparametrized regime 

p > n, the usual least square objective does not have a unique minimizer, and needs to 

be regularized. We consider two approaches: min-norm regression, which estimates β by 

the least squares solution with minimum ℓ2 norm; and ridge regression, which penalizes a 

coefficients vector β by its ℓ2 norm square β 2
2. We denote these estimates by β  and βλ

(λ being the regularization parameter), and note that limλ 0βλ = β . If the design matrix 

has full row rank, which is generically the case for p > n, the min-norm estimator is an 

interpolator, namely xiTβ = yi for all i ≤ n. In order to evaluate these methods, we will study 

the prediction risk at a new (unseen) test point (y0, x0).
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We study the model (2) in the proportional regime p ≍ n, with a special focus on the 

overparametrized case p > n. Our main contribution is to show that, by considering different 

choices of the features distribution Px, we can reproduce a number of statistically interesting 

phenomena that have emerged in the context of deep learning.

From a technical perspective, our main results are: Theorems 2 and 5, which assume the 

linear model xi Σ1/2zi with zi a vector with independent coordinates and Theorem 8, which 

assumes a nonlinear model xi = φ(Wzi) with zi ~ N(0, Id). While the linear model has 

already a attracted significant amount of work (see Section 1.3 for an overview), Theorems 

2 and 5 provide a more accurate approximation of the prediction risk in the proportional 

regime n ≍ p, as compared to available results in the literature, and hold in a more general 

setting.

The prediction risk depends on the geometry of the pair (Σ, β). We consider a few different 

choices for this geometry, which are broadly motivated by our objective to understand 

overparametrized models, and specialize our formulas to these special cases:

1. Isotropic features. This is the simplest case, in which Σ = Ip and, therefore, 

as we will see the asymptotic risk depends on β only through its norm ∥β∥2. 

This simple model captures some interesting features of overparametrization, but 

misses others.

We first consider a well-specified case in which xi ∈ ℝp and we regress against 

xi. We then pass to a misspecified case, in which the model (2) holds for 

covariates xi ∈ ℝp + q, but we regress only against the first p covariates.

2. Latent space features. In the overparametrized regime, it is natural to assume that 

both the covariates xi, and the coefficients vector β lie close to a low-dimensional 

subspace. In order to model this property, we assume Σ = WWT + I, with 

W ∈ ℝp × d, d ≪ p and β lies in the span of the columns of W. Interestingly, 

this model reproduces many phenomena observed in more complex nonlinear 

models, and has a more direct connection to neural networks.

3. Nonlinear model. In all of the previous cases, the distribution of xi is of the form 

xi = Σ1/2zi where zi is a vector with independent coordinates. In order to test the 

generality of our results, we consider a model in which xi is obtained by passing 

zi ~ N(0, Id) through a one-layer neural net with random first layer weights, 

namely xi = φ(Wzi), for W ∈ ℝp × d.

We will summarize our results for these four examples in the next subsection.

A skeptical reader might ask what linear models have to do with neural networks. We 

emphasize that linear models provide more than a simple analogy, and a recent line of work 

outlines a concrete connection between the two settings [4, 19, 24, 25, 39]. We will discuss 

this connection in Section 1.2.
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1.1. Summary of results.

As mentioned above, we analyze the out-of-sample prediction risk of the minimum ℓ2 norm 

(or min-norm, for short) least squares estimator, and of ridge-regularized least squares.

We denote by γn ≔ p/n ∈ (0, ∞) the overparametrization ratio. When γ < 1, we call the 

problem underparametrized, and when γ > 1, we call it overparametrized. Our most general 

results for the linear model (Theorem 2 and 5) apply to a nonasymptotic setting in which 

n, p are finite, and provide a deterministic approximation of the risk with error bounds that 

are uniform in the distribution of the data. We use these general results to derive asymptotic 

formulas in the limit in which both p and n diverge with γn = p/n → γ. (We will drop the 

subscript from γn whenever this is not cause for confusion.)

We assume the model (2) and denote by SNR = β 2
2/σ2 the signal-to-noise ratio. We refer to 

Figure 1 for supporting plots of the asymptotic risk curves for different cases of interest.

Our main results are twofold: (i) We show that by suitable choices of β, Σ, we can easily 

construct scenarios in which the minimum of the risk is achieved in the overparamertized 

regime p> n; (ii) We show that these findings are robust to the details of the distribution of 

(yi, xi).

As a preliminary remark, note that in the underparametrized regime (γ < 1), the min-norm 

estimator coincides with the standard least squares estimator. Its risk is purely variance 

(there is no bias), and does not depend on β, Σ (see Proposition 2). Interestingly, the 

asymptotic risk diverges as we approach the interpolation boundary (as γ → 1).

In contrast, in the overparametrized regime (γ > 1), the risk is composed of both bias and 

variance,1 and generally depends on β, Σ (see Theorem 2).

We next highlight some concrete results for the four models discussed in the previous 

section (unless explicitly said, we refer to the min-norm estimator).

Isotropic features.—The asymptotic risk depends on the coefficients vector only through 

its norm β 2
2 or, up to a scaling, on SNR = β 2

2/σ2.

1. If the model is well specified, we observe two different behaviors. For SNR ≤ 1, 

the risk is decreasing for γ ∈ (1, ∞). For SNR > 1, the risk has a local minimum 

on γ ∈ (1, ∞).

In either case, the risk approaches the null risk as γ → ∞, and achieves its 

global minimum in the underparametrized regime (see Section 3.2).

2. If the model is misspecified, when SNR > 1, the risk can attain its global 
minimum in the overparametrized regime γ ∈ (1, ∞) (when there is strong 

1Note that in the overparametrized regime the bias is nonvanishing even in the interpolation limit λ → 0. The reason is that the set of 
interpolators is an affine space of dimension p − n, and the min-norm criterion selects one specific interpolator, whose mean has—in 
general—norm smaller than β.
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enough approximation bias, see Section 5.1.3). However, the risk is again 

increasing for γ large enough.

3. Optimally-tuned ridge regression uses a nonvanishing regularization λ > 0, and 

dominates the min-norm least squares estimator in risk, across all values of γ 
and SNR, both the well-specified and misspecified settings. For a misspecified 

model, optimally-tuned ridge regression attains its global minimum around γ = 1 

(see Section 6).

4. Optimal tuning of the ridge penalty can be achieved by leave-one-out cross-

validation (see Theorem 7).

Anisotropic features.—In this case, Σ ≠ I and the risk depends on the geometry of (Σ, β), 

and in particular on how β aligns with the eigenvectors of Σ.

1. If the coefficients vector is equidistributed along the eigenvectors of Σ, the 

behavior is qualitatively similar to the isotropic case. This situation arises, for 

instance, if β is itself random with a spherical prior.

2. If β is aligned with the top eigenvectors of Σ, the situation is qualitatively 

different. As an example we obtain an explicit formula for the asymptotic risk in 

the latent space model discussed above; see the red line of Figure 1 (and Figure 

5) for an illustration. We find that, for natural choices of the model parameters, 

the risk is monotone decreasing in the overparametrized regime, and reaches its 

global minimum as γ → ∞. This qualitative behavior matches the one observed 

for neural networks (see Section 5.2).

3. For the latent space model, we observe that, at large overparametrization, the 

minimum error is achieved as λ → 0, that is, by min-norm interpolators (see 

Section 6.2, and Section 1.3 for related work).

Nonlinear model.—Finally, we consider a nonlinear model in which xi = φ(Wzi) where φ 
is a nonlinear activation function applied componentwise, W ∈ ℝp × d and zi ~ N(0, Id).

1. We first consider the case of a purely nonlinear activation. We compute the 

limiting risk of min-norm regression, and show that this matches the one for 

Gaussian xi ~ N(0, Id) (see Theorem 8). This is illustrated by the “x” symbols in 

Figure 1.

2. We then compute the limit of the variance component of the risk for more 

general activations φ. We show that this depends on the activation function only 

through the size of its linear component. Further, the resulting variance turns out 

to coincide asymptotically with the variance in the linear model xi = Σ1/2zi, if we 

take Σ = (1 − c1)Ip + c1WWT for a certain constant c1. (see Theorem 9).

These results confirm that the results established for the case xi Σ1/2zi with zi an i.i.d. vector 

hold in greater generality
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From a technical viewpoint, analysis of the isotropic covariates model is straightforward 

and relies on standard random matrix theory results. However, we believe it provides useful 

insights.

In contrast, the results for general covariance and coefficients structure (Σ, β) is technically 

novel. We discuss related work in Section 1.3. Our results for the nonlinear model are also 

technically novel. In this setting, we derive a new asymptotic result on resolvents of certain 

block matrices, which may be of independent interest (see Lemma 3).

We next discuss the intuitions that emerge from our results as well as earlier literature.

Bias and variance.—The shape of the asymptotic risk curve for min-norm least squares 

is, of course, controlled by its components: bias and variance. For fully specified models, the 

bias increases with γ in the overparametrized regime, which is intuitive. When p > n, the 

min-norm least squares estimate of β is constrained to lie the row space of X, the training 

feature matrix. This is a subspace of dimension n lying in a feature space of dimension p. 

Thus as p increases, so does the bias, since this row space accounts for less and less of the 

ambient p-dimensional feature space.

Meanwhile, we find that, in the overparametrized regime, the variance decreases with γ. 

This may seem counterintuitive at first, because it says, in a sense, that the min-norm least 

squares estimator becomes more regularized as p grows. However, this too can be explained 

intuitively, as follows. As p grows, the minimum ℓ2 norm least squares solution—that is, the 

minimum ℓ2 norm solution to the linear system Xb = y, for a training feature matrix X and 

response vector y—will generally have decreasing ℓ2 norm. Why? Compare two such linear 

systems: in each, we are asking for the min-norm solution to a linear system with the same 

y, but in one instance we are given more columns in X, so we can generally decrease the 

components of b (by distributing them over more columns), and achieve a smaller ℓ2 norm. 

This can in fact be formalized asymptotically; see Corollaries 1 and 3.

Double descent.—Recently, Belkin et al. [8] pointed out a fascinating empirical trend 

where, for popular methods like neural networks and random forests, we can see a second 
bias-variance tradeoff in the out-of-sample prediction risk beyond the interpolation limit. 

The risk curve here resembles a traditional U-shape curve before the interpolation limit, 

and then descends again beyond the interpolation limit, which these authors call “double 

descent.” A closely related phenomenon was found earlier by Spigler et al. [63], who studied 

the “jamming transition” from underparametrized to overparametrized neural networks. Our 

results formally verify that this double descent phenomenon occurs even in the simple and 

fundamental case of least squares regression. The appearance of the second descent in the 

risk, past the interpolation boundary (γ = 1), is explained by the fact that the variance 

decreases as γ grows, as discussed above.

In the misspecified case, the variance still decreases with γ (for the same reasons), but 

interestingly, the bias can now also decrease with γ, provided γ is not too large (not too far 

past the interpolation boundary). The intuition here is that in a misspecified model, some 

part of the true regression function is always unaccounted for, and adding features generally 
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improves our approximation capacity. As a consequence, the double descent phenomenon 

can be even more pronounced in the misspecified case (depending on the strength of the 

approximation bias), in that the risk can attain its global minimum past the interpolation 

limit.

Finally, in the latent space model, we observe that the overall risk can be monotone 

decreasing in the overparametrized regime, and attain its global minimum for large over-

parametrization γ → ∞(after p, n → ∞). In this case, we can write the design matrix as 

X ZWT + U, where U is noise, and Z is the n × d matrix of latent covariates. Equivalently, 

the ith column of X (the ith feature) takes the form xi = Zwi + ui, where wi is the ith column 

of WT and ui is the ith column of U. Therefore, each new feature provides new information 

about the underlying low-dimensional latent variables Z. As p gets large, ridge regression 

with respect to the feature matrix X approximates increasingly well a ridge regression with 

respect to the latent variables Z.

Interpolation versus regularization.—The min-norm least squares estimator can be 

seen as the limit of ridge regression as the tuning parameter tends to zero. A natural and 

important question is whether (or when) letting the regularization to 0 is optimal. Min-norm 

least squares is also the convergence point of gradient descent run on the least squares loss. 

Early-stopped gradient descent is known to be closely connected to ridge regularization; see, 

for example, Ali et al. [3], which proves a tight coupling between the two (see Section 1.3 

for further related work). The question of whether letting the regularization vanish is optimal 

is closely related to the question of whether running gradient descent until convergence is 

optimal or early stopping provides some advantage.

Closely related questions have been investigated in the context of classification. For 

instance, it is common to run boosting until the training error is zero, and the boosting 

path is tied to ℓ1 regularization [37, 58, 65]. It is empirically observed that, for noisy labels, 

early stopping (treating the number of boosting iterations as a tuning parameter) can be 

beneficial.

We would not expect the best-predicting ridge solution to be always at the end of its 

regularization path. Our results, comparing min-norm least squares to optimally-tuned ridge 

regression, show that (asymptotically) this is never the case, when β is incoherent with 

respect to the eigenvectors of Σ. This is for instance the case when Σ = Ip, or β is distributed 

according to a spherically symmetric prior. In contrast, [42] recently pointed out that—when 

β is aligned with the leading eigenvectors of Σ—min-norm regression can have optimal 

risk (i.e., the optimal regularization vanishes). We show that this is indeed the case in the 

latent space model mentioned above: this provides indeed an extremely simple example of 

a phenomenon that has been observed in the past for kernel methods [47]. Notice that the 

results we obtain for the latent space model are asymptotically sharper than the one of [47], 

in that they imply optimality up to subleading terms (not just up to constant factors).

In practice, of course, we would not have access to the optimal tuning parameter for ridge 

(optimal stopping for gradient descent), and we would rely on, for example, cross-validation 

(CV). Our theory shows that for ridge regression, CV tuning is asymptotically equivalent to 
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optimal tuning (and we would expect the same results to carry over to gradient descent, but 

have not pursued this formally).

1.2. Connection to neural networks.

As mentioned above, recent literature has established a direct connection between linear 

models and more complex models such as neural networks, in a certain training regime [4, 

19, 24, 25, 39]. Here, we will briefly outline this connection, referring the reader to the 

literature for a more detailed exposition.

For the discussion in this section, it is convenient to consider a more general setting, in 

which we are given data (yi, zi), i ≤ n, yi ∈ ℝ, zi ∈ ℝd, which are i.i.d. from an arbitrary 

distribution (yi, zi) ~ Py,z. Imagine training a neural network with parameters (weights) 

θ ∈ ℝp, f( ⋅ ; θ):ℝd ℝ, z → f (z; θ). The specific form or architecture of the network is 

not important for our discussion. However, it is important to distinguish two conceptually 

different functions. One the one hand, we have the true regression function f* zi = E yi ∣ zi ; 

this is unknown to the statistician. For theoretical purposes, f* can be assumed to belong 

so some function class, but for this section we will not specify this choice. On the other 

hand, we have a parametric model f (zi; θ), which is determined by the specific network 

architecture. A specific network with the given architecture is determined by assigning the 

network weights θ ∈ ℝp.

From the point of view of optimization, the central role is played by the parametric model 

f (z; θ). In modern machine learning, the number of parameters p is so large that—under 

certain training schemes—θ only changes by a small amount with respect to a random 

initialization θ0 ∈ ℝp. It thus makes sense to linearize the model around θ0. Supposing that 

the initialization is such that f (z; θ0) ≈ 0, and letting θ = θ0 + β, we can approximate the 

statistical model z ↦ f (z; θ) by

z ∇θf z; θ0
Tβ . (3)

This model is still nonlinear in the input z, but is linear in the parameters β. In other words, 

if the linear approximation is accurate, learning reduces to computing feature vectors xi = 

∇θf (zi; θ0), i = 1, …, n, from the data, and then fitting a linear model in the xi’s. Notice 

that these feature vectors have high dimension (p> n) since the network is overparametrized, 

and that the “featurization map” zi ↦ ∇f (zi; θ0) is random because the initialization θ0 is. 

Further, since p> n, many vectors β give rise to a model that interpolates the data.

The above scenario was made rigorous in a number of papers [4, 19, 24, 25, 39]. In 

particular, [19] shows—under some technical conditions—that the linearization (3) can be 

accurate if the model is overparametrized (p> n), and closed under scalings (if f (·) is 

encoded by a neural network, then sf (·) is also a neural network for any s ∈ ℝ). Under 

these conditions, there exists a scaling of the network’s parameters such that gradient-based 

training converges to a model that can be approximated arbitrarily well by (3). Further, 

under the linearization (3), gradient descent converges to the interpolator that minimizes2 the 

ℓ2 norm ∥β∥2 (see Proposition 1 below).
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What are the statistical consequences of these linearization results? In principle, we could 

consider {(yi, zi)}i≤n to be i.i.d. samples with a certain population distribution Py,z, and then 

study the behavior of minimum ℓ2 norm interpolator of the form (3) under this data model. 

Denoting by ϕ(z) ≔ ∇θf (zi; θ0) the featurization map, this would amount to study

β = arg min b 2 subject to xiTb = yi,  xi = ϕ zi ∀i ≤ n . (4)

Even starting from a simple joint distribution Py,z for the data (yi, zi), the resulting 

joint distribution for (yi, xi) (induced by the map zi → ϕ(zi)=∇θf (zi; θ0)) can be very 

complicated.

From this point of view, the present paper establishes results for two types of featurization 

maps: in the linear model ϕ(zi) Σ1/2zi, and in the nonlinear model ϕ zi = φ W zi  where 

W ∈ ℝp × d and φ:ℝ ℝ is applied componentwise. While both models are significantly 

simpler than the featurization map ϕ(z) = ∇θf (z; θ0) for a multilayer neural network, our 

results imply that certain universality phenomena hold in the proportional asymptotics n, p, 

d → ∞, with n ≍ p ≍ d. Namely, under the assumption of zi with independent coordinates in 

the linear model, and zi N 0, Id  in the nonlinear model, we prove that:

1. If the activation function φ is “purely nonlinear” (in a sense to be made precise 

below), then the risk of the nonlinear model is asymptotically equal to the one of 

the linear model with Σ = Ip.

2. For more general activations φ, we compute explicitly the asymptotics of the 

variance of the nonlinear model. This does not coincide with the variance in the 

isotropic model, but depends on φ only through the size of the linear component 

of φ (to be defined below). Once more, the details of the activation function do 

not matter.

After the present work appeared, the analysis of the nonlinear model was generalized 

in [49], which obtained the asymptotics of the risk for general activations, under a 

nonparametric model for the responses yi. This required computing the bias term beyond 

purely nonlinear activations, and hence solving several technical challenges. The results of 

[49] confirmed that universality extends beyond purely nonlinear activations. For general 

activations, the nonlinear model with isotropic zi ∈ ℝd is asymptotically equivalent to a 

linear model with anisotropic xi ∈ ℝp (analogous to the latent space model of Section 5.2). 

It is currently an open problem to which extent universality applies beyond the proportional 

regime.

Let us emphasize that universality is not expected to hold for any distribution of the data (yi, 

zi), and for any function f. In particular, we not expect it to hold when zi is low-dimensional. 

This is quite obvious from the proof of Theorem 8, and consistent with the findings of [56], 

which point at a qualitatively different behavior for interpolating methods in low dimension.

2Understanding the bias induced by gradient-based algorithms on fully nonlinear models is a broadly open problem, which has 
attracted considerable attention recently; see, for example, [34, 35].
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Finally, the correspondence outlined above only holds in a certain “lazy training” regime, 

in which network weights do not change much during training, More generally, in a neural 

network, the feature representation and the regression function or classifier are learned 

simultaneously. In terms of the first-order Taylor expansion (3) this means that θ0 depends 

itself on the data, and hence the feature vectors xi = ∇θf (zi; θ0) are not merely observed 

but trained. Learning the feature map could significantly change some aspects of the 

behavior of an interpolator. (See, for instance, Chapter 9 of Goodfellow et al. [33], and 

also Chizat and Bach [19], Zhang et al. [72], which emphasize the importance of learning 

the representation.)

1.3. Related work.

The present work connects to and is motivated by the recent interest in interpolators in 

machine learning [8, 10, 11, 28, 47, 48]. Several authors have argued that minimum ℓ2 norm 

least squares regression captures the basic behavior of deep neural networks, at least in early 

(lazy) training [4, 19, 24, 25, 39, 44, 73]. The connection between neural networks and 

kernel ridge regression arises when the number of hidden units diverges. The infinite width 

limit was also studied (beyond the linearized regime) in [18, 50, 59, 62].

Interpolation has a long history in signal processing, where it is a method of choice 

to reconstruct a subsampled signal. The overparametrized regime corresponds to the use 

of over-complete dictionaries, and the minimum-ℓ2 norm criterion was used for selecting 

a specific interpolator [21]. It was subsequently recognized that sparsity promoting 

interpolators provide better data representations [16].

Ridge regression with random designs has been studied in the past. Dicker [22] considers 

a model in which the covariates are isotropic Gaussian xi ~ N(0, Ip) and computes the 

asymptotic risk of ridge regression in the proportional asymptotics p, n → ∞, with p/n → 
γ ∈ (0, ∞). Dobriban and Wager [23] generalize these results to xi = Σ1/2zi, where zi has 

independent entries with bounded 12th moment.

Recently, Advani and Saxe [2] study the effect of early stopping and ridge regularization 

in a model with isotropic Gaussian covariates xi ~ N(0, Ip), again focusing on the 

proportional asymptotics p, n, with p/n → γ ∈ (0, ∞). They show that this simple model 

reproduces several phenomena observed in neural networks training. The same model is 

reconsidered in concurrent work by Belkin et al. [9], who obtain exact results for the 

expected risk of min-norm regression, relying on the jointly Gaussian distribution of (yi, xi). 

We contribute to this line of work by extending the analysis to general covariance structures, 

non-Gaussian covariates and to misspecified models. As we will see, these generalizations 

allow to produce examples for which the global minimum of the risk is achieved in the 

overparametrized regime γ > 1.

The importance of the relation between the coefficient vector β and the eigenvectors of Σ 
was emphasized by Kobak et al. [42] and Bartlett et al. [6]. These papers point out—under 

different asymptotic settings—that λ = 0+ (i.e., min-norm regression) can be optimal or 

nearly optimal. After a preprint of this paper appeared, Wu and Xu [69] and Richards et al. 

[57] generalized our earlier results to cover the case in which β is potentially aligned with 

Hastie et al. Page 10

Ann Stat. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Σ. We review in further detail these important generalizations in Section 4. We contribute to 

this line of work by obtaining nonasymptotic approximations for the risk, with explicit and 

nearly optimal error bounds. These hold under weaker assumptions on the geometry of (Σ, 

β) than the results of [57, 69].

High-dimensional regression under factor models for the covariates was recently studied by 

Bunea et al. [14], Bing et al. [12]. These models are related to the latent space model of 

Section 5.2 and present results complementary to ours.

For the nonlinear model, the random matrix theory literature is much sparser, and focuses 

on the related model of kernel random matrices, namely, symmetric matrices of the form 

Kij = φ ziTzj . El Karoui [26] studied the spectrum of such matrices in a regime in which 

φ can be approximated by a linear function (for i ≠ j), and hence the spectrum converges 

to a rescaled Marchenko–Pastur law. This approximation does not hold for the regime 

of interest here, which was studied instead by Cheng and Singer [17] (who determined 

the limiting spectral distribution) and Fan and Montanari [27] (who characterized the 

extreme eigenvalues). The resulting eigenvalue distribution is the free convolution of a 

semicircle law and a Marchenko–Pastur law. In the current paper, we must consider 

asymmetric (rectangular) matrices xij = φ wjTzi , whose singular value distribution was 

recently computed by Pennington and Worah [55], using the moment method. Unfortunately, 

the prediction variance depends on both the singular values and vectors of this matrix. 

In order to address this issue, we apply the leave-one out method of Cheng and Singer 

[17] to compute the asymptotics of the resolvent of a suitably extended matrix. We then 

extract the information of interest from this matrix. After appearance of a preprint of this 

paper, Mei and Montanari [49] extended the results presented here, to obtain a complete 

characterization of the risk for the nonlinear random features model.

Let us finally mention that the universality (or “invariance”) phenomenon is quite common 

in random matrix theory [64]. In the context of kernel inner product random matrices, it 

appears (somewhat implicitly) in [17] and (more explicitly) in [27]. After a first appearance 

of this manuscript, universality has been investigated in the context of neural networks in 

several papers [1, 29, 31, 38, 49, 52].

1.4. Outline.

Section 2 provides important background. Sections 3–7 consider the linear model, focusing 

on isotropic features, correlated features, misspecified models, ridge regularization and 

cross-validation, respectively. Section 8 covers the nonlinear model case. Nearly all proofs 

are deferred until the Appendix.

2. Preliminaries.

We describe our setup and gather a number of important preliminary results.
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2.1. Data model and risk.

Assume we observe training data xi, yi ∈ ℝp × ℝ, i = 1, …, n from the model of equations 

(1), (2). We collect the responses in a vector y ∈ ℝn, and the features in a matrix X ∈ ℝn × p

(with rows xi ∈ ℝp, i = 1, …, n).

Consider a test point x0 ~ Px, independent of the training data. For an estimator β  (a function 

of the training data X, y), we define its out-of-sample prediction risk (or simply, risk) as

RX(β; β) = E x0
Tβ − x0

Tβ 2 ∣ X = E β − β Σ
2 ∣ X ,

where x Σ
2 = xTΣx. Note that our definition of risk is conditional on X (as emphasized by 

our notation RX). Note also that we have the bias-variance decomposition

RX(β ; β) = E(β ∣ X) − β Σ
2

BX(β; β)
+ Tr[Cov(β ∣ X)Σ]

V X(β; β)
.

(5)

2.2. Ridgeless least squares.

We consider the minimum ℓ2 norm (min-norm) least squares regression estimator, of y on X, 

defined by

β = arg min b 2:b minimizes  y − Xb 2
2 . (6)

This can be equivalently written as β = XTX +XTy, where (XT X)+ is the pseudoinverse of 

XT X. An alternative name for (6) is the “ridgeless” least squares estimator, motivated by the 

fact that β = limλ 0+βλ, where βλ denotes the ridge regression estimator:

βλ = arg  min
b ∈ ℝp

1
n y − Xb 2

2
+ λ b 2

2
, (7)

or, equivalently, βλ = XTX + nλI −1XTy.

When X has full column rank the min-norm least squares estimator reduces to 

β = XTX −1XTy, the usual least squares estimator. When X has rank n, importantly, this 

estimator interpolates the training data: yi = xiTβ , for i = 1, …, n.

Lastly, the following is a well-known fact that connects the min-norm least squares solution 

to gradient descent (as referenced in the Introduction).

PROPOSITION 1. Initialize β(0) 0, and consider running gradient descent on the least squares 
loss, yielding iterates
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β(k) = β(k − 1) + tXT y − Xβ(k − 1) ,     k = 1, 2, 3, …,

where we take 0 <t ≤ 1/λmax(XT X) (and λmax(XT X) is the largest eigenvalue of XT X). 

Then limk ∞β(k) = β , the min-norm least squares solution in (6).

PROOF. The choice of step size guarantees that β(k) converges to a least squares solution as k 
→ ∞, call it β. Note that β(k), k = 1, 2, 3,… all lie in the row space of X; therefore, β must 

also lie in the row space of X; and the min-norm least squares solution β  is the unique least 

squares solution with this property. □

2.3. Bias and variance.

We recall expressions for the bias and variance of the min-norm least squares estimator, 

which are standard.

LEMMA 1. Under the model (1), (2), the min-norm least squares estimator (6) has bias and 
variance

BX(β; β) = βTΠΣΠβ    and    V X(β; β) = σ2
n Tr Σ+Σ ,

where Σ = XTX/n is the (uncentered) sample covariance of X, and Π = I − Σ+Σ is the 
projection onto the null space of X.

PROOF. As E(β ∣ X) = XTX +XTXβ = Σ+Σβ and 

Cov(β ∣ X) = σ2 XTX +XT × X XTX + = σ2Σ+/n, the bias and variance expressions follow 

from plugging these into their respective definitions. □

2.4. Underparametrized asymptotics.

We consider an asymptotic setup where n, p → ∞, in such a way that p/n → γ ∈ (0, ∞). 

Recall that when γ < 1, we call the problem underparametrized; when γ > 1, we call it 

overparametrized. Here, we recall the risk of the min-norm least squares estimator in the 

underparametrized case. The rest of this paper focuses on the overparametrized case.

The following is a known result in random matrix theory, and can be found in Chapter 6 

of Serdobolskii [61]. It can also be found in the wireless communications literature; see 

Chapter 4 of Tulino and Verdu [67].

PROPOSITION 2. Assume the model (1), (2), and assume x ~ Px is of the form x = Σ1/2z, where 
z is a random vector with i.i.d. entries that have zero mean, unit variance and a finite 4th 
moment, and Σ is a (sequence of) deterministic positive definite matrix, such that λmin(Σ) ≥ 

c > 0, for all n, p and a constant c (here λmin(Σ) is the smallest eigenvalue of Σ). Then as n, 

p → ∞, such that p/n →γ < 1, the risk of the least squares estimator (6) satisfies, almost 
surely
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lim
n ∞

 RX(β; β) = σ2 γ
1 − γ .

As it can be seen from the last proposition, in the underparametrized case the risk is just 

variance. In contrast, in the overparametrized case, the bias BX(β ; β) = βTΠΣΠβ is nonzero, 

because ∏ is. This will be the focus of the next sections.

3. Isotropic features.

We begin by considering the simpler case in which Σ = I. In this case, the limiting bias is 

relatively straightforward to compute and depends on β only through β 2
2. In Section 4, we 

generalize our analysis and study the dependence of the prediction risk on the geometry of Σ 
and β.

3.1. Limiting bias.

As mentioned above, in the isotropic case the risk depends β only on through r2 = β 2
2. To 

give some intuition as to why this is true, consider the special case where X has i.i.d. entries 

from N(0, 1). By rotational invariance, for any orthogonal U ∈ ℝp × p, the distribution of X 
and XU is the same. Thus

BX(β; β) = βT I − XTX +XTX β

=d βT I − UT XTX +UUTXTXU β

= r2 − (Uβ)T XTX +XTX(Uβ) .

Choosing U so that Uβ = rei, the ith standard basis vector, then averaging over i = 1, …, p, 

yields

EBX(β; β) = r2E 1 − Tr XTX +XTX /p = r2(1 − n/p) .

It is possible to show that, BX(β ; β) concentrates around its expectation and, therefore, 

BX(β ; β) r2(1 − 1/γ), almost surely. This is stated formally in the next section.

3.2. Limiting risk.

As the next result shows, the independence of the risk on β is still true outside of the 

Gaussian case, provided the features are isotropic. The next result can be proved as a 

corollary of the more general Theorem 3 below. We give a simpler self-contained proof 

using a theorem of Rubio and Mestre [60] in Appendix A.4.2.

THEOREM 1. Assume the model (1), (2), where xi ~ Px has independent entries with zero 
mean, unit variance. Further assume that either of these conditions hold for x ~ Px : (i) the 

entries (xj)j≤p have uniformly bounded moments of all order E xj
k ≤ Ck for all k and some 
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constants Ck; (ii) entries (xj)j≤p are identically distributed and have finite moment of order 

4 + δ, E xj
4 + δ ≤ C, for some C, δ > 0. Also assume that β 2

2 = r2 for all n, p. Then for 

the min-norm least squares estimator β  in (6), as n, p → ∞, such that p/n → γ ∈ (1, ∞), it 
holds almost surely that

BX(β ; β) r2 1 − 1
γ , (8)

V X(β ; β) σ2 1
γ − 1 . (9)

Hence, summarizing with Proposition 2, we have

RX(β ; β)
σ2 γ

1 − γ for γ < 1,

r2 1 − 1
γ + σ2 1

γ − 1 for γ > 1.
(10)

For γ ∈ (0, 1), there is no bias, and the variance increases with γ. For γ ∈ (1, ∞), the bias 

increases with γ, and the variance decreases with γ. Let SNR = r2/σ2. Observe that the risk 

of the null estimateor β = 0 is r2, which we hence call the null risk. The following facts are 

immediate from the form of the risk curve in (10). See Figure 2 for an accompanying plot 

when SNR varies from 1 to 5.

1. On (0, 1), the least squares risk R(γ) is better than the null risk if and only if 

γ < SNR
SNR+1 .

2. On (1, ∞), when SNR ≤ 1, the min-norm least squares risk R(γ) is always worse 

than the null risk. Moreover, it is monotonically decreasing, and approaches the 

null risk (from above) as γ → ∞.

3. On (1, ∞), when SNR > 1, the min-norm least squares risk R(γ) beats the null 

risk if and only if γ > SNR
SNR−1 . Further, it has a local minimum at γ = SNR

SNR − 1 , 

and approaches the null risk (from below) as γ → ∞.

3.3. Limiting ℓ2 norm.

Calculation of the limiting ℓ2 norm of the min-norm least squares estimator is quite similar 

to the study of the limiting risk in Theorem 1 and, therefore, we state the next result without 

proof.

COROLLARY 1. Assume the conditions of Theorem 1. Then as n, p → ∞, such that p/n → γ, 

the squared ℓ2 norm of the min-norm least squares estimator (6) satisfies, almost surely
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E β 2
2 ∣ X

r2 + σ2 γ
1 − γ for γ < 1,

r21
γ + σ2 1

γ − 1 for γ > 1.

We can see that the limiting norm, as a function of γ, has a somewhat similar profile 

to the limiting risk in (10): it is monotonically increasing for γ ε (0, 1), diverges at the 

interpolation boundary and is monotonically decreasing for (1, ∞). These findings confirm 

the intuition given in the Introduction: as γ grows above the interpolation threshold, the 

minimum norm interpolator becomes increasingly simpler, in the sense of having smaller ℓ2 

norm.

4. Correlated features.

We broaden the scope of our analysis from the last section, where we examined isotropic 

features. In this section, we take x ~ Px to be of the form x = Σ1/2z, where z is a random 

vector with independent entries that have zero mean and unit variance, and Σ is arbitrary (but 

still deterministic and positive definite).

The risk of min-norm regression depends on the geometry of Σ and β. Denote by 

Σ = ∑i = 1
p siviviT  he eigenvalue decomposition of Σ with s1 ≥ s2 ≥···≥ sp ≥ 0. The geometry 

of the problem is captured by the sequence of eigenvalues (s1, …, sp), and by the coefficients 

of β in the basis of eigenvectors (〈v1, β〉, …, 〈vp,β〉). We encode these via two probability 

distributions on ℝ ≥ 0:

Hn(s) ≔ 1
p ∑

i = 1

p
1 s ≥ si ,     Gn(s) = 1

β 2
2 ∑

i = 1

p
β, vi

21 s ≥ si . (11)

We next state our assumptions about the data distribution: our results will be uniform with 

respect to the (large) constants M, {Ck}k≥2 appearing in this assumption.

ASSUMPTION 1. The covariates vector x ~ Px is of the form x = Σ1/2z, where defining Hn as 

per equation (11), we have:

a. The vector z = (z1, …, zp) has independent (not necessarily identically 

distributed) entries with E zi = 0, E zi2 = 1, and E zi
k ≤ Ck < ∞ for all i ≤ 

p, k ≥ 2.

b. s1 = Σ op ≤ M, ∫ s−1dHn(s) < M .

c. |1 − (p/n)| ≥ 1/M, 1/M ≤ p/n ≤ M.

Condition (a) bounds the tail probabilities on the covariates. Requiring finite moment of all 

orders is useful to get strong bounds on the deviations of the risk from its predicted value. 

As discussed below, bounds on the first few moments are sufficient if we are satisfied with 

weaker probability bounds.
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Conditions (b) requires the eigenvalues of Σ to be bounded, and not to accumulate3 near 0. 

For the analysis of min-norm interpolation, we will add the additional assumption that the 

minimum eigenvalue of Σ is bounded away from zero. However, condition (b) is sufficient 

for the analysis of ridge regression in Section 6.

Finally, as our statements are nonasymptotic, we do not assume p/n to converge to a value. 

However, condition (c) requires p/n to be bounded and bounded away from the interpolation 

threshold p/n = 1.

4.1. Prediction risk.

DEFINITION 1 (Predicted bias and variance: min-norm regression). Let Hn be the empirical 

distribution of eigenvalues of Σ, and Gn the reweighted distribution as per equation (11). For 

γ ∈ ℝ > 0, define c0 = c0 γ, Hn ∈ ℝ > 0 to be the unique nonnegative solution of

1 − 1
γ = ∫ 1

1 + c0γsdHn(s) . (12)

We then define the predicted bias and variance by

ℬ Hn, Gn, γ ≔ β

2

2

1 + γc0

∫ s2

1 + c0γs 2dHn(s)

∫ s
1 + c0γs 2dHn(s)

⋅ ∫ s
1 + c0γs 2dGn(s), (13)

V Hn, γ ≔ σ2γc0

∫ s2

1 + c0γs 2dHn(s)

∫ s
1 + c0γs 2dHn(s)

. (14)

Note that evaluating ℬ(H, G, γ),  (H, γ) numerically is relatively straightforward, with the 

most complex part being the solution of equation (12). The next theorem establishes that—

under suitable technical conditions—the functions ℬ,  characterize the test error. Similar 

theorems were proved in [57, 69], which generalized an earlier version of this manuscript to 

account for the geometry of (Σ, β).

THEOREM 2. Assume the data model (1), (2) and that the covariates distribution satisfies 
Assumption 1. Further assume sp = λmin(Σ) > 1/M. Define γ = p/n and let β  be the 
min-norm least squares estimator in equation (6).

Then for any constant D > 0 (arbitrarily large) there exist C = C(M, D) such that, with 
probability at least 1 − Cn−D the following hold:

3The latter assumption could have been further relaxed, by requiring only p+ of the p eigenvalues to be nonvanishing and to satisfy the 
other conditions. This would require to redefine γ as p+/n.
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RX(β ; β) = BX(β ; β) + V X(β ; β), (15)

BX(β ; β) − ℬ Hn, Gn, γ ≤
C β 2

2

n1/7 , (16)

V X(β ; β) − V Hn, γ ≤ C
n1/7 , (17)

where ℬ and  are given in Definition 2, and the first identity is just the general bias-
variance decomposition of equation (5).

The proof of this theorem is deferred to Section A.2.

REMARK 1. The order of the error bound in equations (16), (17) is not optimal: a central limit 

theorem heuristics suggests the deterministic approximation to be accurate up to an error of 

order n−1/2. Indeed, we are able to establish the optimal order in the case of ridge regression; 

see Theorem 5.

Let us emphasize that, while suboptimal, the O(n−1/7) terms in equation (16), (17) are often 

negligible as compared to the leading terms ℬ Hn, Gn, γ , V Hn, γ . In particular, as stated 

in Theorem 3 below, whenever p, n → ∞ with p/n γ ∈ (0, ∞) and the two probability 

measures Hn, Gn converge weakly to finite limits H, G, ℬ Hn, Gn, γ , V Hn, γ  remain 

bounded away from zero, and hence dominate the O(n−1/7) errors.

Notice that this is in particular the case for isotropic features, and Theorem 1 (under the 

stronger moment assumption on the zi’s) is recovered as a corollary of Theorem 2.

REMARK 2. Note that Theorem 2 establishes deterministic approximations for the bias 

and variance, that are valid at finite n, p. The overparametrization ratio γ = p/n is a 

nonasymptotic quantity, and the error bounds are uniform, that is, depend only on the 

constant M. This is to be contrasted with the asymptotic setting of [57, 69]. Both of these 

papers assume a sequence of regression problems with n, p → ∞, p/n → γ, and obtain an 

asymptotically exact expression for the risk.

In order for the asymptotics to make sense, additional assumptions are required by [57, 69]. 

In [57], this is achieved by assuming β to be random with E ββT = r2Φ(Σ)/d for a certain 

(deterministic) function Φ:ℝ ℝ (promoted to a function on matrices in the usual way). 

In addition, the empirical spectral distribution of Σ is assumed to converge. To state the 

assumptions in [69], recall that (si)i≤p are the eigenvalues of Σ, and denote by bi = p ⋅ viTβ 2

the projection of β onto the eigenvectors of Σ. Then [69] assumes that the joint empirical 

distribution p−1∑i = 1
p δsi, bi converges weakly as n, p → ∞.
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Technically, [57, 69] apply asymptotic random matrix theory results, such as [43], while we 

have to take a longer detour to exploit nonasymptotic results established in [41]. We believe 

that the nonasymptotic approach provides more concrete and accurate statements.

Theorem 2 also implies asymptotic predictions under minimal assumptions. In particular, 

if the two probability measures Hn, Gn converge weakly to probability measures H, G on 

[0, ∞), then we obtainn4 BX(β ; β)/ β 2 ℬ(H, G, γ), V X(β ; β) V(H, γ). Hence, the first 

part of the following asymptotic statement follows immediately from Theorem 2 by taking 

the limit n, p→ ∞ in equations (16), (17) (and using Borel–Cantelli to obtain almost sure 

convergence).

THEOREM 3. Consider the setting of Theorem 2. Further assume n, p → ∞, p/n → γ ε (0, 

∞), Hn H, Gn G. Define ℬ1(H, G, γ) as in equation (13), with β 2
2 replaced by 1. 

Then, almost surely

1
β 2

2BX(β ; β) ℬ1(H, G, γ),     V X(β ; β) V(H, γ) . (18)

with ℬ1(H, G, γ),  (H, γ) > 0 strictly.

The same conclusion holds if instead of Assumption 1(a), the coordinates of z, (zi)i≤p are 

i.i.d. and satisfy the conditions Ezi = 0, E zi2 = 1, E zi
4 + δ ≤ C < ∞.

The last part of this theorem (under the weaker moment condition E zi
4 + δ < C) is proved 

via a truncation argument in Appendix A.1.4. For carrying out this argument, we make 

use of estimates on the norm of random matrices that are available only for the case of 

identically distributed entries (zi)i≤p.

As pointed out above the condition Hn H, Gn G (here ⇒ denotes weak convergence) is 

strictly weaker than the condition assumed in [69] to establish asymptotic results. Further, 

we require weaker moment conditions.

In the next sections, we illustrate the role of the geometry of β, Σ by considering two models 

for which Hn H, Gn G as n, p → ∞. First, we consider the case G = H, which we 

refer to as “equidistributed”: the components of β are roughly equally distributed along the 

eigenvectors of Σ. In this case, there is no special relation between β and Σ.

As a further application, we consider a latent space model in which β is aligned with the top 

eigenvectors of Σ. This can be regarded as a misspecified model, and is therefore presented 

in Section 5.2 below.

4Indeed all the expressions in equations (12), (13), (14) are continuous in Hn, Gn (with respect to the weak topology) since they are 

expectations of bounded continuous functions.
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4.2. Equidistributed coefficients.

In this section, we assume G = H, ∥β∥2 → r, and p/n → γ. One way to generate β satisfying 

this condition is to draw it uniformly at random on the p-dimensional sphere of radius ∥β∥2 = 

r. In this case, the conditions of Theorem 2 (or Theorem 3), hold with Gn G = H.

COROLLARY 2. Under the assumptions of Theorem 3, further assume G = H, ∥β∥2 → r2. Then 
for n, p → ∞, with p/n → γ > 1, almost surely

BX(β ; β) ℬequi(H, γ) ≔ r2

c0(H, γ)γ2 , (19)

V X(β ; β) Vequi(H, γ) ≔ V(H, γ) . (20)

As a special case, we can revisit the isotropic case Σ = I, which results in dH = δ1. In this 

case, c0(H, γ) = γ (γ − 1) yielding immediately ℬequi(H, γ) = 1 − γ−1 and equi(H, γ) = 

1/(γ − 1).

4.3. Limiting ℓ2 norm.

Again, as in the isotropic case, analysis of the limiting ℓ2 norm is similar to analysis of the 

risk in Theorem 2. We give the next result without proof, as it is an immediate generalization 

of previous results.

COROLLARY 3. Under the assumptions of Theorem 3, further assume ∥β∥2 → r2, and let c0 

= c0(H, γ) be defined as there. Then as n, p → ∞, such that p/n → γ, the min-norm least 
squares estimator (6) satisfies, almost surely

β

2

2
r2 + σ2 γ

1 − γ∫ 1
s dH(s) for γ < 1,

∫ c0γs
1 + c0γsdG(s) + c0γσ2 for γ > 1,

(21)

4.4. Benign overfitting.

Theorem 2 (and its generalization to nonzero ridge regularization, Theorem 5) can be 

used to delineate regimes in which interpolation is statistically optimal or nearly optimal. 

“Statistical optimality” can be given different meanings in this context. Section 6.2 explores 

optimality in the context of the latent space model and shows that (in certain regimes) 

RX β0; β ≤ 1 + on(1) RX βλ; β  for any λ> 0: min-norm interpolation is optimal up to 

subleading factors.

A different notion of optimality was explored (in concurrent work) in [6] and [66]. In these 

works, optimality is understood to hold up to constant multiplicative factors. A weaker 

notion is also considered whereby the interpolator is only required to be consistent. The term 

“benign overfitting” was proposed in [6] for such phenomena.
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Theorem 2 can be used to establish upper bounds that are closely related to the ones of 

[6, 66] and in particular imply benign overfitting. As an example, the following bound was 

proven in joint work with Peter Bartlett and Alexander Rakhlin [7]. Recall that s1 ≥ s2 ≥ ⋯ ≥ 

sp denote the eigenvalues of the covariance Σ in decreasing order, and we define the effective 

rank rk(Σ) = ∑i = k + 1
p λi/λk + 1. We also denote by β≤k the projection of β onto the top k 

eigenvectors of Σ and β>k = β − β≤k.

COROLLARY 4 ([7]). Under the assumptions of Theorem 2, further assume that there exists an 
integer k and a constant c* > 0 such that rk(Σ) ≥ (1 + c*)n. Then there exists a constant C = 

C(M, D) such that, with probability at least 1 − Cn−D,

BX(β ; β) ≤ 4 1
n ∑

i = k + 1

p
λi

2
β ≤ k Σ−1

2 + β > k Σ
2 + Cn−1/7, (22)

V X(β ; β) ≤ 2kσ2

n + 4nσ2

c*

∑i = k + 1
p λi

2

∑i = k + 1
p λi

2 + Cn−1/7 . (23)

This corollary is an immediate consequence of Theorem 2. It upper bounds the excess risk 

over an “ideal” (underparametrized) estimator that only fits the projection of β onto the 

top eigenvector of Σ. This excess risk will be small when β is well aligned to the top 

eigenvectors of Σ and the ratio ∑i = k + 1
p λi

2/ ∑i = k + 1
p λi

2
 is small.

This result is analogous to the ones of [6, 66] although not precisely comparable. The upper 

bound on the variance term in [6] is sharp up to universal multiplicative constants. The upper 

bound on the bias in [66] depends on the (random) condition number of the component of 

the bias along less important directions. On the other hand, both of [6, 66] apply to cases in 

which Σ−1/2x does not have independent coordinates. Corollary 4 has a larger additive slack 

Cn−1/7 (which can be improved to Cn−1/2 for ridge regression), but a more precise prefactor.

5. Misspecified models.

5.1. Regression with respect to a subset of features.

In this section, we consider a misspecified model, in which the regression function is 

still linear, but we observe only a subset of the features. Such a setting provides another 

potential motivation for interpolation: in many problems, we do not know the form of 

the regression function, and we generate features in order to improve our approximation 

capacity. Increasing the number of features past the point of interpolation (increasing γ past 

1) can now decrease both bias and variance.

As such, the misspecified model setting also yields further interesting asymptotic 

comparisons between the γ < 1 and γ > 1 regimes. Recall the isotropic features model of 

Section 3.2: the risk function in (10) is globally minimized at γ = 0. This is a consequence 

of the fact that, in a well-specified linear model at γ = 0 there is no bias and no variance, and 
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hence no risk. In a misspecified model, we will see that the story can be quite different, and 

the asymptotic risk can actually attain its global minimum on (1, ∞).

5.1.1. Data model and risk.—Consider, instead of (1), (2), a data model

xi, wi , ϵi Px, w × Pϵ,     i = 1, …, n, (24)

yi = xiTβ + wiTθ + ϵi,     i = 1, …, n, (25)

where as before the random draws across i = 1, …, n are independent. Here, we partition the 

features according to xi, wi ∈ ℝp + q, i = 1, …, n, where the joint distribution Px,w is such 

that E xi, wi = 0 and

Cov xi, wi = Σ =
Σx Σxw

ΣxwT Σw
.

We collect the features in a block matrix [XW ] ∈ ℝn × (p + q) (which has rows 

xi, wi ∈ ℝp + q, i 1, …, n). We presume that X is observed but W is unobserved, and focus 

on the min-norm least squares estimator exactly as before in (6), from the regression of y on 

X (not the full feature matrix [XW]).

Given a test point (x0, w0) ~ Px,w, and an estimator β  (fit using X, y only, and not W), we 

define its out-of-sample prediction risk as

RX(β; β, θ) = E x0
Tβ − E y0 ∣ x0, w0

2 ∣ X = E x0
Tβ − x0

Tβ − w0
Tθ 2 ∣ X .

Note that this definition is conditional on X, and we are integrating over the randomness not 

only in ϵ (the training errors), but in the unobserved features W, as well. The next lemma 

decomposes this notion of risk in a useful way.

LEMMA 2. Under the misspecified model (24), (25), for any estimator β , we have

RX(β; β, θ) = E x0
Tβ − E y0 ∣ x0

2 ∣ X

RX* (β; β, θ)

+ E E y0 ∣ x0 − E y0 ∣ x0, w0
2

M(β, θ)

.

PROOF. Simply add an subtract E y0 ∣ x0  inside the square in the definition of RX(β ; β, θ), then 

expand, and note that the cross term vanishes because E E y0 ∣ x0 − E y0 ∣ x0, w0 ∣ x0 = 0. 

□

The first term RX* (β; β, θ) in the decomposition in Lemma 2 is precisely the risk that we 

studied previously in the well-specified case, except that the response distribution has 
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changed (due to the presence of the middle term in (25)). We call the second term M(β, 

θ) in Lemma 2 the misspecification bias.

REMARK 3. If (xi, wi) are jointly Gaussian, then the above expressions simplify 

and Theorem 2 can be used to characterize the risk RX(β ; β, θ). In particular, the 

conditional distribution of w given x is Pw ∣ x = N ΣwxΣx
−1x, Σw ∣ x  where Σwx = Σxw

T , and 

Σw ∣ x = Σw − ΣwxΣx
−1Σwx

T . Further, y = βTx + ϵ, where β = β + Σx
−1Σxwθ and ε N 0, σ2 , 

σ2 = σ2 + θTΣw ∣ xθ. It is then easy to show that the misspecification bias is M(β, θ) = θT 

Σw|xθ and the term RX* (β; β, θ) can be approximated using Theorem 2.

In order to discuss some qualitative features, we focus on the simplest possible model by 

assuming independent covariates.

5.1.2. Isotropic features.—Here, we make the additional simplifying assumption that 

(x, w) ~ Px,w has i.i.d. entries with unit variance, which implies that Σ = I. (The case of 

independent features but general covariances Σx, Σw is similar, and we omit the details.) 

Therefore, we may write the response distribution in (25) as

yi = xiTβ + δi,     i = 1, …, n,

where δi is independent of xi, having mean zero and variance σ2 + θ 2
2, for i = 1, …, 

n. Denote the total signal by r2 = β 2
2 + θ 2

2, and the fraction of the signal captured by 

the observed features by κ = β 2
2/r2. Then RX* (β; β, θ) behaves exactly as we computed 

previously, for isotropic features in the well-specified setting (Theorem 2 for γ < 1, and 

Theorem 1 for γ > 1), after we make the substitutions:

r2 r2κ    and    σ2 σ2 + r2(1 − κ) . (26)

Furthermore, we can easily calculate the misspecification bias:

M(β, θ) = E w0
Tθ 2 = r2(1 − κ) .

Putting these results together leads to the next conclusion.

THEOREM 4. Assume the misspecified model (24), (25) and assume (x, w) ~ Px,w has i.i.d. 

entries with zero mean, unit variance and a finite moment of order 4 + δ, for some δ> 0. 

Also assume that β 2
2 + θ 2

2 = r2 and β 2
2/r2 = κ for all n, p. Then for the min-norm least 

squares estimator β  in (6), as n, p → ∞, with p/n → γ, it holds almost surely that

RX(β; β, θ)
r2(1 − κ) + r2(1 − κ) + σ2 γ

1 − γ for γ < 1,

r2(1 − κ) + r2κ 1 − 1
γ + r2(1 − κ) + σ2 1

γ − 1 for γ > 1.
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We remark that, in the independence setting considered in Theorem 4, the dimension q of 

the unobserved feature space does not play any role: we may equally well take q = ∞for all 

n, p (i.e., infinitely many unobserved features).

The components of the limiting risk from Theorem 4 are intuitive and can be interpreted as 

follows. The first term r2(1 − κ) is the misspecification bias (irreducible). The second term, 

which we deem as 0 for γ < 1 and r2κ(1 − 1/γ) for γ > 1, is the bias. The third term, r2(1 − 

κ)γ/(1 − γ) for γ < 1 and r2(1 − κ)/(γ − 1) for γ > 1, is what we call the misspecification 
bias: the inflation in risk due to unobserved features, when we take E y0 ∣ x0  to be the target 

of estimation. The last term, σ2γ/(1 − γ) for γ < 1 and σ2/(γ 1) for γ > 1, is the variance 

itself.

5.1.3. Polynomial approximation bias.—Since adding features should generally 

improve our approximation capacity, it is reasonable to model κ = κ(γ) as an increasing 

function of γ. To get an idea of the possible shapes taken by the asymptotic risk curve from 

Theorem 4, we consider the example of a polynomial decay for the approximation bias,

1 − κ(γ) = (1 + γ)−a, (27)

for some a > 0. In this case, the limiting risk in the isotropic setting, from Theorem 4, 

becomes

Ra(γ) =

r2(1 + γ)−a + r2(1 + γ)−a + σ2 γ
1 − γ for γ < 1,

r2(1 + γ)−a + r2 1 − (1 + γ)−a 1 − 1
γ + r2(1 + γ)−a + σ2 1

γ − 1 for γ > 1.

(28)

We next summarize some interesting features of these risk curves, and Figures 3 and 4 give 

accompanying plots for SNR = 1 and 5, respectively. Recall that the null risk is r2, which 

comes from predicting with the null estimator β = 0.

1. On (0, 1), the least squares risk Ra(γ) can only be better than the null risk if 

a > 1 + 1
SNR . Further, in this case, we have Ra(γ) < r2 if and only if γ < γ0, 

where γ0 is the unique zero of the function

(1 + x)−a + 1 + 1
SNR x − 1

that lies in 0, SNR
SNR+1 . Finally, on SNR

SNR+1 , 1 , the least squares risk Ra(γ) is 

always worse than the null risk, regardless of a > 0, and it is monotonically 

increasing.
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2. On (1, ∞), when SNR 1, the min-norm least squares risk Ra(γ) is always worse 

than the null risk. Moreover, it is monotonically decreasing, and approaches the 

null risk (from above) as γ → ∞.

3. On (1, ∞), when SNR > 1, the min-norm least squares risk Ra(γ) can be better 

than the null risk for any a > 0, and in particular we have Ra(γ) < r2 if and only if 

γ < γ0, where γ0 is the unique zero of the function

(1 + x)−a(2x − 1) + 1 − 1 − 1
SNR x

lying in SNR
SNR−1 , ∞ . Indeed, on 1, SNR

SNR−1 , the min-norm least squares risk 

Ra(γ) is always worse than the null risk (regardless of a > 0), and it is 

monotonically decreasing.

4. When SNR > 1, for small enough a > 0, the global minimum of the min-norm 

least squares risk Ra(γ) occurs after γ = 1. A sufficient but not necessary 

condition is a ≤ 1 + 1
SNR  (because, due to points 1 and 3 above, we see that in 

this case Ra(γ) is always worse than null risk for γ < 1, but will be better than 

the null risk at some γ > 1).

5.2. Latent space model.

We next consider an example in which β is aligned with the top eigenvectors of Σ. To 

motivate this example, assume that the responses yi are linear in the latent features vectors 

zi ∈ ℝd. We do not observe this latent vector, but rather observe p ≥ d covariates xi ≔ (xi1, 

…, xip) that are also linear in the latent vector zi:

yi = θTzi + ξi,     xij = wjTzi + uij . (29)

Here, (ξi)i≤n, (uij)i≤n,j≤p are noise variables that are mutually independent, and independent 

of zi, with ξi N 0, σξ
2 , uij ~ N(0, 1). The features matrix takes the form X = ZWT + U and, 

therefore, for p> n, min-norm regression amounts to

β = arg min b 2:ZW Tb + Ub = y . (30)

Apart from its intrinsic interest, this latent-space model is directly connected to 

nonlinear random features models, as the ones studied in Section 8. Indeed, in 

nonlinear random features models we have xij = φ wjTzi . We can decompose this as 

xij = a0 + a1wjTzi + φ wjTzi , where φ is such that φ wjTzi  has zero mean and is uncorrelated 

with wjTzi, conditional on wj. Equation (29) then corresponds to replacing the uncorrelated 

random variable φ wjTzi  by the independent Gaussians uij. This connection was discussed 

in [49, 52], after a first appearance of the present paper. Recent studies of high-dimensional 
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linear discriminant analysis [15, 40, 53] share important elements of the model studied here: 

anisotropic covariance and signal aligned with its top eigenvectors.

We consider a variant of model (29), which is a special case of the model studied in Section 

4. Namely we assume xi = Σ1/2zi, yi βT xi + εi, where zi is a vector with independent 

coordinates satisfying Assumption 1, and we set

Σ = Ip + W W T ,     β = W I + W TW −1θ, (31)

E εi = 0,     E εi2 = σ2,     σ2 = σξ
2 + θT I + W TW −1θ . (32)

Here, W ∈ ℝp × d is the matrix with rows (wi)i≤p. In what follows, rθ
2 ≔ θ 2

2
, ψ = d/p. As 

anticipated, the coefficients vector is aligned with the top eigenspace of Σ (the span of the 

columns of W).

The connection between the last formulation and the model of equation (29) is easy to see if 

the latent vector zi ~ N(0, Id). In this case, the two models coincide because yi, xi ∈ ℝp + 1 is 

a centered Gaussian vector with the same covariance structure.

In order to simplify our calculations, we assume all the nonzero singular values of W to 

be equal, whence WTW = (pμ/d)Id, for μ > 0 a constant. The factor p/d is justified by the 

remark that the average norm of the vectors wj is given by

1
p ∑

j = 1

p
wj 2

2 = 1
ptr W TW = μ .

Hence, μ is the signal-to-noise ratio in the features xij = wjTzi + uij, and keeping μ constant 

corresponds to keeping this signal-to-noise ratio constant. This is also motivated by the 

nonlinear random features model xij = φ wjTzi  (if we identify the nonlinear component with 

the noise); see Section 8 and [49].

Note that with this setting, the eigenvalues of Σ are

s1 = s2 = ⋯ = sd = 1 + μψ−1 > sd + 1 = s2 = ⋯ = sp = 1.

If p, d, n → ∞, with p/n → γ, d/p → ψ, then this model satisfies the assumptions of 

Theorem 2, with

H(s) = (1 − ψ)1(s ≥ 1) + ψ1 s ≥ 1 + ψ−1 , (33)
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G(s) = 1 s ≥ 1 + ψ−1 , β
2

2
=

μψ−1rθ
2

1 + μψ−1 2 (34)

Using Theorem 2, we get the following explicit expressions.

COROLLARY 5. Consider the latent space model described above, namely xi = Σ1/2zi, 

yi = βTxi + εi, where zi is a vector with independent coordinates satisfying Assumption 1. 

Further assume equations (31), (32) and d/p → ψ ∈ (1, ∞), p/n → γ (1, ∞) to hold. (The 
case γ ∈ (0, 1) being covered by Proposition 2.)

Then almost surely

RX(β ; β) ℬlat(ψ, γ) + Vlat(ψ, γ), (35)

ℬlat(ψ, γ) ≔ 1 + γc0
ℰ1(ψ, γ)
ℰ2(ψ, γ) ⋅

μψ−1rθ
2

1 + μψ−1 1 + c0γ 1 + μψ−1 2 , (36)

Vlat(ψ, γ) ≔ σ2γc0
ℰ1(ψ, γ)
ℰ2(ψ, γ) , (37)

ℰ1(ψ, γ) ≔ 1 − ψ
1 + c0γ 2 + ψ 1 + μψ−1 2

1 + c0 1 + μψ−1 γ 2 , (38)

ℰ2(ψ, γ) ≔ 1 − ψ
1 + c0γ 2 + ψ 1 + μψ−1

1 + c0 1 + μψ−1 γ 2 . (39)

where σ2 = σξ
2 + rθ

2/ 1 + μψ−1 , and c0 = c0(ψ, γ) ≥ 0 is the unique nonnegative solution of 

the following second-order equation:

1 − 1
γ = 1 − ψ

1 + c0γ + ψ
1 + c0 1 + μψ−1 γ

. (40)

REMARK 4. The proof of Theorem 2 holds almost unchanged for the case in which xi = Σ1/2zi
with Σ1/2 a nonsymmetric square root of Σ and zi a vector with independent entries 

satisfying Assumption 2. This case includes the general model equation (29) for zi with 

independent entries as a special case. It is sufficient to set zi = zi, ui  and Σ1/2 = (W, Ip).

Figures 5 and 6 illustrate this corollary by comparing analytical predictions to numerical 

simulations. We observe that the prediction risk is monotone decreasing in the over-

parametrization ratio for γ > 1, and reaches its global minimum asymptotically as γ → 
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∞ (after p, n, d → ∞). To understand why this happens, notice that each feature vector 

xi can be viewed as a noisy measurement of the latent covariates zi. If the noise uij was 

absent, then performing min-norm regression with respect to (xi)i≤n would be equivalent to 

min-norm regression with respect to (zi)i≤n. To see this, consider again equation (30). If 

we drop the noise U, we are minimizing ∥b∥2 subject to Z(WTb) = 0, and the regression 

function is f(z) = xTβ = zT W Tβ . Since W is orthogonal, this is equivalent to computing 

θ = arg min t 2:  subject to Zt = y , with y = Zθ + ξ. In other words, we are back to the 

underparametrized model.

In presence of noise uij, the latent features cannot be estimated exactly. However, as p gets 

larger, the noise is effectively “averaged out” and we approach the idealized situation in 

which the zi ‘s are observed.

All of the simulations in Figures 5, 6 are carried out with μ = 1. In Appendix A.3, we 

explore the dependence on μ, and show that the generalization curves are insensitive over a 

broad range of choices of this parameter.

6. Ridge regularization.

We generalize the formulas of Section 4 to nonvanishing ridge regularization. 

We work under the same assumptions of that section. In particular, recall that 

Hn(s) = p−1∑i = 1
p 1 s ≥ si  is the empirical distribution of the eigenvalues of Σ, and 

Gn(s) = ∑i = 1
p β, vi

21 s ≥ si / β 2
 the same empirical distribution, reweighted by the 

projection of β onto the eigenvectors vi of the covariance Σ. (Recall the eigenvalue 

decomposition Σ = ∑i = 1
p siviviT .)

DEFINITION 2 (Predicted bias and variance: ridge regression). For γ ∈ ℝ > 0, and z ∈ ℂ+ (the 

set of complex numbers with Im(z) > 0), define mn(z) = m z; Hn, γ  as the unique solution of

mn(z) = ∫ 1
s 1 − γ − γzmn(z) − zdHn(s) . (41)

Further define mn, 1(z) = mn, 1 z; Hn, γ  via

mn, 1(z) ≔
∫ s2 1 − γ − γzmn(z)

s 1 − γ − γzmn(z) − z 2dHn(s)

1 − γ∫ zs
s 1 − γ − γzmn(z) − z 2dHn(s)

. (42)

These definitions are extended analytically to Im(z) = 0 whenever possible. We then define 

the predicted bias and variance by
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ℬ λ; Hn, Gn, γ ≔ λ2 β
2

1 + γmn, 1( − λ) ×

∫ s
λ + 1 − γ + γλmn( − λ) s 2dGn(s),

(43)

V λ; Hn, γ ≔ σ2γ∫ s2 1 − γ + γλ2mn′( − λ)
λ + s 1 − γ + γλmn( − λ) 2dHn(s) . (44)

We next state our deterministic approximation of the risk.

THEOREM 5. Let M−1 ≤ p/n ≤ M, and Assumption 1 hold. Further assume λ ∨ smin(Σ) > 1/M 
and n−2/3+1/M <λ< M. Let βλ be the ridge estimator of equation (7).

Then for any constants D > 0 (arbitrarily large) and ε > 0 (arbitrarily small), there exist C = 

C(M, D) such that, with probability at least 1 − Cn−D the following hold:

RX βλ; β = BX βλ; β + V X βλ; β , (45)

BX βλ; β − ℬ λ; Hn, Gn, γ ≤
C β 2

2

λn(1 − ε)/2 , (46)

V X βλ; β − V λ; Hn, γ ≤ C
λ2n(1 − ε)/2 , (47)

where ℬ and  are given in Definition 2, and the first identity is just the general bias-
variance decomposition of equation (5).

The proof of this theorem is deferred to Appendix A.1. As for Theorem 2, similar results 

were proved in [57, 69], subsequently to a first version of this manuscript that only focused 

on random β. The same comparison of Remark 2 applies here.

In particular, Theorem 5 establishes nonasymptotic deterministic approximations for the bias 

BX βλ; β  and variance V X(β ; β). The error terms are uniform over the covariance matrix, 

and have nearly optimal dependence upon the sample size n. Indeed, a central-limit theorem 

heuristics suggests fluctuations of order n−1/2.

As for the case of min-norm regression, Theorem 5 directly implies a characterization of 

the asymptotics of bias and variance of ridge regression. This statement is analogous to 

Theorem 6.
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THEOREM 6. Consider the setting of Theorem 5. Further assume p/n → γ ∈ (0, ∞), Hn H, 

Gn G. Define ℬ1(λ; H, G, γ) as in equation (43), with β 2
2 replaced by 1. Then, for any 

λ> 0, almost surely

1
β 2

2BX βλ; β ℬ1(λ; H, G, γ),     V X βλ; β V(λ; H, γ) . (48)

The same conclusion holds if instead of Assumption 1(a), the coordinates of z, (zi)i≤p are 

i.i.d. and satisfy the conditions Ezi = 0, E zi2 = 1, E zi
4 + δ ≤ C < ∞.

6.1. Isotropic features.

As a special case, we can consider the simple isotropic model that was already studied in 

Section 3. Very similar (though not identical) results can be found in Dicker [22], Dobriban 

and Wager [23].

COROLLARY 6. Assume the conditions of Theorem 1 (well-specified model, isotropic 
features). Then for ridge regression estimator in (7) as n, p → ∞, such that p/n → γ ∈ 
(0, ∞), it holds almost surely that

RX βλ; β r2λ2m′( − λ) + σ2γ m( − λ) − λm′( − λ) . (49)

Here, m(z) is given by equation (41), which in this case has the explicit solution 

m(z) = 1 − γ − z − (1 − γ − z)2 − 4γz /(2γz).

Furthermore, the limiting ridge risk is minimized at λ* = σ2γ/r2, in which case we have the 
simpler expression RX βλ; β σ2γm −λ* .

It is easy to recover the formulas in Theorem 1 as a limiting case of equation (49), by using 

the z → 0 asymptotics m(z) (1 − γ)−1 O(z) for γ < 1 and m(z) (1 − γ)−1 O(z) for γ < 1 and 

m(z) = − (γ − 1)/(γz) + [(γ − 1)γ]−1 + O(z) for γ > 1.

Figures 7 and 8 compare the risk curves of min-norm least squares to those from optimally-

tuned ridge regression, in the well-specified and misspecified settings, respectively. There 

are two important points to make. The first is that optimally-tuned ridge regression is seen 

to have strictly better asymptotic risk throughout, regardless of r2, γ, κ. This should not 

be a surprise, as by definition optimal tuning should yield better risk than min-norm least 

squares, which is the special case given by λ → 0+.

The second point is that, in this example, the limiting risk of optimally-tuned ridge 

regression appears to have a minimum around γ = 1, and this occurs closer and closer 

to γ = 1 as SNR grows. This behavior is interesting, especially because it is antipodal to that 

of the min-norm least squares risk, and leads us to very different suggestions for practical 

usage for feature generators: in settings where we apply substantial ℓ2 regularization (say, 

using CV tuning to mimic optimal tuning, which the next section shows to be asymptotically 
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equivalent), it seems we want the complexity of the feature space to put us as close to the 

interpolation boundary (γ = 1) as possible.

As we will see, the behavior is rather different in the latent space model.

6.2. Latent space model.

As a special application, we consider the latent space model of Section 5.2. It is immediate 

to specialize equations (43) and (44) to this case. We omit giving giving explicit formulas for 

brevity, and instead plot the resulting curves for the prediction risk (test error).

In Figure 9, we plot the risk as a function of the overparametrization ration γ = p/n for 

several values of the regularization parameter λ (included the ridgeless limit λ → 0). The 

setting here is analogous to the one of Figure 5. We observe several interesting phenomena:

1. Independently of λ in the probed range, the risk is minimized at large over-

parametrization γ ≫ 1.

2. As expected, the divergence of the risk at the interpolation threshold γ = 1 is 

smoothed out by regularization, and the risk becomes a monotone decreasing 

function of γ when λ is large enough. Crucially, the optimal amount of 

regularization (corresponding to the lower envelope of these curves) results in 

a monotonically decreasing risk.

3. At large overparametrization, the optimal value of the regularization parameter is 

λ → 0.

We confirm the last finding in Figure 10, which plots the risk as a function of λ: the optimal 

regularization is λ → 0. Notice that this is the case despite the fact that the observations are 

noisy, namely σξ > 0 strictly.

The optimality of λ → 0 has a known intuitive explanation that is worth recalling here. 

Recall that ridge predictor at point x0 takes the form

fλ x0 = x0, βλ = K x0, X (K(X, X) + λI)−1y, (50)

where we introduced the kernel matrix K(X, X) = XXT/n, and the vector K x0, X = x0
TX/n. 

Consider the case in which the covariates X contain noise, as is our case, X = X + ηU
where X = ZW T  and uij ~ N(0, 1). (While we are considering η = 1, it is instructive 

to regard the noise standard deviation as a parameter.) Then we might expect 

K(X, X) ≈ K(X, X) + η2UUT ≈ K(X, X) + η2In. If this approximation holds, the noise acts as 

an extra ridge term, which can be sufficient to regularize the problem.

To the best of our knowledge, this argument was first presented by Webb [68] and, more 

explicitly, by Bishop [13]. Recently, Kobak et al. [42] elucidated its role in linear regression, 

establishing several of its consequences. In a parallel line of work, a closely related idea has 

recently emerged in the analysis of kernel methods in high dimension [26, 47].
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7. Cross-validation.

We analyze the effect of using cross-validation to choose the tuning parameter in ridge 

regression. In short, we find that choosing the ridge tuning parameter to minimize the 

leave-one-out cross-validation error leads to the same asymptotic risk as the optimally-tuned 

ridge estimator. The next subsection gives the details; the following subsection presents a 

new “shortcut formula” for leave-one-out cross-validation in the overparametrized regime, 

for min-norm least squares, akin to the well-known formula for underparametrized least 

squares and ridge regression. We refer to [20, 32] for background on CV and GCV, and to 

[5] for a more recent review.

7.1. Limiting behavior of CV tuning.

Given the ridge regression solution βλ in (7), trained on (xi, yi), i = 1, …, n, denote by fλ

the corresponding ridge predictor, defined as fλ(x) = xTβλ for x ∈ ℝp. Additionally, for each 

i = 1, …, n, denote by fλ
−i the ridge predictor trained on all but ith data point (xi, yi).5 Recall 

that the leave-one-out cross-validation (leave-one-out CV, or simply CV) error of the ridge 

solution at a tuning parameter value λ is

CVn(λ) = 1
n ∑

i = 1

n
yi − fλ

−i xi
2

. (51)

We typically view this as an estimate of the out-of-sample prediction error E y0 − x0
Tβλ

2
, 

where the expectation is taken over everything that is random: the training data (xi, yi), i = 

1, …, n used to fit βλ, as well as the independent test point (x0, y0). Note also that, when 

we observe training data from the model (1), (2), and when (x0, y0) is drawn independently 

according to the same process, we have the relationship

E y0 − x0
Tβλ

2 = σ2 + E x0
Tβ − x0

Tβλ
2 = σ2 + E RX βλ; β ,

where RX βλ; β = E x0
Tβ − x0

Tβλ
2 ∣ X  is the conditional prediction risk, which has been 

our focus throughout.

Recomputing the leave-one-out predictors fλ
−i, i = 1, …, n can be burdensome, especially 

for large n. Importantly, there is a well-known “shortcut formula” that allows us to express 

the leave-one-out CV error (51) as a weighted average of the training errors,

5To be precise, this is f−i(x) = xT X−i
T X−i + nλI −1X−i

T y−i, where X−i denotes X with the ith row removed, and y−i denotes 

y with the ith removed. Arguably, it may seem more natural to replace the factor of n here by a factor of n − 1; we leave the factor of 
n as is because it simplifies the presentation in what follows, but we remark that the same asymptotic results would hold with n − 1 in 
place of n.
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CVn(λ) = 1
n ∑

i = 1

n yi − fλ xi
1 − Sλ ii

2
, (52)

where Sλ = X(XTX + nλ)−1XT is the ridge smoother matrix. This identity is an immediate 

consequence of the Sherman–Morrison–Woodbury formula. In the next subsection, we give 

an extension to the case λ = 0 and rank (X) = n, that is, to min-norm least squares.

The next result shows that, for isotropic features, the CV error of a ridge estimator converges 

almost surely to its prediction error. The focus on isotropic features is only for simplicity: 

a more general analysis is possible but is not pursued here. The proof, given in Appendix 

A.4.6, relies on the shortcut formula (52). In the proof, we actually first analyze generalized 

cross-validation (GCV), which turns out to be somewhat of an easier calculation (see the 

proof for details on the precise form of GCV), and then relate leave-one-out CV to GCV.

THEOREM 7. Assume the a isotropic prior, namely E(β) = 0, Cov(β) r2Ip/p, and the data model 
(1), (2). Assume that x ~ Px has i.i.d. entries with zero mean, unit variance, and a finite 
moment of order 4 + η, for some η > 0. Then for the CV error (51) of the ridge estimator in 
(7) with tuning parameter λ > 0, as n, p → ∞, with p/n → γ ∈(0, ∞), it holds almost surely 
that

CVn(λ) − σ2 σ2γ m( − λ) − λ(1 − αλ)m′( − λ) ,

where m(z) denotes the Stieltjes transform of the Marchenko–Pastur law Fγ (as in Corollary 
6), and α = r2/(σ2γ). Observe that the right-hand side is the asymptotic risk of ridge 
regression from Theorem 5. Moreover, the above convergence is uniform over compacts 
intervals excluding zero. Thus if λ1, λ2 are constants with 0 < λ1 ≤ λ* ≤ λ2 < ∞, 

where λ* = 1/α is the asymptotically optimal ridge tuning parameter value, and we 
define λn = arg minλ ∈ λ1, λ2 CVn(λ), then the expected risk of the CV-tuned ridge estimator 

RX(β) ≔ EβRX(β ; β) βλn satisfies, almost surely

RX βλn σ2γm( − 1/α),

with the right-hand side above being the asymptotic risk of optimally-tuned ridge regression. 

Further, the exact same set of results holds for GCV.

Similar results were obtained for various linear smoothers in Li [45, 46], for the lasso in the 

high-dimensional (proportional) asymptotics in Miolane and Montanari [51], and for general 

smooth penalized estimators in Xu et al. [70]. The latter paper covers ridge regression as a 

special case, and gives more precise results (convergence rates), but assumes more restrictive 

conditions. After submission of this paper, consistency of CV and GVC was proved in a 

significantly more general setting in [54], in particular dispensing with the assumption of 

random β.

Hastie et al. Page 33

Ann Stat. Author manuscript; available in PMC 2022 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The key implication of Theorem 7, in the context of the current paper and its central focus, is 

that the CV-tuned or GCV-tuned ridge estimator has the same asymptotic performance as the 

optimally-tuned ridge estimator. In other words, the ridge curves in Figures 1, 7 and 8 can be 

alternatively viewed as the asymptotic risk of ridge under CV tuning.

7.2. Shortcut formula for ridgeless CV.

We extend the leave-one-out CV shortcut formula (52) to work when p> n and λ = 0+, that 

is, for min-norm least squares. In this case, both the numerator and denominator are zero in 

each summand of (52). To circumvent this, we can use the so-called “kernel trick” to rewrite 

the ridge regression solution (7) with λ > 0 as

βλ = XT XXT + nλI −1y . (53)

Using this expression, the shortcut formula for leave-one-out CV in (52) can be rewritten as

CVn(λ) = 1
n ∑

i = 1

n XXT + nλI −1y
i
2

XXT + nλI −1
ii
2 .

Taking λ → 0+ yields the shortcut formula for leave-one-out CV in min-norm least squares 

(assuming without a loss of generality that rank(X) = n),

CVn(0) = 1
n ∑

i = 1

n XXT −1y
i

2

XXT −1
ii

2 . (54)

In fact, the exact same arguments given here still apply when we replace XXT by a positive 

definite kernel matrix K (i.e., Kij = k(xi, xj) for each i, j = 1, …, n, where k is a positive 

definite kernel function), in which case (54) gives a shortcut formula for leave-one-out CV 

in kernel ridgeless regression (the limit in kernel ridge regression as λ → 0+). We also 

remark that, when we include an unpenalized intercept in the model, in either the linear or 

kernelized setting, the shortcut formula (54) still applies with XXT or K replaced by their 

doubly-centered (row- and column-centered) versions, and the matrix inverses replaced by 

pseudoinverses.

8. Nonlinear model.

Our analysis in the previous sections assumed xi = Σ1/2zi, with zi a vector with independent 

entries.

In this section, we test universality on one simple example. We observe data as in (1), (2), 

but now xi = φ W zi ∈ ℝp, where zi ∈ ℝd has i.i.d. entries from N(0, 1), for i = 1, …, n. Also, 

W ∈ ℝp × d has i.i.d. entries from N(0, 1/d). Finally, φ:ℝ ℝ is an activation function acting 

entrywise on vectors.
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We first consider the case of purely nonlinear activations, namely activation functions that 

are uncorrelated with linear functions: E φ(G) = E Gφ(G) = 0 for G ~ N(0, 1). In this case, 

the second-order statistics of the features xi match the ones of the isotropic model and the 

same happen for the asymptotic of the risk. We then consider more general activations, 

and show that the asymptotic variance depends on the activation through the value of 

c1 = E Gφ(G) 2.

8.1. Limiting risk for purely nonlinear activations.

Notice that, conditionally on W, the vectors xi = φ(Wzi), i ≤ n are independent. However, 

they do not have independent coordinates. For instance, if φ(t) = at2 + b, we can reconstruct 

zi from the first 2d coordinates of xi and, therefore, the remaining p − 2d coordinates of xi 

are a function of the first 2d.

Nevertheless, the next theorem shows that if φ is purely nonlinear (in the sense that 

E φ(G) = E Gφ(G) = 0), then the feature matrix X behaves “as if” it had i.i.d. entries, 

in that the asymptotic bias and variance are exactly as in the linear isotropic case; 

recall equation (10). In other words, this theorem provides a rigorous confirmation of the 

universality hypothesis stated in the Introduction.

THEOREM 8. Assume the model (1), (2), where each xi = φ W zi ∈ ℝp, for zi ∈ ℝd having 

i.i.d. entries from N(0, 1), W ∈ ℝp × d having i.i.d. entries from N(0, 1/d) (with W 
independent of zi), and is φ an activation function that acts componentwise. Assume that 

φ(x) ≤ c0(1 + x )c0 for a constant c0 > 0. Also, for G ~ N(0, 1), assume that the following 

standardization conditions hold: E[φ(G)] = 0 and E φ(G)2 = 1, E[Gφ(G)] = 0. Consider the 

limit n, p, d → ∞, with p/n → γ and d/p → ψ ∈ (0, ∞).

Then for γ > 1, the variance satisfies, almost surely

lim
λ 0+

lim
n, p, d ∞

V X βλ; β = σ2
γ − 1,

which is precisely as in the case of linear isotropic features; recall Theorem 1. Also, under 
a isotropic prior, namely E(β) = 0, Cov(β) = r2Ip/p), the Bayes bias BX βλ ≔ EβBX βλ; β
satisfies, almost surely

lim
λ 0+

lim
n, p, d ∞

BX βλ =
0 for γ < 1,
r2(1 − 1/γ) for γ > 1,

which is again as in the case of linear isotropic features; recall Theorem 1.

The proof of Theorem 8 is lengthy and will be sketched shortly. We notice that the definition 

of V X βλ; β  and BX βλ  is conditional on X. In fact, we will prove that the stated limits hold 

asymptotically almost surely, conditionally both on W and on the covariates xi.
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The origin of the conditions E φ(G) = E Gφ(G) = 0 can be easily explained (throughout 

G ~ N(0, 1)). In summary, these conditions ensure that the first- and second-order statistics 

of xi = φ(Wzi) approximately match those of the isotropic model. To illustrate this point, 

let i ≠ j, and assume that the corresponding rows of W (denoted by wiT  and wjT) have unit 

norm (this will only be approximately true, but simplifies our explanation). We then have 

Ez φ wiTz1 = Ez φ wjTz1 = E φ(G) = 0. Further,

Ez x1, ix1, j ∣ W = Ez φ wiTz1 φ wjTz1 ∣ W = E φ G1 φ G2 , (55)

where G1, G2 are jointly Gaussian with unit variance and covariance wiTwj. Denoting by 

φ(x) = ∑k≥0 λk(φ)hk(x) the decomposition of φ into orthonormal Hermite polynomials, we 

thus obtain

E x1, ix1, j ∣ W = ∑
k = 0

∞
λk

2(φ) wiTwj
k, (56)

Since λ0(φ) = E φ(G) = 0, λ1(φ) = E Gφ(G) = 0, we have 

E x1, ix1, j ∣ W = O wiTwj
2 = O(1/d). In other words, the population covariance 

E x1x1
T ∣ W  has small entries out-of diagonal, and in fact E x1x1

T ∣ W − Ip op = oP(1)

[26].

Even if the nonlinear model xi = φ(Wzi) matches the second-order population statistics of 

the isotropic model, it is far from obvious that the asymptotics of the risk is the same. 

Indeed the coordinates of vector xi are highly dependent. Theorem 8 confirms that—despite 

dependence—the risk is asymptotically the same, thus providing a concrete example of the 

general universality phenomenon.

Figure 11 compares the asymptotic risk curve from Theorem 8 to that computed by 

simulation, using an activation function φabs(t) = a(|t |− b), where a = π/(π − 2) and 

b = 2/π are chosen to meet the standardization conditions. This activation function is purely 

nonlinear, that is, it satisfies E Gφabs(G) = 0 for G ~ N(0, 1), by symmetry. Again, the 

agreement between finite-sample and asymptotic risks is excellent. Notice in particular that, 

as predicted by Theorem 8, the risk depends only on p/n and not on d/n.

8.2. Limiting variance for general activations.

Consider now the case of a general activation with vanishing mean E φ(G) = 0, but 

nonvanishing linear component E Gφ(G) 2 = c1, and normalized so that E φ(G)2 = 1. 

Following the same argument as in the last section, we obtain the following approximation 

for the conditional covariance of xi given W:

E x1x1
T ∣ W − ΣX ∣ W op = oP(1),     ΣX ∣ W = 1 − c1 Ip + c1W W T . (57)
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In other words, the conditional covariance is well approximated by the covariance of the the 

latent space model of Sections 5.2 and 6.2. Let us emphasize that the conditional covariance 

is what matters (not the unconditional one) because the xi’s are independent only conditional 

on W.

In Appendix A.5, we derive the asymptotic variance for this model. The next result confirms 

once more the universality scenario outlined above. In words, the asymptotic variance of the 

nonlinear model xi = φ(Wzi) coincides with the asymptotic variance of the corresponding 

linear model xi ~ N(0, ΣW).

THEOREM 9. In the setting of Theorem 8, assume E[φ(G)] = 0 and E φ(G)2 = 1, 

E[Gφ(G)]2 = c1, and let V X βλ; β  denote the corresponding variance of ridge regression.

Further, consider a different problem with xi N 0, ΣX ∣ W , ΣX ∣ W ≔ 1 − c1 Ip + c1W W T , 

and denote by V X βλ; β  denote the corresponding variance of ridge regression. Assume p, n, 

d, → ∞ with p/n → γ ∈ (1, ∞, and d/p → ψ ∈ (0, ∞). Then we have, almost surely

lim
λ 0+

lim
n, p, d ∞

V X βλ; β = lim
λ 0+

lim
n, p, d ∞

V X βλ; β .

REMARK 5. After the last result was proved and a preprint posted online, the techniques 

developed here were significantly sharpened and generalized in [49], which proved in 

particular that the same universality result holds for the bias term as well. We notice that 

both Theorem 8 and Theorems 9 as well as its generalization in [49] assume a particularly 

simple model for the latent covariates zi. While this simple model simplifies the proof, the 

result is likely to generalize to other models, for example, zi with independent sub-Gaussian 

entries.

REMARK 6. Notice that the assumption of isotropic W in Theorem 8 and Theorem 9 is 

realistic as this is the standard choice of random features models. On the other hand, it is 

an interesting research question to which extent these results generalize to other distributions 

of zi, for example, zi ~ N(0, ΣZ). We believe that the results obtained here extend to that 

case as well as long as p/n → γ ∈ (1, ∞), and d/p → ψ ∈ (0, ∞) and ΣZ has a positive 

fraction of eigenvalues of the same order as its largest eigenvalue (as requested for Σ in 

Assumption 1). In that case of course, one has to replace the above formula for ΣX ∣ W  by 

ΣX ∣ W = Ez φ(W z)φ(W z)T .

8.3. Proof outline for Theorem 8.

We define γn = p/n and ψn = d/p. Recall that as n, p, d → ∞, we have γn → γ and ψn → 
ψ. To reduce notational overhead, we will generally drop the subscripts from γn, ψn, writing 

these simply as γ, ψ, since their meanings should be clear from the context. Let N = p + n 

and define the symmetric matrix A(s) ∈ ℝN × N, for s ≥ 0, with the block structure:
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A(s) =
sIp

1
nXT

1
nX 0n

, (58)

where Ip ∈ ℝp × p and 0n ∈ ℝn × n are the identity and zero matrix, respectively. As we will 

see, this matrix allows to construct the traces of interest by taking suitable derivatives of its 

resolvent.

We introduce the following resolvents (as usual, these are defined for Im(ξ) > 0 and by 

analytic continuation, whenever possible, for Im(ξ) = 0):

m1, n(ξ, s) = E A(s) − ξIN 1, 1
−1 = EM1, n(ξ, s),

M1, n(ξ, s) = 1
pTr[1, p] A(s) − ξIN −1 ,

m2, n(ξ, s) = E A(s) − ξIN p + 1, p + 1
−1 = EM2, n(ξ, s),

M2, n(ξ, s) = 1
nTr[p + 1, p + n] A(s) − ξIN −1 .

Here and henceforth, we write [i, j] = {i + 1, …, i + j} for integers i, j. We also write 

Mij
−1 = M−1

ij for a matrix M, and TrS (M) = ∑i∈S Mii for a subset S. The equalities in the 

first and third lines above follow by invariance of the distribution of A(s) under permutations 

of [1, p] and [p + 1, p n]. Whenever clear from the context, we will omit the arguments from 

block matrix and resolvents, and write A = A(s), m1,n = m1,n(ξ, s) and m2,n = m2,n(ξ, s).

The next lemma characterizes the asymptotics of m1,n, m2,n.

LEMMA 3. Assume the conditions of Theorem 8. Consider Im(ξ) > 0 or Im(ξ) 0, Re(ξ) < 0, 

with s ≥ t ≥ 0. Let m1 and m2 be the unique solutions of the following quadratic equations:

m2 = −ξ − γm1
−1,     m1 = −ξ − s − m2

−1, (59)

subject to the condition of being analytic functions for Im(z) > 0, and satisfying |m1(z, s)|, 

|m2(z, s)|≤ 1/Im(z) for Im(z) > C (with C a sufficiently large constant). Then, as n, p, d → 
∞, such that p/n → γ and d/p → ψ, we have almost surely (and in L1),

lim
n, p, d ∞

M1, n(ξ, s) = m1(ξ, s), (60)
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lim
n, p, d ∞

M2, n(ξ, s) = m2(ξ, s) . (61)

The proof of this lemma is given in Appendix A.5.2. As a corollary of the above, we obtain 

that the asymptotical empirical spectral distribution of the empirical covariance Σ = XTX/n
matches the one for the independent entries model, and is hence given by the Marchenko–

Pastur law (a result already obtained in Pennington and Worah [55]). We state this formally 

using the Stieltjes transform

Rn(z) = 1
pTr Σ − zIp

−1 . (62)

COROLLARY 7. Assume the conditions of Theorem 8. Consider Im(z) > 0. As n, p, d → ∞, 

with p/n → γ and d/p → ψ, we have (almost surely and in L1) Rn(ξ) → r(ξ) where r is 
nonrandom and coincides with the Stieltjes transform of the Marchenko–Pastur law, namely

r(z) = 1 − γ − z − (1 − γ − z)2 − 4γz
2γz . (63)

We refer to Appendix A.5.4 for a proof of this corollary. The next lemma connects the 

above resolvents computed in Lemma 3 to the variance of min-norm least squares, hence 

completing our proof outline.

LEMMA 4. Assume the conditions of Theorem 8. Let m1, m2 be the asymptotic resolvents 
given in Lemma 3. Define

m(ξ, s) = γm1(ξ, s) + m2(ξ, s) .

Then for γ ≠ 1, ∂xm(ξ, x)|x=0 as a simple pole at ξ = 0, and hence admits a Taylor–Laurent 
expansion around ξ = 0, whose coefficients will be denoted by D−1, D0,

− ∂xm(ξ, x) x = 0 = D−1
ξ2 + D0 + O ξ2 . (64)

Here, each coefficient is a function of γ, ψ: D−1 = D−1(γ, ψ), D0 = D0(γ, ψ). Furthermore, 

for the ridge regression estimator βˆλ in (7), as n, p, d → ∞, such that p/n → γ ∈ (0, ∞), 

d/p → ψ ∈ (0, 1), the following ridgeless limit holds almost surely:

lim
λ 0+

lim
n, p, d ∞

V X βλ; β = D0 .

The proof of this lemma can be found in Appendix A.5.3. Theorem 8 follows by evaluating 

the formula in Lemma 4, by using the result of Lemma 3. We refer to the Appendix in the 

Supplementary Material for details [36].
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Asymptotic risk curves for the linear feature model, as a function of the limiting aspect ratio 

γ. Black and yellow: risks for min-norm least squares in the isotropic well-specified model, 

for SNR = 1 and SNR = 5, respectively. These two match for γ < 1 but differ for γ > 1. 

The null risks for SNR = 1 and SNR = 5 are marked by the dotted black and yellow lines, 

respectively. Light blue: risk for a misspecified model with significant approximation bias 

(a = 1.5 in (27)), when SNR = 5. Green: optimally-tuned (equivalently, CV-tuned) ridge 

regression, in the same misspecified setup as for the light blue. Red: latent space model of 

Section 5.2, with r = 7, σ = 0. The points denote finite-sample risks, with n = 200, p = 

[γn], across various values of γ. Meanwhile, the “×” points mark finite-sample risks for a 

nonlinear feature model, with n = 200, p = [γn], d = 100 and X = φ(ZWT), where Z has 

i.i.d. N(0, 1) entries, W has i.i.d. N(0, 1/d) entries and φ(t) = a(|t| − b) is a “purely nonlinear” 

activation function, for constants a, b. Theorem 8 predicts that this nonlinear risk should 

converge to the linear risk with p features (regardless of d).
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Fig. 2. 
Asymptotic risk curves in (10) for the min-norm least squares estimator, when r2 varies 

from 1 to 5, and σ2 = 1. For each value of r2, the null risk is marked as a dotted line, and 

the points denote finite-sample risks, with n = 200, p = [γn], across various values of γ, 

computed from features X having i.i.d. N(0, 1) entries.
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Fig. 3. 
Asymptotic risk curves in (28) for the min-norm least squares estimator in the misspecified 

case, when the approximation bias has polynomial decay as in (27), as a varies from 0.5 to 

5. Here, r2 = 1 and σ2 = 1, so SNR = 1. The null risk r2 = 5 is marked as a dotted black 

line. The points denote finite-sample risks, with n = 200, p = [γn], across various values of 

γ, computed from features X having i.i.d. N(0, 1) entries.
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Fig. 4. 
Asymptotic risk curves in (28) for the min-norm least squares estimator in the misspecified 

case, when the approximation bias has polynomial decay as in (27), as a varies from 0.5 to 

5. Here, r2 = 5 and σ2 = 1, so SNR = 5. The null risk r2 = 5 is marked as a dotted black line. 

The points are again finite-sample risks, with n = 200, p = [γn], across various values of γ.
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Fig. 5. 
Latent space model of Section 5.2: test error RX(β ; β) of minimum norm regression as a 

function of the overparametrization ratio γ. Here, d = 20, r = 1, μ = 1, σξ = 0 and n varies 

across various curves. Symbols are averages over 100 realizations; continuous lines report 

the analytical prediction of Corollary 5.
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Fig. 6. 
Latent space model of Section 5.2: test error RX(β ; β) of minimum norm regression as a 

function of the overparametrization ratio γ. Here, d = 20, r = 1, μ = 1, n = 400 and the 

noise variance σξ varies across different curves. Symbols are averages over 100 realizations; 

continuous lines report the analytical prediction of Corollary 5.
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Fig. 7. 
Asymptotic risk curves for the min-norm least squares estimator in (10) as solid lines, and 

optimally–tuned ridge regression (from Theorem 5) as dashed lines. Here, r2 varies from 1 to 

5, and σ2 = 1. The null risks are marked by the dotted lines.
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Fig. 8. 
Asymptotic risk curves for the min-norm least squares estimator in (28) as solid lines, and 

optimally–tuned ridge regression (from Theorem 5) as dashed lines, in the misspecified case, 

when the approximation bias has polynomial decay as in (27), with a = 2. Here, r2 varies 

from 1 to 5, and σ2 = 1. The null risks are marked by the dotted lines.
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Fig. 9. 
Asymptotic risk as a function of the overparametrization ratio γ = p/n, for ridge regression 

in the latent space model of Section 6.2. Here, n = 400, d = 20, μ = 1, rθ = 1, σξ = 0, 

and each curve corresponds to a different value of the regularization λ. The dashed curve 

correspond to the min-norm interpolator (which coincides with the λ → 0 limit of ridge 

regression).
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Fig. 10. 
Asymptotic risk as a function of the regularization parameter λ, for ridge regression in the 

latent space model of Section 6.2. Here, n = 400, d = 20, μ = 1, rθ = 1, σξ = 0.1, and each 

curve corresponds to a different value of the overparametrization ratio γ = p/n.
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Fig. 11. 
Asymptotic variance curves for the min-norm least squares estimator in the nonlinear feature 

model (from Theorem 8), for the purely nonlinear activation φabs. Here σ2 = 1, and the 

points are finite-sample risks, with n = 200, p = [γn], over various values of γ, and varying 

input dimensions: d = 100 in black, d = 200 in red, d = 300 in green, and d = 400 in black. 

As before, the features used for finite-sample calculations are X = φ(ZWT), where Z has 

i.i.d. N(0, 1) entries and W has i.i.d. N(0, 1/d) entries.
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