Table 2.
Model | Accuracy | auc | aupr | f1 | Precision | Recall |
---|---|---|---|---|---|---|
GCS-Net | 0.844 | 0.807 | 0.949 | 0.913 | 0.840 | 1 |
L2 LogisticRegression | 0.800 | 0.751 | 0.907 | 0.886 | 0.833 | 0.945 |
RBF support vector machine | 0.733 | 0.628 | 0.916 | 0.846 | 0.804 | 0.891 |
Linear support vector machine | 0.777 | 0.743 | 0.943 | 0.871 | 0.829 | 0.918 |
Random forest | 0.800 | 0.785 | 0.946 | 0.886 | 0.833 | 0.945 |
Decision tree | 0.755 | 0.692 | 0.893 | 0.857 | 0.825 | 0.891 |