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Metal artifact reduction 
in ultra‑high‑resolution cone‑beam 
CT imaging with a twin robotic 
X‑ray system
Andreas Steven Kunz1,5*, Theresa Sophie Patzer1,5, Jan‑Peter Grunz1, 
Karsten Sebastian Luetkens1, Viktor Hartung1, Robin Hendel1, Tabea Fieber2, 
Franca Genest3, Süleyman Ergün4, Thorsten Alexander Bley1 & Henner Huflage1

Cone-beam computed tomography (CBCT) has been shown to be a powerful tool for 3D imaging of 
the appendicular skeleton, allowing for detailed visualization of bone microarchitecture. This study 
was designed to compare artifacts in the presence of osteosynthetic implants between CBCT and 
multidetector computed tomography (MDCT) in cadaveric wrist scans. A total of 32 scan protocols 
with varying tube potential and current were employed:  both conventional CBCT and MDCT studies 
were included with tube voltage ranging from 60 to 140 kVp as well as additional MDCT protocols 
with dedicated spectral shaping via tin prefiltration. Irrespective of scanner type, all examinations 
were conducted in ultra-high-resolution (UHR) scan mode. For reconstruction of UHR-CBCT scans an 
additional iterative metal artifact reduction algorithm was employed, an image correction tool which 
cannot be used in combination with UHR-MDCT. To compare applied radiation doses between both 
scanners, the volume computed tomography dose index for a 16 cm phantom (CTDIvol) was evaluated. 
Images were assessed regarding subjective and objective image quality. Without automatic tube 
current modulation or tube potential control, radiation doses ranged between 1.3 mGy (with 70 kVp 
and 50.0 effective mAs) and 75.2 mGy (with 140 kVp and 383.0 effective mAs) in UHR-MDCT. Using the 
pulsed image acquisition method of the CBCT scanner, CTDIvol ranged between 2.3 mGy (with 60 kVp 
and 0.6 mean mAs per pulse) and 61.0 mGy (with 133 kVp and 2.5 mean mAs per pulse). In essence, 
all UHR-CBCT protocols employing a tube potential of 80 kVp or more were found to provide superior 
overall image quality and artifact reduction compared to UHR-MDCT (all p < .050). Interrater reliability 
of seven radiologists regarding image quality was substantial for tissue assessment and moderate 
for artifact assessment with Fleiss kappa of 0.652 (95% confidence interval 0.618–0.686; p < 0.001) 
and 0.570 (95% confidence interval 0.535–0.606; p < 0.001), respectively. Our results demonstrate 
that the UHR-CBCT scan mode of a twin robotic X-ray system facilitates excellent visualization of 
the appendicular skeleton in the presence of metal implants. Achievable image quality and artifact 
reduction are superior to dose-comparable UHR-MDCT and even MDCT protocols employing spectral 
shaping with tin prefiltration do not achieve the same level of artifact reduction in adjacent soft tissue.

Abbreviations
CBCT	� Cone-beam computed tomography
CTDIvol	� Volume computed tomography dose index for a 16 cm phantom (mGy)
MAR	� Metal artifact reduction
MDCT	� Multidetector computed tomography
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ROI	� Region of interest
UHR	� Ultra-high-resolution

In postoperative follow-up after joint arthroplasty, plain radiography is the primary imaging method due to 
ubiquitous availability, cost-efficiency and fast imaging results while pertaining relatively low radiation doses. For 
a more detailed analysis of suspected complications after surgery, additional CT may be necessary, albeit being 
associated with a higher dose penalty. However, in postoperative settings, artifacts caused by metal implants 
may hamper diagnostic accuracy for assessment of the implant itself, the implant-bone interface, as well as its 
adjacent tissue1,2. Typical metal artifacts include beam hardening and photon starvation: beam hardening occurs 
when polychromatic X-ray photons pass through dense objects resulting in stronger absorption of low energy 
photons, which causes hyperdense artifacts with adjacent dark streaks. In contrast, photon starvation artifacts 
manifest due to complete absorption of photons, which leads to hypodense streaks3–5. As a result, detecting 
complications in the presence of metal implants, such as secondary dislocation, areas of bone resorption or 
implant loosening as indicated by a surrounding radiolucent rim or even fluid collections in the soft tissue, can 
pose a significant challenge.

Different approaches for metal artifact reduction (MAR) have been evaluated predominantly for conventional 
gantry-based, multidetector CT (MDCT) scanners in the past6,7. Photon starvation can be diminished by increas-
ing the tube current in order to augment the number of photons in the X-ray beam. Increased tube voltage and 
thus higher photon energy leads to a higher penetration rate of dense material. At higher tube voltages, image 
noise and photon starvation can be minimized at the cost of decreased tissue contrast. However, reduction of 
metal artifacts at the expense of higher radiation doses is debatable, especially in young patients and patients with 
recurring examinations8. A similar effect can be seen when employing tin prefiltration, which increases photon 
penetration by reducing the amount of low-energy photons and therefore hardening the X-ray-beam7,9. While 
these protocol-based MAR approaches need to be established in advance of image acquisition, algorithms such 
as iterative reconstruction techniques can be executed retrospectively without negatively effecting the radiation 
dose. On the downside, iterative reconstruction algorithms may introduce secondary artifacts and have been 
reported to alter image information in general10,11. Furthermore, image data may be lost near the metal edge 
by interpolation12. Apart from optimization of metal implants and scan protocols, other approaches to reduce 
suchlike artifacts include model-based data correction, and image-based postprocessing13.

Due to the excellent image quality of bone tissue at relatively low dose, cone-beam CT (CBCT) has more 
recently developed a growing niche in musculoskeletal imaging. In trauma assessment, CBCT has already 
emerged as a viable alternative for depiction of the upper and lower extremity14–18. In a post-treatment setting, 
however, the value of non-dental CBCT systems has not been thoroughly investigated thus far. Especially in 
patients with limited mobility after osteosynthesis, the prone position and arm elevation required for optimized 
imaging conditions in wrist scans can be problematic with gantry-based MDCT scanners. Addressing this limi-
tation with the investigated gantry-free multi-purpose scanner’s option for tableside positioning of the upper 
extremity can be advantageous with regards to image quality and radiation dose19.

The goal of this study was to investigate the metal artifact reduction capabilities of a twin robotic X-ray system 
with an ultra-high-resolution (UHR)-CBCT scan mode in an experimental setting. Therefore, we compared 
the scanner’s performance to UHR-MDCT in cadaveric wrist scans after arthroplasty, aiming to find the best 
compromise between radiation dose and image quality.

Material and methods
Our study was approved by the Institutional Review Board of the University of Würzburg, Germany. During their 
lifetime, donors volunteered their body to the university’s anatomical institute for study and research purposes. 
Additional written informed consent was not required.

All methods were performed in accordance with the relevant guidelines and regulations. The datasets used 
and/or analysed during the current study are available from the corresponding author on reasonable request.

Cadaveric specimens and wrist positioning.  Two trauma surgeons performed volar locking plate fixa-
tion (Aptus, Medartis, Basel, Switzerland) on a formalin-fixed cadaveric specimen’s distal radius. The wrist was 
then examined employing a multipurpose, twin robotic X-ray system for CBCT imaging and a high-end MDCT 
scanner. MDCT studies were performed in the so-called “superman stance” with the specimen in prone position 
and elevation of the respective arm above the head. CBCT studies were conducted in supine position with the 
upper extremity abducted at a 90° angle for a tableside scan position.

Scanners.  The employed multi-use X-ray system with implemented 3D CBCT mode (Multitom Rax, Sie-
mens Healthineers, Erlangen, Germany) is equipped with two telescopic arms carrying the X-ray tube and flat-
panel detector and is connected to ceiling rails with three translational and two rotational degrees of freedom. 
The X-ray tube is capable of providing currents from 0.5 to 800 mAs and voltages from 40 to 150 kV. The input 
field of the flat panel detector measures 23 cm × 23 cm with a 3D matrix of 1440 × 1440 un-binned pixels, which 
results in an effective pixel size of 148 μm. At the same time, the input field limits the CBCT’s maximum field 
of view since table movement and helical acquisition are not feasible with this system. For the acquisition of 
3D projection data in CBCT scan mode, the arms move simultaneously and in synchronized fashion along 
predefined scanning trajectories. The tableside trajectory for upper extremity imaging has a sweep angle of 200° 
around the isocentre with an asymmetric source-to-image distance of 115 cm (tube-to-isocentre distance 85 cm, 
detector-to-isocentre distance 30 cm). For the purpose of the study, the wrist was additionally scanned with a 
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high-end gantry-based MDCT scanner and multiple protocols in single-energy mode (Somatom Force, Siemens 
Healthineers).

Scan protocols.  Different scan protocols were evaluated while varying prefiltration, tube voltage and tube 
current-exposure time products. Thirty-two scans of the cadaveric wrist with volar locking plate fixation were 
performed in UHR mode. A total of 15 UHR-CBCT scans were evaluated with tube voltage ranging from 60 
to 133 kVp and tube current-exposure-time products of 0.6 mAs, 1.2 mAs and 2.5 mAs. Of note, the CBCT 
system’s standard hardware does not include the option for tin prefiltration. The protocols for matching UHR-
MDCT scans (15 matching MDCT protocols) were set up with tube voltage ranging from 70 to 140 kVp with 
reference mAs designed to equal CTDI values of their CBCT counterparts. Additionally, two protocols (100 kVp 
and 150 kVp) with 0.4 mm tin prefiltration were employed, resulting in a total of 19 MDCT protocols. Detailed 
scan parameters for CBCT and MDCT protocols are summarized in Table 1. For comparison of applied radia-
tion doses between CBCT and MDCT, the volume computed tomography dose index for a 16 cm phantom 
(CTDIvol) was evaluated. Dose-length products and CTDIvol were noted to estimate the radiation dose in MDCT. 
CTDIvol-equivalent values for CBCT were computed by multiplying the dose-area product by a linear scaling fac-
tor provided by the manufacturer based on previous phantom measurements. The scaling factor was determined 
in advance for every combination of acquisition geometry, tube voltage and beam filtration (e.g. copper filter). 
The dose-length product was measured in five chambers of a conventional polymethyl methacrylate dosimetry 
phantom (IEC 60601-2-44:2009) with a diameter of 160 mm, a length of 300 mm and a standard dosimetry 
system (Nomex Dosimeter, PTW, Freiburg im Breisgau, Germany) with a 300 mm ionisation chamber. Standard 

Table 1.   Dosimetric comparison of scan protocols. CTDIvol, computed tomography dose index calculated for a 
16 cm phantom; CBCT, cone-beam computed tomography; MDCT, multidetector computed tomography; Sn, 
0.4 mm tin prefiltration.

Scanner
Voltage
[kVp]

Current–time product
[mAs]

CTDIvol
[mGy]

MDCT
Siemens
SOMATOM
Force

Effective per scan

70 50.0 1.3

70 97.0 2.7

80 122.0 5.1

70 199.0 5.3

Sn 100 898.0 7.5

Sn 150 146.0 8.2

100 113.0 9.8

80 241.0 10.2

120 101.0 14.1

140 96.0 18.9

100 227.0 19.5

80 489.0 20.3

120 202.0 28.1

140 192.0 37.7

100 453.0 39.3

120 405.0 54.0

140 383.0 75.2

CBCT
Siemens
MULTITOM
Rax

Mean per pulse

60 0.6 2.3

60 1.2 4.5

80 0.6 4.5

102 0.6 9.1

60 2.5 9.5

80 1.2 9.9

117 0.6 13.6

102 1.2 16.3

80 2.5 17.4

133 0.6 21.6

117 1.2 23.6

102 2.5 34.6

133 1.2 36.3

117 2.5 44.1

133 2.5 61.0
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weighting scheme for dose measurements was applied to acquire volume dose-length product values (DLPvol). 
CTDIvol values were calculated by dividing DLPvol values by the field of view in the z-direction, which is equiva-
lent to the beam width. Finally, the scaling factor was computed by dividing CTDIvol by dose-area product values. 
Dose-area products for all examinations were extracted from the automatically created scan report.

Image reconstruction parameters.  Scanner-side raw data reconstruction was performed employing a 
dedicated high-resolution kernel for very sharp depiction of osseous structures (Ur77; Siemens Healthineers) 
following the clinical standard for post-processing of MDCT examinations at our institution. Multiplanar recon-
structions were carried out for CBCT and MDCT using dedicated 3D processing software (syngo.via View&GO 
and syngo.via, both Siemens Healthineers). For reconstruction of UHR-CBCT scans additional iterative metal 
artifact reduction (MAR) was employed. Reconstruction parameters for axial, coronal and sagittal planes were 
set with slice thickness of 1.0 mm, increment of 0.5 mm, field of view of 80 mm, and image matrix of 1024 × 1024 
pixels irrespective of dose protocol and scanner. Window width and level of 3000 and 1000 Hounsfield units 
(HU) were predefined for optimal bone depiction. However, readers were allowed to alter window settings as 
personally required.

Subjective image analysis.  Images were evaluated independently in randomized and blinded fashion 
using clinical picture archiving and communication software (Merlin, Phoenix-PACS, Freiburg im Breisgau, 
Germany) by seven radiologists with varying levels of experience in musculoskeletal imaging (ASK 8, TSP 2, 
KSL 7, VH 6, RH 4, HH 6 and JPG 5 years of experience). No time restriction was imposed for reading. The read-
ers were asked to rate the image quality with regards to osseous and soft tissue as well as the extent of artifacts 
using a seven-point scale (7 = excellent/no artifacts, 6 = very good/near absence of artifacts, 5 = good/mild arti-
facts, 4 = satisfactory/moderate artifacts, 3 = fair, /considerable artifacts 2 = poor/severe artifacts, 1 = very poor/
not diagnostic due to artifacts). Based on these results we calculated figure-of-merit (FOM) values for bone and 
artifact ratings in order to characterize scan protocol performance and to rank image quality relative to radiation 
dose using the following formula:

Objective image analysis.  Objective image analysis was performed by a radiologist with 5 years of expe-
rience in musculoskeletal imaging (JPG). Circular regions-of-interest (ROI) were manually positioned in sur-
rounding air and soft tissue as reference measuring signal attenuation in mean HU. Artifacts were quantified by 
placing a ROI in the most pronounced hypo- and hyperdense artifact areas as well as in the artifact-impaired 
soft tissue. Artifact measurements were performed three times, respectively, and averaged to guarantee high 
measurement accuracy and data consistency.

Statistical analyses.  Dedicated software was used for descriptive statistics and data analyses (SPSS Statis-
tics Version 28, IBM, Armonk, New York, USA). P values less than 0.05 were considered to indicate statistical 
significance. Kolmogorov–Smirnov tests were applied to analyze continuous data for normal distribution. If 
normally distributed, continuous data is presented as mean ± standard deviation. Means of normally-distributed 
variables were compared with one-way ANOVA and Dunnett-T3 post-hoc tests with p values adjusted for mul-
tiple comparisons. Mean ranks of categorical items were compared with Friedman tests and post-hoc analysis 
of homogenous subsets. Fleiss kappa was calculated to investigate the interrater reliability in subjective image 
quality assessment. Agreement was interpreted according to Landis and Koch (1.00–0.81 = almost perfect; 0.80–
0.61 = substantial; 0.60–0.41 = moderate; 0.40–0.21 = fair; 0.20–0.00 slight; < 0.00 poor agreement)20.

Results
Comparing the radiation dose.  Thirty-two scan protocols with varying prefiltration, tube voltage and 
current–time product were applied in this study (17 UHR-MDCT, 15 UHR-CBCT). Without automatic tube 
current modulation or tube potential control, the highest and lowest radiation doses achieved in conventional 
MDCT were 75.2  mGy (with 140  kVp and 383.0  effective  mAs) and 1.3  mGy (with 70  kVp and 50.0  effec-
tive mAs). Using the pulsed image acquisition method of the CBCT scanner, CTDIvol of ultra-low-dose scans 
was 2.3 mGy (with 60 kVp and 0.6 mean mAs per pulse), while the highest possible dose was 61.0 mGy (with 
133 kVp and 2.5 mean mAs per pulse). CTDIvol values are summarized in Table 1.

Quantifying the artifact reduction.  For visual comparison of image quality and metal artifact inten-
sity with various combinations of tube potential and current on both scanners, representative images of the 
distal forearm after palmar plate osteoplasty are presented in Fig. 1 (UHR-MDCT) and Fig. 2 (UHR-CBCT). 
ROI-based quantification of signal attenuation in hyperdense beam hardening (all p < 0.036) and hypodense 
photon starvation artifacts (all p < 0.008) yielded favorable results for UHR-CBCT protocols with at least 80 kVp 
compared to UHR-MDCT imaging (Fig. 3). While providing inferior results in comparison with UHR-CBCT 
protocols, tin prefiltration lowered the extent of hyperdense and hypodense artifacts considerably compared to 
standard UHR-MDCT (all p < 0.003). With tin prefiltration activated, 150 kVp scans displayed stronger artifact 
reduction than 100 kVp imaging (p = 0.034). Impairment of adjacent soft tissue by artifacts was also reduced 
significantly with tin-prefiltered scan protocols (all p < 0.029), albeit UHR-CBCT with 80 kVp or more allowed 
for the best depiction of artifact-impaired soft tissue in this study (all p < 0.001). No significant differences were 
ascertained between UHR-CBCT scan protocols with at least 80 kVp (all p > 0.366). Results of objective artifact 

FOM =

(

sum of ratings
)2
/CTDIvol.
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Figure 1.   Bone image quality and intensity of metal artifacts by palmar plate osteosynthesis in conventional 
ultra-high-resolution MDCT scan protocols.

Figure 2.   Bone image quality and intensity of metal artifacts by palmar plate osteosynthesis in ultra-high-
resolution CBCT scan protocols.
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intensity assessment for both scanners are summarized in Table 2. In addition, boxplot diagrams are provided to 
illustrate the differences between UHR-MDCT and UHR-CBCT for each type of artifact (Fig. 4).

Analyzing the image quality.  FOM analysis (Table  3) showed that UHR-CBCT protocols performed 
better than the dose-comparable UHR-MDCT protocols, owing primarily to relatively good ratings for proto-
cols with low radiation exposure (except for a portion of 60 kVp scans, where image quality in bone tissue was 
considered insufficient for clinical use). The best protocol overall was the current clinical standard (80  kVp, 
0.6 mean mAs per pulse). Despite favorable ratings, the higher-voltage protocols on both scanners achieved 
poorer FOM values due to their increase in radiation dose. Of note, tin-filtered UHR-MDCT scans received 
considerably better FOM values than standard UHR-MDCT examinations for bone image quality and artifact 
intensity. Homogeneous subset analysis of scan protocols based on tube voltage groups showed higher mean 
rank values for UHR-CBCT studies with at least 80 kVp regarding bone tissue delineation (Table 4) and artifacts 
(Table 5) (all p < 0.050). Interrater reliability of seven radiologists was substantial for bone and moderate for arti-
fact assessment, as was indicated by Fleiss kappa of 0.652 (95% confidence interval 0.618–0.686; p < 0.001) and 
0.570 (95% confidence interval 0.535–0.606; p < 0.001), respectively.

Discussion
In this experimental multi-observer study, we evaluated the potential of UHR-CBCT imaging in the setting of 
a present metal implant in comparison to a third-generation dual-source MDCT scanner with UHR option. 
To this effect, a total of 32 protocols with varying acquisition parameters were applied on a human cadaveric 
specimen. For tube potentials of 80 kVp and more, we were able to show that UHR-CBCT displayed superior 
performance regarding image artifacts as per objective analysis, and regarding image quality as per subjective 
analysis by seven radiologists. Furthermore, applied radiation dose was favorable in UHR-CBCT compared to 
UHR-MDCT protocols with similar image quality in bone and soft tissue.

The employed protocols for MDCT consisted of conventional CT imaging with tube voltage ranging from 
70 to 140 kVp, as well as two protocols employing tin prefiltration for dedicated metal artefact reduction (Sn 
100 kVp and Sn 150 kVp). In order to maintain comparability between CBCT and MDCT, all scans were per-
formed in UHR mode and without employing dual-energy protocols. In other settings, spectral shaping via tin 
prefiltration has been shown to reduce applied dose considerably, especially in the case of obese patients when 
compared to dual-energy imaging and employment of virtual monochromatic reconstructions21. Notably and 
in contrast to UHR-CBCT, with current third-generation dual-source CT scanners, the necessity to employ 
an additional comb filter for UHR imaging effectively forces the choice between employing UHR acquisition 

Figure 3.   Region of interest (ROI) placement for objective assessment of metal artifact intensity. 
Note—A = hyperdense artifacts; B = hypodense artifacts; C = artifact-impaired soft tissue.
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and additional iterative MAR. While UHR-MDCT protocols employing spectral shaping via tin prefiltration 
significantly reduced metal artifacts compared to standard UHR-MDCT, UHR-CBCT with 80 kVp or more did 
allow for even superior artifact reduction and assessability of adjacent soft tissue. Also, regarding subjective 
image quality, UHR-CBCT protocols with tube voltage of 80 kVp or more displayed superior performance as 
compared to UHR-MDCT imaging. One explanation for the CBCT’s performance lies in its inherent superior 
dose efficiency which is realized by the system’s unique acquisition geometry: While regular gantry-based scan-
ners operate with symmetric intervals between the X-ray tube and patient, as well as patient and detector, the 

Table 2.   Semiquantitative assessment of artifact reduction. CBCT, cone-beam computed tomography; kVp, 
kilovoltage peak; MDCT, multidetector computed tomography; Sn, 0.4 mm tin prefiltration.

Corrected attenuation ± standard deviation Hyperdense artifacts Hypodense artifacts Artifact impaired soft tissue

MDCT

70 kVp 2070.3 ± 595.0 − 839.9 ± 140.0 − 385.4 ± 198.4

80 kVp 1157.5 ± 258.9 − 807.7 ± 122.1 − 174.0 ± 119.9

100 kVp 944.2 ± 229.2 − 498.7 ± 80.6 − 105.4 ± 100.8

120 kVp 713.1 ± 185.4 − 359.4 ± 68.7 − 94.7 ± 67.7

140 kVp 641.5 ± 141.6 − 286.4 ± 56.5 − 59.2 ± 52.0

Sn 100 kVp 326.4 ± 110.2 − 161.7 ± 74.5 − 58.2 ± 81.9

Sn 150 kVp 216.1 ± 76.2 − 85.9 ± 85.0 − 40.0 ± 89.4

CBCT

60 kVp 941.0 ± 658.5 55.8 ± 271.2 − 73.1 ± 170.9

80 kVp 83.3 ± 93.6 73.8 ± 73.9 − 2.5 ± 72.5

102 kVp 73.2 ± 65.7 74.1 ± 59.9 − 3.2 ± 62.5

117 kVp 80.2 ± 53.2 73.8 ± 44.2 − 5.1 ± 51.6

133 keV 75.1 ± 52.8 75.2 ± 43.4 − 2.0 ± 43.5

MDCT Sn 150 kVp

vs. MDCT 70 kVp < .001 < .001 < .001

vs. MDCT 80 kVp .003 < .001 < .001

vs. MDCT 100 kVp < .001 < .001 < .001

vs. MDCT 120 kVp < .001 < .001 < .001

vs. MDCT 140 kVp < .001 < .001 .029

vs. MDCT Sn 100 kVp .034 .023 .216

vs. CBCT 60 kVp .017 .032 .940

vs. CBCT 80 kVp .036 .008 .001

vs. CBCT 102 kVp .039 .004 < .001

vs. CBCT 117 kVp .027 .010 < .001

vs. CBCT 133 kVp .033 .009 < .001

CBCT 80 kVp

vs. MDCT 70 kVp < .001 < .001 < .001

vs. MDCT 80 kVp .001 < .001 < .001

vs. MDCT 100 kVp < .001 < .001 < .001

vs. MDCT 120 kVp < .001 < .001 < .001

vs. MDCT 140 kVp < .001 < .001 < .001

vs. MDCT Sn 100 kVp .007 < .001 < .001

vs. MDCT Sn 150 kVp .036 .008 .001

vs. CBCT 60 kVp .006 1 .156

vs. CBCT 102 kVp .366 1 1

vs. CBCT 117 kVp 1 1 1

vs. CBCT 133 kVp .925 1 1
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employed CBCT’s two telescopic arms enable an asymmetric source-to-image distance with low magnification 
that improves spatial resolution by counteracting the limiting effect of the focal spot size22.

In light of recent publications demonstrating the potential and advantages of tableside UHR-CBCT imag-
ing of the appendicular skeleton in trauma settings19,22, the reported findings are noteworthy. With regards to 
applied average dose, a recent meta-analysis by Nardi et al. states that CBCT promises a significant reduction 
over MDCT23. However, CBCT image quality is dependent on placement of the object of interest in the system’s 
iso-center due to the limited number of acquired image frames. This fact is more pronounced than in MDCT, 
potentially necessitating dedicated training and demanding explicit care by the radiographers.

CT imaging with metal implants present has been part of clinical routine for decades. However, artifact 
reduction in adjacent tissue is oftentimes of utmost importance, as even subtle findings such as fissure fractures 
require specific follow-up treatment up to secondary surgical revision. While high image quality is essential in 
these scans, dose reduction efforts can have a contrary effect on image quality. As conventional UHR-MDCT 
protocols were found to be clearly inferior and even UHR-MDCT protocols employing spectral shaping were not 
on par with UHR-CBCT imaging, the authors suggest future studies in clinical settings to further evaluate this 
promising imaging technique. In addition, dedicated studies quantifying the effect of the iterative metal artifact 
reduction algorithm with CBCT are mandated.

Limitations.  Some limitations ought to be mentioned regarding this study. For one, scans were limited to 
a single cadaveric specimen and  to one type of implant. Thus, the impact of implant composition and size on 
resulting artifacts was not evaluated. Even though patients may well tolerate the required acquisition time of 
14 s in CBCT due to comfortable tableside positioning, possible motion artifacts may be a limiting factor for 
clinical routine23. It lies in the nature of the study design, however, that motion artifacts did not play a role for 
this investigation. Furthermore, formalin fixation has been reported to invoke demineralization of the bone over 
time, impeding image quality irrespective of scanner and scan protocol24,25. Even though observers were blinded 
to the type of scan (UHR-CBCT vs. UHR-MDCT), a certain level of bias is conceivable due to the typical image 
impression of each imaging modality. Lastly, Multitom Rax (Siemens Healthineers) is not commercially available 
in all countries, therefore reproducibility of results may be limited.

Conclusion
With the cone-beam CT scan mode of a gantry-free twin robotic X-ray system, ultra-high-resolution imaging 
of the appendicular skeleton in the presence of metal implants can be realized. Whilst the compared third-
generation dual-source multidetector CT system does not support iterative metal artifact reduction algorithms 
in UHR-mode, achievable image quality and artifact reduction by means of cone-beam CT are superior to 
dose-comparable conventional UHR-multidetector CT and even multidetector CT protocols employing spectral 
shaping with tin prefiltration.

Figure 4.   Boxplots with signal attenuation in artifacts and artifact-impaired soft tissue. Note—Boxplots 
(median and 50% of cases within the boxes) illustrate the corrected signal attenuation in Hounsfield units 
(HU) for hyperdense artifacts, hypodense artifacts and artifact-impaired soft tissue in cone-beam computed 
tomography (CBCT) and multidetector computed tomography (MDCT) with different levels of tube voltage 
(kVp = kilovoltage peak).
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Table 3.   Multi-observer assessment of bone image quality and artifact intensity. CBCT, cone-beam computed 
tomography; FOM, figure of merit (sum of ratings2/CTDIvol); MDCT, multidetector computed tomography; 
Sn, 0.4 mm tin prefiltration.

Scan protocol
CTDIvol
[mGy]

Rating sum
Bone

FOM Rank
Bone

Rating sum
Artifacts

FOM Rank
Artifacts

MDCT

70 kVp 50 mAs 1.3 7 #20 7 #14

70 kVp 97 mAs 2.7 11 #14 7 #22

80 kVp 122 mAs 5.1 14 #19 9 #23

70 kVp 199 mAs 5.3 12 #25 8 #24

Sn 100 kVp 898 mAs 7.5 21 #8 23 #5

Sn 150 kVp 146 mAs 8.2 24 #5 24 #7

100 kVp 113 mAs 9.8 20 #18 14 #21

80 kVp 241 mAs 10.2 21 #17 11 #25

120 kVp 101 mAs 14.1 28 #11 18 #18

140 kVp 96 mAs 18.9 26 #21 20 #20

100 kVp 227 mAs 19.5 26 #24 15 #27

80 kVp 489 mAs 20.3 18 #32 12 #29

120 kVp 202 mAs 28.1 35 #15 18 #26

140 kVp 192 mAs 37.7 31 #27 20 #28

100 kVp 453 mAs 39.3 28 #30 14 #32

120 kVp 405 mAs 54.0 37 #28 19 #30

140 kVp 383 mAs 75.2 35 #31 21 #31

CBCT

60 kVp 0.6 mAs 2.3 7 #29 7 #19

60 kVp 1.2 mAs 4.5 14 #16 18 #4

80 kVp 0.6 mAs 4.5 21 #1 24 #1

102 kVp 0.6 mAs 9.1 24 #7 28 #2

60 kVp 2.5 mAs 9.5 16 #26 21 #12

80 kVp 1.2 mAs 9.9 28 #3 28 #3

117 kVp 0.6 mAs 13.6 33 #2 31 #6

102 kVp 1.2 mAs 16.3 33 #6 31 #9

80 kVp 2.5 mAs 17.4 32 #9 29 #11

133 kVp 0.6 mAs 21.6 35 #10 37 #8

117 kVp 1.2 mAs 23.6 41 #4 35 #10

102 kVp 2.5 mAs 34.6 35 #22 33 #16

133 kVp 1.2 mAs 36.3 42 #12 40 #13

117 kVp 2.5 mAs 44.1 46 #13 38 #15

133 kVp 2.5 mAs 61.0 46 #23 42 #17

Fleiss kappa (95% confidence interval; p < .001) 0.652 (0.618–0.686) 0.570 (0.535–0.606)
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Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.

Received: 5 March 2022; Accepted: 7 September 2022

References
	 1.	 Wellenberg, R. H. H. et al. Metal artifact reduction techniques in musculoskeletal CT-imaging. Eur. J. Radiol. 107, 60–69 (2018).
	 2.	 Chandrasekar, S. et al. Combined dual-energy and single-energy metal artifact reduction techniques versus single-energy tech-

niques alone for lesion detection near an arthroplasty. AJR Am. J. Roentgenol. 215, 425–432 (2020).
	 3.	 Bushberg, J. T. The AAPM/RSNA physics tutorial for residents X-ray interactions. Radiographics 18, 457–468 (1998).
	 4.	 GroßeHokamp, N. et al. Artifact reduction from dental implants using virtual monoenergetic reconstructions from novel spectral 

detector CT. Eur. J. Radiol. 104, 136–142 (2018).
	 5.	 Barrett, J. F. & Keat, N. Artifacts in CT: recognition and avoidance. Radiographics 24, 1679–1691 (2004).
	 6.	 Boas, F. E. & Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med 4, 229–240 (2012).
	 7.	 Hackenbroch, C. et al. Dose reduction in dental CT: A phantom study with special focus on tin filter technique. AJR Am. J. Roent-

genol. 215, 945–953 (2020).

Table 4.   Homogeneous subset analysis for bone image quality based on tube voltage groups. After differences 
between dependent nonparametric variables were ascertained with the Friedman test (p < .001), groups were 
compared pairwise with post-hoc tests and listed in order of ascending mean rank. The rank means that are 
listed under each subset are not significantly different from each other. In contrast, mean values that are not 
listed in the same subset differ significantly (adjusted p value for multiple comparisons < .050).

Bone image quality Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7

MDCT 70 kVp 1.4

CBCT 60 kVp 1.9

MDCT 80 kVp 3.4

MDCT Sn 100 kVp 4.5 4.5

MDCT Sn 150 kVp 5.7 5.7

MDCT 100 kVp 5.9 5.9

CBCT 81 kVp 6.7 6.7

CBCT 102 kVp 8.2 8.2

MDCT 140 kVp 8.2 8.2

MDCT 120 kVp 9.3

CBCT 117 kVp 11.2

CBCT 133 kVp 11.5

Adjusted p value .718 .162 .097 .515 .052 .349 .987

Table 5.   Homogeneous subset analysis for image artifact intensity based on tube voltage groups. After 
differences between dependent nonparametric variables were ascertained with the Friedman test (p < .001), 
groups were compared pairwise with post-hoc tests and listed in order of ascending mean rank. The rank 
means that are listed under each subset are not significantly different from each other. In contrast, mean values 
that are not listed in the same subset differ significantly (adjusted p value for multiple comparisons < .050).

Artifact intensity Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9 Subset 10

MDCT 70 kVp 1.5

MDCT 80 kVp 2.4 2.4

MDCT 100 kVp 3.5 3.5

CBCT 60 kVp 4.1 4.1 4.1

MDCT 120 kVp 5.1 5.1 5.1

MDCT 140 kVp 6.0 6.0 6.0

MDCT Sn 100 kVp 6.9 6.9 6.9

MDCT Sn 150 kVp 7.5 7.5

CBCT 81 kVp 8.6 8.6

CBCT 102 kVp 9.8 9.8

CBCT 117 kVp 10.8 10.9

CBCT 133 kVp 11.7

Adjusted p value .162 .066 .240 .287 .122 .360 .081 .094 .094 .052



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15549  | https://doi.org/10.1038/s41598-022-19978-9

www.nature.com/scientificreports/

	 8.	 Gupta, A., Subhas, N., Primak, A. N., Nittka, M. & Liu, K. Metal artifact reduction: Standard and advanced magnetic resonance 
and computed tomography techniques. Radiol. Clin. North Am. 53, 531–547 (2015).

	 9.	 Zhou, W. et al. Reduction of metal artifacts and improvement in dose efficiency using photon-counting detector computed tomog-
raphy and tin filtration. Invest. Radiol. 54, 204–211 (2019).

	10.	 Chang, W. et al. Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduc-
tion in liver computed tomography. Invest. Radiol. 48, 598–606 (2013).

	11.	 Messerli, M. et al. Impact of advanced modeled iterative reconstruction on coronary artery calcium quantification. Acad. Radiol. 
23, 1506–1512 (2016).

	12.	 Meyer, E., Raupach, R., Lell, M., Schmidt, B. & Kachelrieß, M. Normalized metal artifact reduction (NMAR) in computed tomog-
raphy. Med. Phys. 37, 5482–5493 (2010).

	13.	 Gjesteby, L. et al. Metal artifact reduction in CT: Where are we after four decades?. IEEE Access 4, 5826–5849 (2016).
	14.	 Luetkens, K. S. et al. Dose reduction potential in cone-beam CT imaging of upper extremity joints with a twin robotic X-ray system. 

Sci. Rep. 11, 20176 (2021).
	15.	 Carrino, J. A. et al. Dedicated cone-beam CT system for extremity imaging. Radiology 270, 816–824 (2014).
	16.	 Demehri, S. et al. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT 

system. Eur. Radiol. 25, 1742–1751 (2015).
	17.	 Neubauer, J. et al. Comparison of the diagnostic accuracy of cone beam computed tomography and radiography for scaphoid 

fractures. Sci. Rep. 8, 3906 (2018).
	18.	 Yang, T. W. et al. Diagnostic performance of cone-beam computed tomography for scaphoid fractures: A systematic review and 

diagnostic meta-analysis. Sci. Rep. 11, 2587 (2021).
	19.	 Grunz, J. P. et al. Twin robotic X-ray system in small bone and joint trauma: impact of cone-beam computed tomography on 

treatment decisions. Eur. Radiol. 31, 3600–3609 (2021).
	20.	 Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159 (1977).
	21.	 Gordic, S. et al. Ultralow-dose chest computed tomography for pulmonary nodule detection: First performance evaluation of 

single energy scanning with spectral shaping. Invest. Radiol. 49, 465–473 (2014).
	22.	 Grunz, J. P. et al. 3D cone-beam CT with a twin robotic X-ray system in elbow imaging: Comparison of image quality to high-

resolution multidetector CT. Eur. Radiol. Exp. 4, 52 (2020).
	23.	 Nardi, C. et al. Motion artefacts in cone beam CT: an in vitro study about the effects on the images. Br. J. Radiol. 89, 20150687 

(2016).
	24.	 Fonseca, A. A., Cherubini, K., Veeck, E. B., Ladeira, R. S. & Carapeto, L. P. Effect of 10% formalin on radiographic optical density 

of bone specimens. Dentomaxillofac Radiol. 37, 137–141 (2008).
	25.	 Burkhart, K. J. et al. Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed. Tech. (Berl) 

55, 361–365 (2010).

Acknowledgements
We wish to thank the individuals who donated their body for research and educational purposes.

Author contributions
A.S.K. and T.S.P. contributed equally as first authors, analyzing all data and preparing the manuscript. Observer 
analysis was performed by A.S.K., T.S.P., K.S.L., V.H., R.H., H.H., and J.P.G. T.F. and F.G. supported preparation 
of the manuscript and figures. J.P.G. performed statistical analysis and revised the manuscript. T.A.B. and S.E. 
contributed to preparation of the manuscript and provided quality control. S.E. prepared the cadaveric specimen, 
while T.F. and F.G. performed palmar plate osteoplasty. H.H. designed and supervised the study. All authors read 
and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
J.P.G was funded by the Interdisciplinary Center of Clinical Research Würzburg, Germany [grant number Z-2/
CSP-06] and serves as a research consultant for Siemens Healthineers. The Department of Diagnostic and Inter-
ventional Radiology receives research funding by Siemens Healthineers. The authors of this manuscript declare 
no further relationships with any companies, whose products or services may be related to the subject matter 
of the article.

Additional information
Correspondence and requests for materials should be addressed to A.S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metal artifact reduction in ultra-high-resolution cone-beam CT imaging with a twin robotic X-ray system
	Material and methods
	Cadaveric specimens and wrist positioning. 
	Scanners. 
	Scan protocols. 
	Image reconstruction parameters. 
	Subjective image analysis. 
	Objective image analysis. 
	Statistical analyses. 

	Results
	Comparing the radiation dose. 
	Quantifying the artifact reduction. 
	Analyzing the image quality. 

	Discussion
	Limitations. 

	Conclusion
	References
	Acknowledgements


