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On a two‑dimensional model 
of generalized thermoelasticity 
with application
Ethar A. A. Ahmed1*, A. R. El‑Dhaba2, M. S. Abou‑Dina3 & A. F. Ghaleb3

A 2D first order linear system of partial differential equations of plane strain thermoelasticity within 
the frame of extended thermodynamics is presented and analyzed. The system is composed of 
the equations of classical thermoelasticity in which displacements are replaced with velocities, 
complemented with Cattaneo evolution equation for heat flux. For a particular choice of the 
characteristic quantities and for positive thermal conductivity, it is shown that this system may 
be cast in a form that is symmetric t-hyperbolic without further recurrence to entropy principle. 
While hyperbolicity means a finite speed of propagation of heat waves, it is known that symmetric 
hyperbolic systems have the desirable property of well-posedness of Cauchy problems. A study of 
the characteristics of this system is carried out, and an energy integral is derived, that can be used to 
prove uniqueness of solution under some boundary conditions. A numerical application for a finite slab 
is considered and the numerical results are plotted and discussed. In particular, the wave propagation 
nature of the solution is put in evidence.

The hyperbolic systems of partial differential equations have been a subject of permanent interest, whether in the 
theory for their unique properties, or for their appicability to the phenomenon of wave propagation in several 
branches of Science and Technology. Problems of generalized thermoelasticity leading to heat wave propagation 
have provided great opportunity to investigate solutions of hyperbolic systems of partial differential equations 
under various initial and boundary conditions. Ruggeri1 presented a survey on the relations between mathemati-
cal problems for quasi-linear hyperbolic systems and extended thermodynamics in continuum theories. It was 
shown that the system of balance laws can be symmetrized by use of an appropriate choice of the field variables. 
A purely thermal case was treated by Wilmański2, ch. 9] using an undetermined multipliers technique. Müller3 
investigated the symmetric hyperbolic systems of partial differential equations in extended thermodynamics. 
Selivanov and Selivanova4 studied the computability properties of a system of symmetric hyperbolic equations 
by a difference scheme. Othman et al.5 investigated generalized thermoelastic diffusion in a homogeneous, iso-
tropic elastic half-space based on the Green-Naghdi theory. Abbas and Zenkour6 used finite elements to inves-
tigate a two-dimensional problem under Green and Naghdi theory of thermoelasticity for a fiber-reinforcement 
anisotropic half-space subjected to a thermal boundary shock to assess the effects of initial stress and rotation. 
Cimmelli et al.7 presented a review of the modern mathematical methods in the generalized thermodynamics 
of continuous media. He et al.8 studied a two-dimensional generalized thermoelastic diffusion problem for a 
half-space. Mishra9 solved a 2D-problem of heat transfer in a thin plate based on single-phase-lagging heat con-
duction by superposition technique and Fourier series expansion. Ghaleb et al.10 presented a model of electro-
thermoelasticity within the theory of generalized thermodynamics. Abbas and Marin11 studied a 2D-problem of 
generalized thermoelasticity for a half-space with surface laser heating. Rogolino et al.12 derived two generalized 
heat-transport hyperbolic equations and studied thermodynamical compatibility for both. Jou13 considered 
some fundamental aspects of non-equilibrium thermodynamics with a view on heat transport in nanosystems. 
Mahmoud et al.14 investigated nonlinear heat wave propagation in rigid thermal conductors. Alzahrani et al.15 
studied a two-dimensional problem of a porous medium in extended thermodynamics using spectral method. 
Ahmed et al.16–18 investigated two-dimensional problems of piezo-thermoelasticity within the dual-phase-lag 
model for layered media and a quarter-space. Solutions were presented based on normal modes technique, as well 
as numerical solutions by finite differences. Concerning the solution of systems of hyperbolic partial differential 
equations, Bonet et al.19 proposed a novel computational framework for thermoelasticity based on the use of a 
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system of first order conservation laws. An explicit stabilised Petrov-Galerkin framework was proposed for the 
numerical solution of thermoelastic problems. Numerical examples were presented.

It thus appears from the exposed literature that 2D systems of equations of thermoelasticity in extended 
thermodynamics have been tackled in few cases with the aim of finding solutions to particular boundary-value 
problems. Analysis of such systems to explore the behaviour of solutions and well-posedness of Cauchy prob-
lems has been done only rarely sofar. The present work is situated in this context. A first order 2D linear system 
of plane strain thermoelasticity for a transverse isotropic material is presented within the frame of extended 
thermodynamics. The equations are those of classical thermoelasticity, supplemented by Cattaneo evolution 
equation for the heat flux. This system, in which velocities replace mechanical displacements, is shown to be 
reducible to a symmetric t-hyperbolic form for a particular choice of the characteristic quantities and for positive 
heat conduction coefficient, without further reference to an entropy principle. This result is to be contrasted to 
that stated by Müller3, according to which the set of quasi-linear first order balance equations of extended ther-
modynamics may be written in symmetric hyperbolic form by a suitable choice of fields, provided the entropy 
principle is observed. It is known that symmetric hyperbolic systems behave well, in the sense of well-posedness 
of the Cauchy problem, i.e existence, uniqueness and stability of solutions with respect to boundary conditions. 
A study of the characteristics of the system is carried out, and an energy integral is derived, that can be used to 
prove uniqueness of solution under some convenient boundary conditions. It is thus shown that the proposed 
system of equations is valid for the description of heat wave propagation. A numerical experiment is consid-
ered for the rectangular slab under specified boundary conditions and zero initial conditions using COMSOL 
Multiphysics software. Numerical results are produced for a particular solution and the obtained quantities of 
practical interest are represented graphically and discussed.

The linear system of equations
Let ux , uy denote the mechanical displacement components, vx , vy - the corresponding velocity components, 
σxx , σyy , σxy - the identically non-vanishing stress components in the plane, θ - the temperature measured from 
a reference temperature θ0 and qx , qy - the heat flux components. The linear equations of plane generalized ther-
moelasticity for a transverse isotropic material within the theory of extended thermodynamics read: 

1.	 Equations of motion 

2.	 Heat equation 

3.	 Cattaneo–Vernotte relations. These evolution laws for the heat flux components replace the classical Fourier 
law for heat conduction. Divided throughout by thermal relaxation times τ1 and τ2 respectively, these relations 
read: 

4.	 The generalized Hooke’s law differentiated w.r.t. time, thus allowing to eliminate the mechanical displacement 
components in favour of the velocities: 

The problem thus reduces to the solution of eight basic partial differential equations of the first order. These 
equations involve eight unknowns: two velocity components, three identically non vanishing stress components, 
temperature and two heat flux components. Having resolved this system of equations, one can then find the 
mechanical displacement components by quadrature from the relations:

(1)ρ
∂vx

∂t
−

∂σxx

∂x
−

∂σxy

∂y
= 0,

(2)ρ
∂vy

∂t
−

∂σxy

∂x
−

∂σyy

∂y
= 0,

(3)θ0γ

(

∂vx

∂x
+

∂vy

∂y

)

+ ρCe
∂θ

∂t
+

∂qx

∂x
+

∂qy

∂y
= 0,

(4)ρθ0
∂qx

∂t
+ n11qx +m11

∂θ

∂x
= 0,

(5)ρθ0
∂qy

∂t
+ n22qy +m22

∂θ

∂y
= 0,

(6)
∂σxx

∂t
− (�+ 2µ)

∂vx

∂x
− �

∂vy

∂y
+ γ

∂θ

∂t
= 0,

(7)
∂σyy

∂t
− �

∂vx

∂x
− (�+ 2µ)

∂vy

∂y
+ γ

∂θ

∂t
= 0,

(8)
∂σxy

∂t
− µ

∂vx

∂y
− µ

∂vy

∂x
= 0.
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Here, ρ is the mass density, �,µ - Lamé coefficients, γ - the thermoelastic coefficient and m11,m22 are constants 
related to the coefficients of heat conduction. Young’s modulus will be denoted E and Poisson’s ratio σ.

It is not difficult to anticipate a time damping of the heat wave, due to the terms involving n11 and n22 in the 
Cattaneo evolution equations. In order to relate the coefficients m11,m22, n11 and n22 in Eqs. (4 and 5) to known 
physical quantities, it is sufficient to compare these two equations to the well-known standard forms of the evolu-
tion equations for the heat flux (C.f.10,21):

where τ1 , τ2 are the thermal relaxation times for the x- and y-directions respectively, and k11 , k22 are the thermal 
conductivities in these two directions. Direct comparison of these last two equations with (4) and (5) reveals that

The above governing equations need to be cast in a convenient form for later work. For this, Eqs. (6 and 7) will 
be replaced by their symmetrized forms:

where

It may be easily verified that

Excluding Eqs. (9 and 10) which may be considered independently in a later stage as explained above, the system 
of eight basic equations is written in matrix form as:

Matrices A, B and C have dimension (8× 8) and are given as:

(9)
∂ux

∂t
− vx = 0,

(10)
∂uy

∂t
− vy = 0.

τ1
∂qx

∂t
+ qx + k11

∂θ

∂x
=0,

τ2
∂qy

∂t
+ qy + k22

∂θ

∂y
=0,

m11 =
ρθ0k11

τ1
, m22 =

ρθ0k22

τ2
, n11 =

ρθ0

τ1
, n22 =

ρθ0

τ2
.

(11)
∂

(

ασ ′
xx + βσ ′

yy

)

∂t
−

∂vx

∂x
= 0,

(12)
∂

(

ασ ′
yy + βσ ′

xx

)

∂t
−

∂vy

∂y
= 0,

(13)

σ ′
xx =σxx + γ θ , σ ′

yy = σyy + γ θ ,

α =
�+ 2µ

4µ(�+ µ)
=

1− ν2

E
, β = −

µ

4µ(�+ µ)
= −

(1+ ν)(1− 2ν)

2E
.

(14)α2 − β2 =
1

4µ(�+ µ)
=

(1+ ν)2(1− 2ν)

E2
> 0.

(15)A
∂U

∂t
+ B

∂U

∂x
+ C

∂U

∂y
= F.
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The following definitions are taken from Godunov20, pp. 85-88]:

Definition 1  A surface  S  with equation φ
(

x, y, t
)

= 0 on which

or, equivalently,

where (τ , ξ , η) denotes a vector normal to the surface S , is called a characteristic for the system of Eq. (15).

Definition 2  The system of Eq. (15)  is said to be t-hyperbolic if its characteristic equation has exactly 8 real and 
different roots  τ for arbitrary real values of the parameters (ξ , η).

In the case of multiple roots, the system still preserves all the main properties of hyperbolic systems.

Definition 3  The system of Eq. (15)  is said to be symmetric, t-hyperbolic  if the matrices  A, B, C are symmetric 
and, moreover, matrix  A is positive definite.

It is well-known that for symmetric, t-hyperbolic systems one can deduce the so-called energy integral, which 
represents a powerful tool to prove a theorem on the uniqueness of solution.

Reduction to symmetric t‑hyperbolic form
In what follows, we investigate the possibility of diagonalizing the matrix τA+ ξB+ ηC for all values of (ξ , η) 
and τ > 0 , in order to simplify the considered system of equations and reveal its nature. As a first step, the basic 
equations will now be reformulated in dimensionless form. To this end, introduce the following set of dimen-
sionless variables for length, time, temperature heat flux, velocity and stress:

The characteristic quantities θ0, L0,T0,Q0, c are kept undetermined at this stage, but will be defined later on 
step by step so as to achieve some properties and simplifications. The two characteristic quantities L0 and T0 are 
related to each other by:

It may be noticed that the characteristic quantities θ0 and Q0 are independent of each other according to the basic 
assumption of extended thermodynamics adopted in the present model (see10, for example). This fact provides 
some flexibility in attaining the required final form of the equations.

After removing the tilde, the system of eight basic equations in dimensionless form reads:

A =





















ρ 0 0 0 0 0 0 0
0 ρ 0 0 0 0 0 0
0 0 α β 0 0 0 0
0 0 β α 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 ρCe 0 0
0 0 0 0 0 0 ρθ0 0
0 0 0 0 0 0 0 ρθ0





















, B =





















0 0 − 1 0 0 γ 0 0
0 0 0 0 − 1 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − µ 0 0 0 0 0 0

θ0γ 0 0 0 0 0 1 0
0 0 0 0 0 m11 0 0
0 0 0 0 0 0 0 0





















,

C =





















0 0 0 0 − 1 0 0 0
0 0 0 − 1 0 γ 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
−µ 0 0 0 0 0 0 0
0 θ0γ 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 m22 0 0





















, F =





















0
0
0

−n11
−n22
0
0
0





















, U =























vx
vy
σ ′
xx

σ ′
yy

σxy
θ
qx
qy























.

(16)det

(

∂φ

∂t
A+

∂φ

∂x
B+

∂φ

∂y
C

)

= 0,

(17)det(τA+ ξB+ ηC) = 0,

x̃ =
x

L0
, ỹ =

y

L0
, t̃ =

t

T0
, θ̃ =

θ

θ0
, q̃ =

q

Q0
, ṽ =

v

c
, σ̃ ′

xx =
σ ′
xx

µ
, · · ·

L0

T0
= c.

(18)
∂vx

∂t
−

c2T
c2

∂σ ′
xx

∂x
−

c2T
c2

∂σxy

∂y
+ γ ′ ∂θ

∂x
= 0,
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where

The matrices of the system now read:

Matrices B and C can be made symmetric by suitable choices of some parameters, taking in consideration that 
some characteristic quantities of the system are still kept arbitrary. First, let us choose the characteristic velocity 
to be equal to the speed of propagation of the purely elastic transverse wave in the linear approximation:

Next, assume the material parameters are such that the following relation holds:

which amounts to defining the reference temperature as:

(19)
∂vy

∂t
−

c2T
c2

∂σxy

∂x
−

c2T
c2

∂σ ′
yy

∂y
+ γ ′ ∂θ

∂y
= 0,

(20)
∂θ

∂t
+

γ

ρCe

(

∂vx

∂x
+

∂vy

∂y

)

+
Q0

ρcCeθ0

(

∂qx

∂x
+

∂qy

∂y

)

= 0,

(21)
∂

(

α′σ ′
xx + β ′σ ′

yy

)

∂t
−

∂vx

∂x
= 0,

(22)
∂

(

α′σ ′
yy + β ′σ ′

xx

)

∂t
−

∂vy

∂y
= 0,

(23)
∂σxy

∂t
−

∂vx

∂y
−

∂vy

∂x
= 0,

(24)
∂qx

∂t
+

n11T

ρθ0
qx +

m11

ρcQ0

∂θ

∂x
= 0,

(25)
∂qy

∂t
+

n22T

ρθ0
qy +

m22

ρcQ0

∂θ

∂y
= 0,

α′ = αµ, β ′ = βµ, γ ′ =
γ θ0

ρc2
.

A =





















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 α′ β ′ 0 0 0 0
0 0 β ′ α′ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





















, B =



























0 0 − c2T
c2

0 0 γ ′ 0 0

0 0 0 0 − c2T
c2

0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
γ
ρCe

0 0 0 0 0 Q0
ρcCeθ0

0

0 0 0 0 0 m11
ρcQ0

0 0

0 0 0 0 0 0 0 0



























,

C =



























0 0 0 0 − c2T
c2

0 0 0

0 0 0 − c2T
c2

0 γ ′ 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 γ
ρCe

0 0 0 0 0 Q0
ρcCeθ0

0 0 0 0 0 0 0 0
0 0 0 0 0 m11

ρcQ0
0 0



























, F =























0
0
0

− n11T
ρθ0

− n22T
ρθ0
0
0
0























.

c = cT =
√

µ

ρ
.

γ ′ =
γ

ρCe
,

θ0 =
ρc2

ρCe
=

µ

ρCe
.
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Finally, define the characteristic heat flux so that:

The characteristic time T0 will be determined depending on the thermal relaxation time in the numerical example 
treated below.

The final form of the basic system of eight equations is:

where

for the transversely isotropic case under consideration.
By elimination, one easily deduces from the above equations the following expression for the dimensionless 

speed of the heat wave:

Characteristics
In order to find the characteristics of the system of partial differential equations under consideration, note that 
the symmetric matrices A, B and C are now given by:

Q0

ρcCeθ0
=

m

ρcQ0
= M, say → Q0 =

√

mCeθ0, m = m11 = m22.

(26)
∂vx

∂t
−

∂σ ′
xx

∂x
−

∂σxy

∂y
+ γ ′ ∂θ

∂x
= 0,

(27)
∂vy

∂t
−

∂σxy

∂x
−

∂σ ′
yy

∂y
+ γ ′ ∂θ

∂y
= 0,

(28)
∂θ

∂t
+ γ ′

(

∂vx

∂x
+

∂vy

∂y

)

+M

(

∂qx

∂x
+

∂qy

∂y

)

= 0,

(29)
∂

(

α′σ ′
xx + β ′σ ′

yy

)

∂t
−

∂vx

∂x
= 0,

(30)
∂

(

α′σ ′
yy + β ′σ ′

xx

)

∂t
−

∂vy

∂y
= 0,

(31)
∂σxy

∂t
−

∂vx

∂y
−

∂vy

∂x
= 0,

(32)
∂qx

∂t
+ nqx +M

∂θ

∂x
= 0,

(33)
∂qy

∂t
+ nqy +M

∂θ

∂y
= 0,

n =
n11T0

ρθ0
=

n22T0

ρθ0

(34)M =
m

ρcQ0
=

√

m

ρµCeθ0
=

√

k

τµCe
.
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and

Matrix A is positive definite as can be directly verified, with eigenvalues: 1,α′ + β ′,α′ − β ′ , the first eigenvalue 
being repeated six times. The corresponding normalized eigenvectors are shown below together with their cor-
responding eigenvalues:

Introduce the matrix T whose columns are the eigenvectors of matrix A, arranged as shown above:

The similarity transformation with matrix T: X ′ = TTXT applied to matrices A, B and C yields the following:

A =





















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 α′ β ′ 0 0 0 0
0 0 β ′ α′ 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





















, B =





















0 0 − 1 0 0 γ ′ 0 0
0 0 0 0 − 1 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
γ ′ 0 0 0 0 0 M 0
0 0 0 0 0 M 0 0
0 0 0 0 0 0 0 0





















,

C =





















0 0 0 0 − 1 0 0 0
0 0 0 − 1 0 γ ′ 0 0
0 0 0 0 0 0 0 0
0 − 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 γ ′ 0 0 0 0 0 M
0 0 0 0 0 0 0 0
0 0 0 0 0 M 0 0





















, F =

























0
0
0

− 1√
2
n

− 1√
2
n

0
0
0


















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The new matrices are all symmetric. Moreover, A′ is positive definite. Thus, the transformed system of equations 
is symmetric, t-hyperbolic.

Further, consider the symmetric matrix W = A′−1/2
(

ξB′ + ηC′)A′−1/2:

This matrix is diagonalized by means of a matrix O, say:

Then the two symmetric matrices A′ and 
(

ξB′ + ηC′) are simultaneously diagonalizable by means of the transfor-
mation S = A′−1/2O for all real values of (ξ , η) . Moreover, the diagonal form of the first matrix is the unit matrix:

The diagonal matrix D may be obtained from the eigenvalues of matrix W. The characteristic equation of this 
matrix is:

The expressions for the coefficients are as follows:

from which it is seen that they are all positive. For sufficiently small absolute values of ξ and η , the value of α1 is 
much larger than the values of the other two coefficients α2 and α3.

Consider the related cubic equation:

One easily verifies that

The local extrema of function f are located at:

The discriminant for this cubic equation is:

It is easy to see that sufficient conditions to get a curve shape for the cubic polynomial as in fig.1, i.e. for the 
eigenvalues to be real, are:

For the used values of the material parameters, these two conditions are likely to be satisfied for all values of 
ξ and η . The fulfillment of the two conditions was achieved numerically as illustrated in Figs. 2 and 3. At the 
particular point (ξ = 0, η = 0) , all eigenvalues are coincident and equal to zero. Thus the Eq. (35) has eight real 
roots: A double root equal to zero, three positive roots, and three negative roots, the roots being symmetrically 
positioned with respect to the origin. One is finally led to the following:
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Theorem  For all real values of the parameters (ξ , η), the characteristic Eq. (17) of the considered linear system of 
equations has eight real roots symmetrically positioned w.r.t. origin of the real line: there are three positive roots, 
three negative roots and a zero root of multiplicity 2.

The energy integral
It is well-known (c.f.20) that an energy integral can be derived for symmetric t-hyperbolic systems of partial dif-
ferential equations. If V denotes a region of the 

(

t, x, y
)

-space included in the domain of definition of the solution, 
bounded by a surface S, then the energy integral for the transformed system reads20, p. 123]:

Figure 1.   Cubic polynomial.

Figure 2.   Satisfaction of the first condition for −0.5 ≤ ξ , η ≤ 0.5.

Figure 3.   Satisfaction of the second condition for −0.5 ≤ ξ , η ≤ 0.5.
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where operator D′ is defined as:

and 
(

f , g
)

 denotes the scalar product of the included functions. For the case under consideration, lengthy manipu-
lations lead to the following form of the r.h.s. of (41):

where n = (ξ , η) and we have introduced σ ′′ with components:

It is known that the characteristic surfaces for the wave equation are parts of conuses with axis parallel to the 
t-axis, so that τ > 0 . The boundary conditions are taken in the form:

yielding

It is well-known that this last inequality leads to uniqueness of solution. The first two boundary conditions in 
(43) mean impermeability and thermal insulation of the boundary. The third one englobes many cases, among 
which complete fixing of the boundaries.

Numerical application
As a confirmation of the existence of solutions to the investigated system of equations, we have considered a 
Cauchy problem for rectangular slab under specified boundary conditions. The solution includes the propagation 
of three types of waves, the heat wave, the transversal and the longitudinal thermomechanical coupled waves. 
Setting τ = τ1 = τ2 the thermal relaxation time and k = k11 = k22 the coefficient of heat conduction, one has to 
make assumptions concerning the orders of magnitude of constants appearing in (4) and (5):

Thus the dimensionless parameters M and n appearing in the dimensionless Cattaneo Eqs. (32 and 33) satisfy 
the rules

For the example treated below, one has M ∼ 1 and n ∼ 1 , hence

With this in mind, let us consider the case of a transversely isotropic material having tentative values of the dif-
ferent geometrical and material parameters shown in Table 1. Consultation of the available tables of material 
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.n = 0,

(44)
∫∫∫

V

[(

D′U ′,U ′)+ 2
(

F ′,U ′)] dv ≥ 0.

n11, n22 ∼
ρθ0

τ
, m11,m22 ∼

kρθ0

τ
.

M ∼

√

k

µCeτ
, n ∼

T0

τ
.

τ ∼
k

µCe
, T0 ∼ τ .

Table 1.   Values of the material parameters.

a = 0.4m b = 0.4m τ = 0.444× 10−10 s

θ0 = 300 K ρ = 0.333× 104 kg/m3 ν = 0.435

E = 0.861× 1010 kg/
(

m.s2
)

� = 2.000× 1010 kg/
(

m.s2
)

µ = 0.300× 1010 kg/
(

m.s2
)

γ = 0.230× 10−4 1/K Ce = 0.300× 104 J/
(

kg .K
)

k = 400W/(m.K)
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coefficients for metals and alloys reveals that the used values of mass density and specific heat capacity as dis-
played in Table 1 are within the normal range, while the thermal conductivity lies in the higher range.

Corresponding to these values:

Motion is induced by a thermal boundary regime. For this, consider a rectangular domain occupied by a ther-
moelastic material, with dimensions a and b and sides labeled S1 , S2 , S3 and S4 as shown in Fig. 4. The origin of the 
plane Cartesian coordinate system is chosen at the left lower corner of the rectangle, with x-axis along the side S4.

Initially, the medium is at rest at zero temperature (measured from an initial ambient temperature θ0 ) and 
heat flux, and in a stress-free state. The chosen boundary conditions are of mixed type. Mechanically, sides S1 , S2 
and S4 are traction-free, side S3 is completely fixed so that to suppress rigid body motion of the slab. As concerns 
the thermal conditions, the normal heat flux is taken to vanish on boundaries S2, S3 and S4 , together with Robin 
thermal condition. Side S1 has a prescribed heating regime that generates the motion. It should be remembered 
that temperature and heat flux are independent thermodynamical quantities. For definiteness:

(1) At the side S1 (x = 0, 0 ≤ y ≤ b):

and

The graphical representation of this function for b = 0.4 is illustrated in Fig. 5.
(2) At the side S2 (y = b, 0 ≤ x ≤ a):

together with Robin thermal condition

(3) At the side S3 (x = a, 0 ≤ y ≤ b):

and Robin thermal condition

(4) At the side S4 (y = 0, 0 ≤ x ≤ a):

and Robin thermal condition

Here, Bi is a dimensionless Biot number, with value taken as Bi = 0.0144 . All the remaining functions not speci-
fied in the above boundary conditions are set to zero on the boundaries.

Following similar guidelines as in22,23, COMSOL Multiphysics is used to solve the considered boundary-value 
problem for Eqs.  (26–33) under the boundary conditions (46–52) and zero initial conditions. For definiteness, 
we mainly consider the case with M = 3.0, n = 1.0 . The value of M, however, was varied to take on other values 
in some plots. The produced particular solution has been obtained by the method of finite elements embedded 
in the above-mentioned software. The mesh could be refined and adjusted for best results.

L0 ∼ 10−8 m, T0 ∼ 10−11 s, c ∼ 103 m/s.

(45)σ S1
xx

(

0, y, t
)

= σ S1
xy

(

0, y, t
)

= 0

(46)θS1
(

0, y, t
)

=
{

200y
(

b− y
)

t exp (−0.1t), 0 ≤ t ≤ 5× 10−3

0, t > 5× 10−3 , 0 ≤ y ≤ b

(47)σ S2
yy (x, b, t) = σ S2

xy (x, b, t) = qS2y (x, b, t) = 0,

(48)
∂θS2

∂y
(x, b, t)+ Bi θS2 = 0,

(49)σ S3
xx

(

a, y, t
)

= σ S3
xy

(

a, y, t
)

= qS3x
(

a, y, t
)

= ux
(

a, y, t
)

= uy
(

a, y, t
)

= 0

(50)∂θS3

∂x

(

a, y, t
)

+ Bi θS3 = 0,

(51)σ S4
yy (x, 0, t) = σ S4

xy (x, 0, t) = qS4y (x, 0, t) = 0

(52)−
∂θS4

∂y
(x, 0, t)+ Bi θS4 = 0.

Figure 4.   Schematic representation of the problem.
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From symmetry of the considered problem about the median line y = b/2 , it follows that the quantities 
uy , vy , qy , σxy must vanish everywhere in the slab. The numerical computations have confirmed this fact . It thus 
follows that the displacements, velocities and heat flux take place along the direction perpendicular to the heated 
face of the slab (the x-direction), and that shear stress vanishes inside the slab.

Figures 6, 7, 8, 9 , 10 and 11 represent topviews of the 3-D distributions at three consecutive time moments 
of the main physical quantities induced inside the material due to applied boundary conditions.

The calculations are performed for a dimensionless heat wave speed M = 3 . This wave thus travels three times 
faster than the transversal coupled thermoelastic wave whose dimensionless speed is c = 1.0 . For the chosen 
values of the material constants, the longitudinal coupled thermoelastic wave travels at speed ≃ 2.944 . In all these 
figures, wave propagation phenomenon is clearly illustrated for both the mechanical and the thermal variables, 
with oscillations between positive and negative values near the heated side of the slab, and amplitudes mono-
tonically decreasing to zero with distance. For the considered time values, the wave fronts are clearly noticed 
and the propagating disturbances have not yet reached the far end of the slab and therefore no reflected waves 
are expected. Larger time values could not be considered due to lack of stability of the computational scheme.

The first remark concerns the distribution of temperature in the slab. Although the motion was initiated by 
heating of the left boundary for a finite lapse of time, it is noticed in Fig. 6 that temperature assumes negative val-
ues near this boundary for the considered values of time. This seemingly paradoxical situation may be explained 
by the fact that part of the thermal energy supplied to the medium at the boundary is spent to generate mechani-
cal wave propagation and, therefore, cooling may take place in some parts of the medium. Again, as shown by 

Figure 5.   The applied thermal boundary condition.

Figure 6.   Top view of the temperature distribution in the slab at three consecutive time moments.
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Ahmed et al.24 for the case of a rigid thermal conductor, negative temperatures can result from unphysical values 
assigned to the thermal relaxation time.

As noted above, heat flux and temperature are independent thermodynamical variables. Heat flux is initially 
generated by the thermal boundary condition. In subsequent time moments, it propagates as a wave, with speed 
M, independently of temperature as shown in Fig. 7.

Still at the heated end, the displacement and the velocity components ux and vx in Figs. 8 and  9 take on nega-
tive values in the initial phase of the motion, as the medium expands under heating. Both quantities are seen to 
tend to zero as the corner points are approached.

Figure 7.   Top view of the distribution of qx in the slab at three consecutive time moments.

Figure 8.   Top view of the distribution of ux in the slab at three consecutive time moments.

Figure 9.   Top view of the distribution of vx in the slab at three consecutive time moments.

Figure 10.   Top view of the distribution of σxx in the slab at three consecutive time moments.
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The stress components σxx and σyy are illustrated in Figs. 10 and  11. These two components take on negative 
values near the heated end of the slab, while σyy assumes zero value at the ends y = 0, b in conformity with the 
applied boundary conditions. In order to confirm the satisfaction of the boundary condition for the first stress 
components, we have produced 2D-Fig. 12 for the distributions of the functions θ , ux and σxx on the median line 
y = b/2 for time value t = 3.2× 10−3 and for three values of parameter M, from which it is seen that the stress 
component σxx in fact satisfies the boundary condition on S1 . These figures clearly show the effect of increase of 
parameter M on the amplitudes of the functions.

Conclusions
We have investigated a two-dimensional system of first-order, partial differential equations of classical thermoe-
lasticity, supplemented with Cattaneo-type evolution equation for the heat flux to replace Fourier law for heat 
conduction. The model includes only one thermal relaxation time for each component of the heat flux vector. It 
differs from other well-known models of extended thermodynamics, e.g. Lord and Shulman, Green and Naghdi, 
two-temperature model, dual-phase-lag model, which all start with different assumptions and yield heat wave 
propagation (C.f.25). Under the assumption that thermal conductivity must be positive, it turns out that the 
present system is reducible to symmetric t-hyperbolic form by special choices of some characteristic quantities. 
This result is to be contrasted with that expressed by Müller3, stating that the set of quasi-linear first order balance 
equations of extended thermodynamics may be written in symmetric hyperbolic form by a suitable choice of 
fields, provided constitutive functions are subject to the requirements of the entropy principle. The characteristics 
of the system were studied and an energy integral was obtained which leads to uniqueness of solution under 
proper boundary conditions. Thus the present system of equations behaves well in the sense of well-posedness 
of Cauchy problems, and is therefore valid for the description of heat wave propagation. To confirm the exist-
ence of solutions, a numerical experiment for a finite slab was carried out using a finite element scheme built in 
COMSOL Multiphysics and with tentative values of the different material parameters to produce a particular 
solution to the problem under specified boundary conditions and zero initial conditions. The numerical results 
could be obtained only for sufficiently small time values due to difficulties related to the stability of the numeri-
cal scheme. The presented three-dimensional plots clearly show the phenomenon of thermal and thermome-
chanical wave propagation. It was noticed that temperature attains negative values at certain locations inside 
the slab, although the left boundary is subjected to heating for a certain lapse of time. This is due to the fact that 
part of the supplied thermal energy is spent on generating the motion. Such phenomenon should not appear in 
rigid thermal conductors once the value of the thermal relaxation time has been properly assigned (C.f.24). The 
presented figures show the wave front and the damping of the solution as disturbances progress along the slab. 
Verification of the satisfaction of the boundary conditions was carried out.

Data availability
All data generated or analyzed during this study are included in this published article

Figure 11.   Top view of the distribution of σyy in the slab at three consecutive time moments.

Figure 12.   Distributions of T , ux and σxx on the median line y = b/2 for t = 3.2× 10−3 and three values of M.
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