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Efficient andaccurate frailtymodel approach
for genome-wide survival association
analysis in large-scale biobanks

Rounak Dey 1,9, Wei Zhou 2,3,4,5,9, Tuomo Kiiskinen 5,6, Aki Havulinna5,6,
Amanda Elliott1,2,3, Juha Karjalainen2,3,4,5, Mitja Kurki2,3,4,5, Ashley Qin1, FinnGen*,
Seunggeun Lee 7, Aarno Palotie 2,3,4,5, Benjamin Neale 2,3,4,10,
Mark Daly2,3,4,5,10 & Xihong Lin 1,3,8

With decades of electronic health records linked to genetic data, large bio-
banks provide unprecedented opportunities for systematically understanding
the genetics of the natural history of complex diseases. Genome-wide survival
association analysis can identify genetic variants associatedwith ages of onset,
disease progression and lifespan. We propose an efficient and accurate frailty
model approach for genome-wide survival association analysis of censored
time-to-event (TTE) phenotypes by accounting for both population structure
and relatedness.Ourmethodutilizes state-of-the-art optimization strategies to
reduce the computational cost. The saddlepoint approximation is used to
allow for analysis of heavily censored phenotypes (>90%) and low frequency
variants (down tominor allele count 20). We demonstrate the performance of
our method through extensive simulation studies and analysis of five
TTE phenotypes, including lifespan, with heavy censoring rates (90.9% to
99.8%) on ~400,000 UK Biobank participants with white British ancestry and
~180,000 individuals in FinnGen. We further analyzed 871 TTE phenotypes in
the UK Biobank and presented the genome-wide scale phenome-wide asso-
ciation results with the PheWeb browser.

Survivalmodels, especially theCox proportional hazardmodel1, have
been widely used to analyze time-to-event (TTE) outcomes, both in
biomedical research2–4 and in genome-wide association studies
(GWAS)5–11. It has been shown that the proportional hazardmodel can
increase thepower to detect genetic variants associatedwith the age-
of-onset of TTE phenotypes in cohort studies compared tomodeling
the disease status using a logistic regression model, especially for
common events12–14. Studying the genetic underpinning of age-of-
onset, eg. early or late age-of-onset, is of substantial interest for

understanding the disease etiology and planning interventions. With
the availability of detailed time-stamped diagnosis data from Elec-
tronic Health Records (EHR), large biobanks, such as UK Biobank
(UKBB)15 (>400,000 individuals) and FinnGen (https://www.finngen.
fi/en) (>200,000 individuals), provide unprecedented opportunities
to analyze TTE phenotypes to unravel the complex genetic archi-
tectures of disease onset, progression, and lifespan. Genome-wide
scans of TTE phenotypes in large biobanks can potentially identify
novel genetic variants associated with the onset of human diseases
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by leveraging both the disease status and the age-of-onset
information.

In GWAS analysis, population structure and sample relatedness are
often key confounders and factors that need to be controlled for. Bio-
bank cohorts often have substantial population structure and related-
ness. For example, in the UK Biobank, 91,392 out of 408,582 subjects
withWhite British ancestry have at least one relative (up to 3rd degree)
in the data. Several methods based on linear16–18 and logistic19,20 mixed
effects models have been developed to account for relatedness in
GWASs for quantitative and binary phenotypes. To account for related
subjects in the proportional hazard model, frailty models, which are
mixed effects survival models, have been proposed21,22, where event
times are assumed to be independent conditional on unobserved ran-
dom effects called “frailties”. The frailties are modeled based on the
dependence and clustering structure of the observations.

Previous research has extensively studied shared frailty models
with Gamma-distributed frailties21,23–28. However, the shared frailty
model assumes that the subjects in a cluster share common frailty and
thus is limited in its scope to model more complicated dependency
structures that arise in cohort-based association studies. Bivariate
extensions to the shared frailtymodel such as the correlatedGamma29,30

or the correlated compound Poisson31 frailtymodel allow the frailties to
be correlated among two subjects. However, these models are also too
restrictive because they model the correlations using one parameter,
and effectively, they are more appropriate for twin studies, and cannot
model arbitrarily complex relationship structures.

To model complicated dependency structures, such as known
familial structures and cryptic relatedness, the multivariate frailty
model with Gaussian frailty was proposed32,33, and was later imple-
mented in the R package COXME34, which, however, lacks scalability
for GWASs. Recently the COXME method was further improved in
COXMEG35, which utilizes several computational optimization strate-
gies to make it applicable in genetic association studies, but COXMEG
still cannot handle biobank-scale genome-wide datasets. Based on our
performance benchmarking, for 20,000 subjects, COXMEG requires
3356 CPU-hours (1412 CPU-hours for the COXMEG-Sparse option) to
perform a GWAS of 46million variants, thus COXMEGwould take over
4.6 days (1.9 days for COXMEG-Sparse) to complete the GWAS, even
with perfect parallelization on 30 CPUs.

In large-scale GWASs, the score test is particularly useful among
different asymptotic tests, because it requires fitting the model only
once under the null hypothesis of no association20. Score tests have
also been implemented in COXMEG36. However, score tests can lead to
severe type I error inflation for phenotypes with heavy censoring,
where the number of subjects who have experienced an event (for
example, diagnosedwith the phenotype of interest) is small compared
to the number of subjects who have not experienced the event (also
called censored subjects) during the study follow-up period. This is
common in biobank-based phenotypes. In the UK Biobank phenome
that was built based on Phecodes37 (see the “Methods” section), 871
TTE phenotypes have at least 500 events (cases), out of which 811
phenotypes have a censoring rate of more than 95%. The inaccuracies
of the score test in unbalanced case-control phenotypes have been
previously shown for logistic regression and logistic mixed effects
models19,38–40, and a saddlepoint approximation41 (SPA)-based adjust-
ment has been proposed and successfully implemented19 to accurately
calibrate thep-values in such scenarios. Recently, the SPACox11method
also used SPA to calibrate p-values for time-to-event phenotypes in
unrelated samples. However, the SPACoxmethoddoes not account for
sample relatedness. Through simulations, we show similar inaccura-
cies are also present in score tests in frailty models for analyzing
heavily censored phenotypes.

Here, we propose a novel method for genome-wide survival ana-
lysis of TTE phenotypes, which accounts for both population structure
and sample relatedness, controls type I error rates even for

phenotypes with extremely heavy censoring, and is scalable for
genome-wide scale phenome-wide association studies (PheWASs) on
biobank-scale data. Our method, Genetic Analysis of Time-to-Event
phenotypes (GATE), transforms the likelihood of a multivariate Gaus-
sian frailty model into a modified Poisson generalized linear mixed
model (GLMM20,42) likelihood, employs several state-of-the-art opti-
mization techniques to fit the modified GLMM under the null
hypothesis, and then performs score tests calculated using the null
model for each genetic variant. To obtain well-calibratedp-values for
heavily censored phenotypes, GATE uses the SPA to estimate the null
distribution of the score statistic instead of the traditionally used
normal approximation. Moreover, our method saves the memory
requirement substantially by storing the raw genotypes in binary for-
mat and calculating the elements of the GRM on the fly instead of
storing or inverting a large dimensional GRM. Through extensive
simulations and analysis of TTE phenotypes from the UK Biobank data
of 408,582 subjects with White British ancestry as well as the FinnGen
study freeze 5 that contains 218,792 subjects, we showed that GATE is
scalable to biobank-scale GWASs of TTE phenotypes with type I error
rates well controlled even for less frequent variants and heavily cen-
sored phenotypes. Benchmarking has shown that GATE can analyze 46
million variants in a GWAS with 408,582 subjects in ~14.5 h using 30
CPUs with peak memory usage under 11 GB.

Results
Overview of methods
GATE consists of two main steps: (1) Fitting the null frailty model to
estimate the variance component and other model parameters and (2)
performing a score statistic-based test for association between each
genetic variant and the phenotype. Step 1 involves iterativelyfitting the
null frailty model by first rewriting the likelihood of the observed
censored time to event data under the frailty model as a modified
Poisson log-linear mixed effects model likelihood, and then applying
modifiedoptimization strategies asdescribed inGMMAT20 and SAIGE19

to fit the null modified Poisson log-linear mixed models (METHODS).
They include using the computationally efficient average information
restricted maximum likelihood (AI-REML20,43) algorithm for estimating
the variance component and using the pre-conditioned gradient des-
cent (PCG44) method to solve linear systems to avoid inverting the
N ×N genetic relatedness matrix (GRM), where N is the number of
subjects. GATE computes the elements of the GRM on-the-fly when
needed using binary vectors of raw genotypes, and thus it does not
require supplying, storing, or inverting a pre-computed GRM, which
can be extremely time and memory-consuming for large sample sizes
(N). For example, in the UK Biobank data with M = 93,511 markers and
N = 408,582 subjects with White British ancestry, the memory
requirement drops from 622GB for storing a pre-computed GRM in
floating point numbers, to only 8.9 GB for storing the raw genotypes in
the binary format.

Step 2 involves scanning the entire genome and testing each
variant for association using score statistics. Since the overall cost of
computing the variance of the score statistic for all variants is extre-
mely high because it involves operations on the large-dimensional
GRM, in step 2, GATE uses a variance ratio approximation derived
under the modified TTE Poisson loglinear models by extending that
used in existing LMM and GLMM-based methods such as GRAMMAR-
Gamma17, BOLT-LMM16, fastGWA18, and SAIGE19. The ratio of the var-
iance of the score statistic with and without random effects (and an
attenuation factor due to estimating thebaseline hazards) is computed
using a subset of genetic markers. Previously, it was shown that this
variance ratio remains approximately constant for variants with
MAC ≥ 20 for LMM and GLMMs. Through analytical derivations and
simulation examples,we show this observationholds for frailtymodels
as well (Supplementary Note section 3 and Supplementary Fig. 15).
Therefore, when performing the genome-wide scan, the variance of
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the score statistic is computed without using the GRM and then cali-
brated using the variance ratio.

Next, GATE uses the saddlepoint approximation41 (SPA) to
approximate the null distribution of score statistics for association
tests under the modified Poisson log-linear mixed models. SPA-based
tests have been successfully used for logistic regression39 and logistic
mixed models19 and provide more accurate p-values than traditional
score tests under normal approximation for low-frequency variants
when the case-control ratio is unbalanced. In GATE, we have imple-
mented an efficient SPA-based test for frailty models by extending the
fastSPA method in Dey et al.39. Through simulations and real data
analysis, we show that SPA tests provide accurate and calibrated p-
values, even for low-frequency variants when the censoring rate is
high to 99%.

Both GATE and COXMEG35 conduct genetic association tests for
TTEphenotypes using the frailtymodel. Besides the use of SPA-based
tests, GATE uses the variance ratio approach to approximate the
variances of the score statistics, while COXMEG calculates the var-
iances using the GRM. Using simulation studies, we have shown that
GATE provides association p-values consistent with COXMEG (R2 of
−log10 p-values > 0.99, slope = 1.008, intercept = −0.0004) for com-
mon variants (MAF > 5%) when the censoring rate is 50% and mod-
erate sample sizes (Supplementary Fig. 1A). Further, GATE has well-
controlled type I error rates even for less frequent variants and
phenotypes with heavy censoring rates, where COXMEG results in
inflated type I error rates (Supplementary Fig. 1B). Further, as shown
below, GATE is computationally much more scalable than COXMEG
for large biobank data.

Computation and memory costs
To assess the computational performance of GATE and the tests
implemented in the COXMEG package, namely COXMEG-Score and
COXMEG-Sparse, we randomly sampled subsets of different sample
sizes from 408,582 UK Biobank subjects with White British ancestry.
We then benchmarked association tests for overall lifespan (16,375
events, 389,721 censored) adjusting for the top four ancestry principal
components, birth year, and sex using GATE, COXMEG-Score, and
COXMEG-Sparse on 200,000 variants randomly selected from 46
million genetic variants with imputation info ≥0.3 and MAC ≥ 20. In
Step 1, 93,511 high-quality genotyped markers were used for the GRM.
The projected overall computation time (Fig. 1 and Supplementary
Table 1) forGATE to analyze 46million variants onN = 408,582 subjects
was 318 CPU-hours, and the actual computation time on a machine
with 30 cores was 14.5 h. Step 2, which accounts for themajority of the

computation time (95.4% for N = 408,582) requires substantially less
memory (peak memory usage 0.85GB) than Step 1 (peak memory
usage 10.6GB).

However, to perform GWAS on only 20,000 subjects, the pro-
jected computation time and memory usage for COXMEG-Score were
3356 CPU-hours (4.6 days with 30 CPUs) and 32.75 GB, respectively,
and for COXMEG-Sparse, they were 1412 CPU-hours (1.96 days with 30
CPUs) and 5.95GB. As GATE only uses 34 CPU-hours and 0.74GB, it
achieves 98% and 88% reductions in computation time and memory,
respectively, compared to COXMEG. Note that the computation time
andmemory requirements increase nearly linearlywith the sample size
for GATE, whereas they increase quadratically for COXMEG-Score and
COXMEG-Sparse.

Phenome-wide GWAS of time-to-event phenotypes in the UK
Biobank data
We have applied GATE to perform phenome-wide GWAS for 871
UKBB TTE phenotypes with at least 500 events, adjusting for the top
four PCs, birth year, and sex (except for 93 sex-specific phenotypes).
The TTE phenotypes were created based on the International Clas-
sification of Disease (ICD) codes version 9 and 10 mapped to the
PheWAS code (PheCode37) definitions (see the “Methods” section) as
well as their associated diagnosis dates in the UK Biobank electronic
medical records. For each phenotype, we analyzed approximately 46
million genetic markers imputed from the Haplotype Reference
Consortium45 panel and UK10K46 with imputation INFO score ≥0.3
and MAC ≥ 20. Among the 408,582 UK Biobank subjects with White
British ancestry, 91,392 had at least one relative up to a third degree15.
To account for the relatedness among the subjects, we used 93,511
high-quality genotyped markers with MAF ≥0.01 to construct the
GRM in Step 1. The same set of markers was used by the UK Biobank
research group15 for estimating kinship among the samples because
they are only weakly informative of the ancestry and therefore pro-
vide more accurate kinship estimates. We also performed a sensi-
tivity analysis using a larger set of markers (245,745) for the four
exemplary phenotypes discussed before (see Supplementary Note
Section 7).We further applied SPA-based adjustment of the score test
because the censoring rates (Supplementary Fig. 2) were extremely
high for most of the TTE phenotypes in the UKBB (for example, 811
out of 871 have a censoring rate of more than 95%). The summary
statistics for all 871 PheCodes analyzed using GATE are available to
download from a public repository (see the section “Data avail-
ability”) and browsed in the PheWeb47 (see the section “Data
availability”).
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Fig. 1 | Projected computation cost for GATE, COXMEG-Score, and COXMEG-
sparse as a function of sample size. A is for computation time and B is for
memory usage. The numerical data are provided in Supplementary Table 1.
Benchmarking was performed for the GWAS of lifespan based on randomly sub-
sampled data from UK Biobank White British ancestry subjects. Association tests

were performed on 200,000 randomly selected markers with imputation INFO≥

0.3, with the filtering criteria of MAC≥ 20. The computation times were projected
for testing 46 million variants with INFO≥0.3 and MAC ≥ 20. The reported run
times aremedians of five runs, eachwith randomly sampled subjects with different
randomization seeds. The x-axis is plotted on a log10 scale.
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Here we discuss the association results using four phenotypes
with different censoring rates as exemplars: ischemic heart disease
(IHD: PheCode 411, N events = 36,962, N censored = 370,814, cen-
soring rate = 90.9%), female breast cancer (FBC, PheCode 174.1, N
events = 15,396, N censored = 192,764, censoring rate = 92.6%),
glaucoma (PheCode 365, N events = 6046, N censored = 392,925,
censoring rate = 98.5%), and Alzheimer’s Disease (AD: PheCode
290.11, N events = 822, N censored = 342,059, censoring rate =
99.8%). The Manhattan and QQ plots for the GWAS of these phe-
notypes using GATE with and without SPA are presented in Figs. 2
and 3, respectively. The results demonstrate that not adjusting for
SPA greatly inflates the type I errors, especially for the low-
frequency variants, whereas the SPA-adjusted method shows well-
controlled type I error rates. In total, 114 loci have been identified for
the four TTE phenotypes: 55 for IHD, 37 for FBC, 19 for glaucoma,
and 3 for AD. We also applied GATE to these four phenotypes in the
FinnGen study (see the “Methods” section) and 81 out of the 114 loci
were also tested in the FinnGen study, of which 78 had the same
effect direction in bothUKBB and FinnGen. 69 out of the 81 loci were
successfully replicated in FinnGen with p-value < 0.05. The com-
plete list of all significant loci and the association results in the
UKBB, FinnGen as well as the meta-analysis of the two data sets are
reported in Supplementary Data 1. Overall, 99 out of the 114 sig-
nificant loci have been previously reported to be associated with
disease risk in case-control studies to the best of our knowledge.
Several loci that are previously well known as associated with the
risk of the diseases have been identified in our study, such as the loci
LPA and CELSR2 for IHD48,49, FGFR250 and CASC1651 for breast cancer,
MYOC52 and TMCO153 for glaucoma, and APOE e4 variant for AD54.
The age-varying predicted risk of disease onset based on the GATE
method, and the age-varying disease-free probability by genotypes
based on the Kaplan–Meier curve55 for the exemplary top hits was
plotted in Fig. 4 and Supplementary Fig. 3, respectively.

We further applied logistic mixed models using SAIGE to analyze
these four UKBB phenotypes using their binary disease status at the
latest follow-up time, accounting for the same covariates as in the
GATE application. GATE identified 18 loci (11 for IHD, 2 for FBC, 4 for
glaucoma, and 1 for AD) that were not significant using SAIGE logistic
mixedmodels (see SupplementaryData 2).Out of these 18 loci, 12were
previously reported as associated with the corresponding phenotypes
in other case-control studies. For example, GATE identified an asso-
ciation between AD and an intronic rare variant rs533100590 (MAF =
0.005%,p-value = 2:78× 10�8) in geneATP9B (ATPase, class II, type 9B)
while SAIGE did not (p-value = 1:09× 10�6). This locus has been pre-
viously shown to be associated with AD56. GATE identified the known
locus SWAP70 (intronic rs378825, MAF = 42.7%, p-value = 4:92× 10�8)
for IHD that was missed by SAIGE logistic mixed model
(p-value = 1:38× 10�7).

GWAS of lifespan in the FinnGen study and the UK Biobank
Wehave also applied GATE to the overall lifespan in the FinnGen study
(N events = 15,152, N censored = 203,244), in which the age of death
ranges from 7 years old to 106 years old as shown in Supplementary
Fig. 4. We identified the previously reported APOE locus for lifespan57

in FinnGen, in which the most significant variant is the APOE-e4 mis-
sense variant rs429358 (MAF = 18.3%, p-value = 1:01× 10�14) and it is
well-known to be associated with lifespan, cardiovascular diseases,
stroke, and Alzheimer’s disease58–60. However, when SAIGE logistic
mixed model was applied to the Finngen binary trait of dead/alive
status, it did not identify any significant locus (rs429358 has p-
value 1:89× 10�6).

The locus rs429358 has also been replicated in UKBB (N
events = 16,375 and N censored = 389,721, see Supplementary
Fig. 5A) with p-value 1:92× 10�5 and meta-analysisp-value
4:04× 10�17(Supplementary Table 2 and Supplementary Fig. 5B).

The top hit in UKBB for lifespan (rs157592, MAF = 18.7%, p-value =
1:87 × 10�8) had LD r2 =0:7 with rs429358 as presented in the
Supplementary Table 2. This variant rs157592 is in the intergenic
region and has no in-silico function according to the FAVOR
functional annotation online portal61 (see the section “Code
availability”).

Simulation studies
We investigated the type I error rates and power of GATE in the pre-
sence of sample relatedness using 10,000 simulated samples. Due to
computational burden, we used GATE-noSPA instead of COXMEG-
Score for type I error evaluation as Supplementary Fig. 1C shows the
two approaches provide consistent association p-values (R2 of −log10
p-values > 0.99).

The type I error rates of GATE was evaluated based on association
tests of 9.4 × 108 simulated genetic markers on 10,000 samples, which
contain 500 families and 5000 independent samples. Each family has
10 members, simulated based on the pedigree shown in Supplemen-
tary Fig. 6. The variance component parameter τ is set to be 0.1 and
0.25 (see the “Methods” section). The empirical type I error rates at the
significance level α = 1 × 10−6 and 5 × 10−8 are shown in Supplementary
Table 3 and Supplementary Fig. 7A. Our simulation results suggest that
GATE has well-controlled type I error rates even for low-frequency
variants (down to MAC= 20) when the phenotype is heavily censored
(90%). However, without SPA, the score tests in GATE suffer from
inflated type I error rates as the censoring becomesmore extreme and
the frequency of variants decreases. We also evaluated type I error
rates of GATE in a setting with cryptic sample relatedness by randomly
selecting 10,000 UKBB participants with white British ancestry. Phe-
notypeswere simulated using the real genotypes in the UKBB tomimic
the sample relatedness of a real-world dataset, and association tests
were conducted on the imputed genetic markers in the UKBB (see the
“Methods” section). Similarly, we observed that the type I error rates
werewell controlled in GATE in presence of cryptic sample relatedness
with different censoring rates (SupplementaryTable 4, Supplementary
Figs. 7B and 8).

Next, we evaluated the empirical power of GATE atα = 5 × 10−8 and
compared it to the power of COXMEG-Score. Supplementary Fig. 9
shows the power curve by hazard ratios for variants withMAF0.05 and
0.2 when τ = 0.25 and the censoring rate = 50%. Both methods have
nearly identical power in all simulation settings. We do not compare
their powers in the presence of heavy censoring, in view of the inflated
type I error rate of COXMEG-Score.

Overall simulation studies show thatGATE can control type I error
rates even when the censoring rate is high and has similar power for
common variants as COXMEG-Score. In contrast, same as GATE-
noSPA, COXMEG suffers type I error inflation and the inflation is
especially severe with low MAF and heavy censoring (Supplementary
Figs. 1B, C, 7, and 8).

In addition, we compared the empirical power of GATE and the
association tests based on a logistic mixedmodel as implemented in
SAIGE (Supplementary Fig. 10), for simulated TTE phenotypes with
50%, 75%, and 95% censoring rates (see the “Methods” section).
SAIGE treated all events at the latest follow-up time as cases and all
censored individuals as controls, and tested for associations
between genetic markers and the disease risk coded as the case-
control status while accounting for the age at the latest follow-up
time as a covariate in the linear term. As expected, GATE overall
showed a higher empirical power to identify the genetic markers
that are associated with the phenotype than SAIGE. The difference
in the empirical powers decreased as the censoring rate increased.
However, even for the datasets with a 95% censoring rate, GATE
empirically had ~5–6% power improvement over SAIGE at the hazard
ratio range 2–3 for MAF 0.05, and at the hazard ratio range 1.5–1.8
for MAF 0.2.
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A. GATE noSPA

B. GATE

Ischemic Heart Disease Female Breast Cancer Glaucoma Alzheimer’s Disease

Ischemic Heart Disease Female Breast Cancer Glaucoma Alzheimer’s Disease

Fig. 2 | Manhattan plots for GWAS of four time-to-event phenotypes with dif-
ferent censoring rates in the UK Biobank data with White British ancestry.
GWAS results using GATE-noSPA (A) and GATE (B) are shown for ischemic heart
disease (PheCode 411, N = 407,776, censoring rate = 90.9%), female breast Cancer

(PheCode 174.1, N = 208,160, censoring rate = 92.6%), glaucoma (PheCode 365,
N = 398,971, censoring rate = 98.5%), and Alzheimer’s Disease (PheCode 290.11,
N = 342,881, censoring rate = 99.8%).

A. GATE noSPA

B. GATE

Ischemic Heart Disease Female Breast Cancer Glaucoma Alzheimer’s Disease

Ischemic Heart Disease Female Breast Cancer Glaucoma Alzheimer’s Disease

Fig. 3 | Quantile–quantile (QQ) plots for GWAS of four time-to-event pheno-
types with different censoring rates in the UK Biobank data withWhite British
ancestry. GWAS results using GATE-noSPA (A) and GATE (B) are shown for
ischemic heart disease (PheCode 411, N = 407,776, censoring rate = 90.9%), female
breast Cancer (PheCode 174.1, N = 208,160, censoring rate = 92.6%), glaucoma

(PheCode 365, N = 398,971, censoring rate = 98.5%), and Alzheimer’s Disease (Phe-
Code 290.11, N = 342,881, censoring rate = 99.8%). QQ plots are color-coded based
ondifferentminor allele frequency categories. 95%error bands around the nominal
x = y diagonal line are also shown for each MAF category.
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Ischemic Heart Disease

Female Breast Cancer

Glaucoma

Alzheimer’s Disease

* No homozygous alternate subject was present among the study subjects for rs74315329 
(Alternate allele frequency = 0.0013)

Fig. 4 | Predicted riskof disease onset over age for the top two loci in theGWAS
of four phenotypes in the UK Biobank data with White British ancestry. Pre-
dicted risk of disease onset is plotted over age by genotypes for loci LPA and
CELSR2 for ischemic heart disease, FGFR2 and CASC16 for female breast cancer,
MYOC and TMCO1 for glaucoma, and APOE e4 variant for AD. The red, green, and

blue lines represent the risk of disease onset for alternate allele counts zero, one,
and two, respectively, for a female subject born in 1950 (median birth year in the
UKBB data) with the top four PC coordinates each set at the mean level across the
UK Biobank subjects with white British ancestry.
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Discussion
In this paper, we have proposed a novel method to perform scalable
genome-wide survival association analysis of censored TTE pheno-
types in biobank-scale data using an efficient implementation of the
frailty model. Our method can adjust for population structure and
sample relatedness and provide accurate p-values even in extreme
cases of very low-frequency variants and heavily censored phenotypes
(incidence rate < 0.1%). Applying this approach to the UK Biobank and
the FinnGen study, wedemonstrated thatourmethod is scalable to the
analysis of large biobank-scale datasets with >400,000 subjects.

The major methodological improvement in our study is to
derive the frailty model as a modified Poisson log-linear mixed
model, which allows us to incorporate some of the existing
approaches for GLMM-based models into the frailty model for
time-to-event (TTE) phenotypes. Frailty model is entirely different
from a GLMM, both in the kind of data they are used to analyze
and the problems they are applied to, as well as in the ways these
models fit. In our paper, we derived and transformed the frailty
model likelihood into a modified Poisson GLMM likelihood
(Supplementary Note Section 1), and derived the appropriate
model fitting procedure for such modified GLMMs. We note that
the modified Poisson GLMM is still not a GLMM, and thus the
derivation steps and model-fitting techniques are non-trivial.

Biobanks with genetic data linked to EHR records/survey
questionnaires provide unprecedented opportunities for genetic
association studies on TTE phenotypes to identify genetic risk
factors that affect the onset and progression of diseases. How-
ever, biobanks pose challenges to such analysis because of the
high computational and memory cost required to handle large
data sets with extensive population structure and relatedness.
Moreover, existing methods such as COXMEG, artificially inflate
associations when heavily censored phenotypes (e.g., censoring
rate > 75%) and low-frequency variants (MAF < 1%) are involved.
The proposed method GATE performs a frailty model-based
association analysis to account for both population structure and
relatedness using score tests with SPA adjustment, which pro-
vides accurate p-values under heavy censoring. In addition, it
implements several optimization techniques that were previously
used in the context of linear and logistic mixed models in BOLT-
LMM and SAIGE to make it computationally feasible to analyze
large biobank cohorts. We have applied GATE to 871 TTE phe-
notypes in the UK Biobank data with White British ancestry, which
were constructed based on PheCodes mapped to ICD codes and
have at least 500 events. The genome-wide summary statistics are
available for the public to download. We have also created a
PheWeb47 for users to explore and visualize the PheWAS results.

Lifespan is a typical TTE phenotype and the genetic effects on
lifespancanbe appropriatelymodeledby the frailtymodel.We applied
GATE to lifespan in the FinnGen study, whose participants have a wide
age-of-death range from 7 to 106 years, and have successfully identi-
fied awell-known locus rs429358 (p-value = 1:01× 10�14). However, this
locus has been missed by a logistic mixed model for the dead/alive
status. (p-value = 1:89× 10�6). This example suggests that applying
frailty models can be useful for uncovering genetic risk factors for TTE
analysis, as further evidenced through simulation studies (see the
“Methods” section). GATE can facilitate these studies.

We also compared GWAS results using logistic mixed models of
the binary disease status as implemented in SAIGE in the four example
phenotypes presented in the paper and found that across the four
phenotypes, SAIGE failed to identify 18 loci (Supplementary Data 2)
that were identified GATE, among which 11 were for ischemic heart
disease. This shows that a frailty model-based analysis of TTE pheno-
types can lead to the identification of loci thatmight bemissed by only
analyzing the disease status using a logistic mixed effects model. The
scatter plots comparing the association p-values fromGATE and SAIGE

(Supplementary Fig. 11) show that for ischemic heart disease and
glaucoma, the p-values based on GATE overall tend to be smaller than
SAIGE, and for female breast cancer and Alzheimer’s disease, the p-
values are similar between these two methods. The TTE outcome is
different from the binary case-control outcome, and logistic models
can result in loss of power for such outcomes, especially for common
events. Although the TTE phenotypes in biobanks such as the UK
Biobank and FinnGen are currently subject to heavy censoring, as the
biobank participants are followed over time, more events will be
observed. As events will become more common over time in biobank
follow-up, the power gain of GWAS analysis of TTE phenotypes using
frailty models via GATE over logistic mixed models via SAIGE will
increase. Logistic models with age (at disease onset or at the latest
follow-up time) as a covariate assume a homogenous effect (in logit
scale) of age on the risk of the disease, which may not be valid, espe-
cially when the definition of the age covariate canbe different between
the cases/failure events (age-of-onset) and the controls/censored (age
at the latest follow-up time). Survival models, on the other hand, are
developed specifically to accommodate age-of-onset and age-of-
censoring differently, and they model the effect of age on the
disease-risk non-parametrically in the baseline hazard without the
homogeneity assumption.

TTE phenotypes are particularly suited not only for studying dis-
ease onsets but also for exploring other progression phenotypes such
as times of surgery, recurrence, times of onset of secondary pheno-
types after an initial diagnosis, etc. Previously, the lack of scalable
GWAS methods for TTE outcomes hindered such investigations on
massive scales. By facilitating large-scale GWAS of TTE phenotypes,
GATE opens the door to such investigations in the future at genome-
wide and phenome-wide scales. Further, modeling TTE phenotypes
also has the added advantage of designing appropriate intervention
responses. Since frailtymodels explicitlymodel the age-of-onset of the
disease, one can design interventions based on the genetic predis-
positions of the subjects, and also based on whether the disease has
early or late onset. Logistic models are not particularly suitable for this
purpose as it models the effect of age as a homogeneous effect, which
is a much stronger assumption compared to the non-parametric
modeling of age-of-onset in survival models.

One consideration while analyzing TTE phenotypes is the appro-
priate choice of unit of time. To assess the impact of time-units on the
GWAS results, we performed a sensitivity analysis using the event and
censoring times rounded to the nearest 1 month, 3 months, 6 months,
and 12-month time-units for the four exemplary UK Biobank pheno-
types presented in this paper, and compared the p-values across dif-
ferent time-units (Supplementary Fig. 12). The p-values were very
similar across the four time-units for all phenotypes, with more
detailed time-units resulting in slightly more significant p-values.

For the selection of a number of markers to construct the GRM,
there is a trade-off between computation cost and the accuracy of
adjusting the sample relatedness. Increasing the number of markers
(M) included in the GRM linearly increases the computation time and
memory requirementof step 1, whereas using too fewmarkersmaynot
be sufficient to capture the detailed familial and cryptic relatedness
among the samples properly62. For the UK Biobank data analysis, we
usedM = 93,511 LDprunedhigh-quality genotypedmarkerswhichwere
used by the UK Biobank research group for estimating kinship among
the samples15. We performed a sensitivity analysis (see Supplementary
Note Section 7) by increasing the number of markers to M = 245,975
pruned markers with MAF ≥0.01. The results (Supplementary Figs. 13
and 14) showed that the p-valueswere generally concordant, and thep-
values usingM = 245,975markers were slightly larger than the p-values
using M = 93,511 markers.

GATE has several limitations. First, similar to other mixed model
methods for genetic association tests, the computation time required
for the algorithms to converge in step 1 can vary among different
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phenotypes and study samples because of the difference in heritability
and the extent of sample relatedness. Second, to be computationally
efficient, GATE uses a score statistic-based test without fitting the
model under the alternate hypothesis. Therefore, it does not provide
accurate estimates of hazard ratios for genetic variants. Following a
similar approach as in several other mixed model-based
methods16,17,19,63, GATE provides hazard ratio estimates for genome-
wide variants using the null model parameter estimates (see Supple-
mentary Note Section 5). Alternatively, the GATE software also allows
users to include variants one-at-a-time into the model for step 1 in
order to get more accurate hazard ratio estimates. Third, GATE per-
forms single-variant association analysis, which can suffer from low
power to detect associations for rare variants. Significant single
variant-based GWAS findings for rare variants need to be interpreted
with caution, and replication of these findings using independent
samples is important. To boost the power of rare variant association
tests in whole genome/exome sequencing (WGS/WES) studies, set-
based rare variant tests have been commonly used. It is of future
research interest to extend GATE to mask-based or region-based rare
variant set association tests inWGS/WES studies by extending burden,
SKAT, and other tests61,64 to frailty models for censored time-to-
event data.

Fourth, the current version of GATE does not incorporate
left-truncated data, which may not be valid for early-onset phe-
notypes in biobanks with relatively older participants. For
example, the median age of UK Biobank’s participants is 59 and
the earliest dates of health data available are around the late
1990s. Assuming no left-censoring can reduce association power
for early-onset diseases. Future work will extend GATE to
accommodate left-truncated phenotypes. Fifth, since the follow-
up information is based on EHR systems that record age-of-
diagnoses instead of true age-of-onsets, the actual analysis pre-
sented in our paper is based on age-of-diagnoses. As long as age-
of-diagnoses are close to age-of-onsets, analyzing them can be
reasonable. However, as mentioned before, for left-truncated
phenotypes, this may not always be the case. Specific care needs
to be taken when analyzing such phenotypes. Finally, the frailty
model presented in the paper assumes independent censoring,
which is a common assumption in the survival analysis literature.
However, for certain phenotypes like IHD, the event of death can
be a “competing risk”65–68 which may cause dependent censoring.
Competing risk models generally involve other strong assump-
tions, for which we did not consider them in GATE which is
intended to be applied under more general settings. In the future,
we plan to include competing risk models into GATE as well for
specific phenotypes which may have dependent censoring.

GWAS is an important first step of genetic discovery as evidenced
by the extensive GWAS literature. The functions of many GWAS dis-
coveries are unknown and there is a substantial need to identify causal
functional variants of these GWAS disease-associated loci. Numerous
large-scale efforts have been ongoing to study the functions of the
variants identified byGWAS to accelerate discovery fromgeneticmaps
to biological mechanisms to physiology andmedicine, and drug target
discovery and prioritization. Examples include the recently launched
NHGRI Impact of Genomic Variation on Function (IGVF) Consortium,
Open Targets, and the International Common Disease Alliance (ICDA).

In summary, we have proposed a scalable and accurate method,
GATE, to perform genome-wide PheWAS of TTE phenotypes on large
biobank cohorts accounting for population structure, sample relat-
edness, and heavy censoring. We demonstrated that it is possible to
efficiently analyze the current largest biobank (UK Biobank) of
>400,000 subjects using GATE. Our method facilitates biobank-based
PheWAS of TTE phenotypes which ultimately contributes towards
identifying genetic components that affect the onset and progression
of complex diseases.

Methods
Frailty model for Time-to-event phenotypes
Consider a study of N subjects, where for the ith subject, we observe
the data pair ðδi, tiÞ, where δi is a censoring indicator, with δi = 1 if the
ith subject experiences an event during the study period, and δi =0
otherwise, i.e., censored. Let ti denote the observed event or censoring
time. For the ith subject, let the p ×1 vector Xi denote the covariates,
andGi =0, 1, 2 denote theminor allele counts for the genetic variant of
interest. Then, in a frailty model25,32,69, the conditional hazard function
of subject i at time tgiven the covariates, genotype, and randomeffect/
frailty bi is modeled as

λi t∣bi

� �
= λ0 tð Þexp X>

i β+Giγ +bi

� � ð1Þ

where β and γ are the regression coefficients of the covariates Xi and
the genotype Gi respectively, and λ0 tð Þ is the baseline hazard function
at time t, the frailty b = b1, . . . ,bN

� �
follows a multivariate normal dis-

tribution N 0, τVð Þ, with V being the genetic related matrix (GRM).
Unlike standard generalized linearmixed models, the covariate vector
Xi in a frailty model does not include the intercept term, instead, the
baseline hazard λ0ðtÞ works as the intercept in a frailty model. We test
the null hypothesis of no genetic association H0 : γ =0 vs H1 : γ ≠0.

Estimating the variance component and other null model
parameters (step 1)
First, the likelihood for the observed event status–time pairs δi, ti

� �
under the frailtymodel is derived and expressed as amodified Poisson
mixed-effects model likelihood, with the mean function weighted by
the cumulative baseline hazard (CBH) function Λ0 tð Þ= R t

0λ0ðuÞdu. The
CBH function is estimated by the Breslow’s estimator Λ̂0 tð Þ as a step
function. Breslow70 showed that themaximum likelihood approach for
the proportional hazard model (for unrelated subjects) that leads to
the estimator Λ̂0 tð Þ, is equivalent to maximizing the partial likelihood
proposed by Cox1. In Supplementary Note Section 6, we have shown
that the same maximum likelihood approach holds for frailty models
(related subjects) as well given the random effects. Then, using the
penalized quasi-likelihood (PQL42) method and the AI-REML43 algo-
rithm, the model parameters under H0 are estimated iteratively. To
avoid storing large N ×N GRMs, GATE only calculates the elements of
theGRMwhen they areneededusing rawbinary format genotypes. For
the scalable computation of quantities of the form A�1x that arises in
themodelfitting steps, whereA is a largematrix and x is a vector, GATE
uses the PCG algorithm44, which has been previously used in BOLT-
LMM16 and SAIGE19 to accurately compute quantities like y =A�1x by
solving the linear system of equations Ay = x, instead of explicitly
inverting the large matrix A.

Once the null model parameters, random effects, and cumulative

baseline hazard functions ðβ̂, b̂i, Λ̂0ðtiÞÞ have been estimated, GATE
estimates the variance ratio froma small numberofmarkers.Denote the

fitted means by μ̂i = Λ̂0ðtiÞexpðX>
i β̂+ b̂iÞ, and the weight matrix

Ŵ =diag μ̂1, . . . , μ̂N

� �
. Then the score statistic, under H0 : γ =0 is

T =G> δ � μ̂
� �

= eG>
δ � μ̂
� �

, where G = G1, . . . ,GN

� �
,δ = δ1, . . . , δN

� �
,

μ̂= μ̂1, . . . , μ̂N

� �
. The covariate-and-intercept-adjusted genotypes are

denoted by eG=G�eXðeXŴeXÞ�1eXG, where eX= ½1X� is the augmented
covariate matrix. Then, the variance of the score statistic under H0 is

given by VT =GQ̂G= eGQ̂eG, where Q̂ = Ŝ
�1�Ŝ

�1
XðXŜ

�1
XÞ

�1
XŜ

�1
,

Ŝ= ðŴ�ÛÞ�1
+ τ̂V. The expression of Û is described in detail in Sup-

plementary Note Section 1.3. Unlike in the GLMMs, the term Û appears
in the variance of the score statistic due to the attenuation of informa-
tion (additional variability) for estimating Λ0 ti

� �
s. The variance ratio is

then calculated as r̂ =
eGQ̂eGeGŴeG. GATE calculates the variance ratio based on
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30 randomly selected genotypedmarkerswithMAC≥ 20 and computes
the coefficient of variation (CV). If theCVof the variance ratios is smaller
than 0.001, then the mean of the variance ratios is selected as r̂,
otherwisemoremarkers are selected at an increment of 10markers, and
the CV is recalculated until the CV becomes smaller than 0.001.

Score test using SPA
Using the estimated variance ratio r̂, the variance-adjusted test statistic

can be calculated as Tadj = eG δ�μ̂
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂eGŴeGp

, under the null hypoth-
esis has mean zero and variance unity. The traditional score test then
assumes asymptotic normality of the score statistic T (and thus Tadj as
well) under H0, to calculate the p-value. However, observations have
been made before in the context of logistic mixed models that the
asymptotic normality assumption of the score test statistic leads to
severe Type I error inflation for low-frequency and rare variants when
the case-control ratio is unbalanced19. Wemake the same observations
in frailty models as well when the censoring rate is high. In order to
provide well-calibrated p-values in such situations, we used saddle
point approximation (SPA) to approximate the null distribution of the
score statistic, which has been shown to have better approximation
error bounds compared to the normal approximation39,41,71,72, espe-

cially at the extremely small tail probability region of α = 5× 10�8.
Contrary to the normal approximation which only utilizes the first two
moments only to approximate, SPA utilizes the entire moment gen-
erating function (MGF). In fact, it uses the cumulant generating func-
tion (CGF), i.e., is the logarithm of the MGF, which for the frailty
model, based on the modified Poisson mixed model likelihood, can

be derived as KðξÞ=∑N
i= 1μ̂iðeeGicξ � eGicξ � 1Þ, where c= r̂eGŴeG� ��1=2

.

Then, the distribution of Tadj can be calculated based on the SPA by

Pr Tadj < s
� �

≈ Φ w+ 1
w log

v
w

� �� �
, and the p-value is given by

p=Pr Tadj<� ∣s∣
� �

+ Pr Tadj > ∣s∣
� �

, where Tadj = s is the observed

adjusted score statistic, w= sign ξ̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ξ̂s � K ξ̂
� �� �r

, v= t̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 00 ξ̂

� �r
, ξ̂

is the solution to the equation K 0 ξ̂
� �

= s, and K 0 ξð Þ and K 00 ξð Þ are the

first and second derivatives of the CGF K ξð Þ, respectively.
Since the normal approximation works well around the mean, we

use the normal approximation when Tadj is less than two standard
deviations away from the mean for faster computation. In addition, a
faster version of the SPA similar to Dey et al.39 is also implemented
which reduces the computation time even further, fromO(N) toOðNcÞ,
where Nc is the number of minor allele carriers.

Proportional hazard assumption
The proportional hazard (PH) assumption in frailty models is an
extremely popular modeling assumption and has been widely used in
biomedical research2–4, as well as in GWAS5–11. In practice, diagnostics
for the PH assumption73–75 are difficult and time-consuming, and the
PH assumption is thus impractical to be tested at such a large scale
(both sample size-wise and genome-wide). To the best of our knowl-
edge, no scalable diagnostic tool is available for testing proportional
hazards of a continuous covariate in a frailty model. However, since
millions of variants are tested in a GWAS, the quantile–quantile (QQ)
plot works as a more practical alternative tool for model diagnostics.
The QQ plot allows researchers to capture any unexpected conserva-
tiveness or anti-conservativeness of the p-values that may arise from
the violation of model assumptions.

Data simulation
We carried out a series of simulations to evaluate the performance of
GATE, including the type I error rates and power. To evaluate whether

GATE can control type I error rates in presence of sample relatedness,
we randomly simulated a set of 1,000,000 base-pair “pseudo”
sequences, in which variants are independent of each other. Alleles for
each variant were randomly drawn from Binomial (n = 2, p =MAF).
Then we performed the gene-dropping76 simulation using these
sequences as founder haplotypes that were propagated through the
pedigree of 10 family members shown in Supplementary Fig. 6. We
simulated genotypes of 150,000 genetic variants with MAF ≥ 1% for
5000 independent samples and 500 families based on the pedigree to
estimate the GRM on-the-fly in Step 1 of GATE and genotypes of 1.9
million genetic variants with MAC;≥ 20 for association tests in Step 2.
MAFs were randomly sampled from the MAF spectrum in UK Biobank
imputation data as shown in Supplementary Fig. 8. For each subject i,
the censoring time Tci was randomly selected from an exponential
distribution with mean 1/λc and the underlying failure time T fi was
generated from a frailtymodel with the underlying exponential hazard
function T fi =

�logðUiÞ
λexpðηiÞ , where Ui~ uniform (0,1) and ηi is the linear pre-

dictor. Under the null hypothesis of no genetic effects, ηi =X
>
1iα +bi,

where X 1 is a covariate that was randomly drawn from Nð0,1Þ, α is the
coefficient and is 0.5 and bi is the random effect simulated from
Nð0, τψÞ with τ =0.1 and 0.25, respectively, which is the variance
component parameter. The time for subject i is ti =minðTci,T fiÞ and
δi = I T fi ≤Tci

� �
: We selected λ, the mean of the exponential hazard

function, corresponding to different censoring rates
∑N

i = 1δi=N = 50%, 75% and 90%. We repeated the simulation 500 times.
For eachphenotype set, a null frailtymodelwas fitted in Step 1with the
covariateX 1. In Step 2,we conducted single variant association tests on
1.9 million simulated genetic markers. In total, about 9.4 × 108 asso-
ciation tests were conducted. We evaluated the empirical type I error
rates at the type I error rate α = 1 × 10−6 and 5 × 10−8 as shown in Sup-
plementary Table 3 and Supplementary Fig. 7A. These results have
indicated that GATE can produce well-calibrated type I error rates in
the presence of sample relatedness at the significance level, while
GATE-no SPA (similar to COXMEG) has inflated type I error rates and
inflation gets larger than censoring rates is higher (Supplementary
Table 3). For example, GATE-no SPA has type I error rate 8.9 × 10−6 at
α = 5 × 10−8 when censoring rate is 75% and 2.8 × 10−5 when the cen-
soring rate is 90% with τ =0.1.

To evaluate whether GATE can control type I error rates in pre-
sence of cryptic sample relatedness, we have randomly selected
N = 10,000 samples with white British ancestry from UK Biobank and
simulated TTE phenotypes based on the observed genotyped of these
subjects in the approachdescribed above for pedigree-baseddata sets,
except that under the null hypothesis of no genetic effects,
ηi =X

>
1iα +∑L

j = 1Ĝijβ and was simulated based on real genotypes of
randomly selected L = 30,000 LD-pruned (r2 < 0.2) markers from the
odd chromosomes with MAF ≥ 1%. The real genotypes were used for
simulating real sample relatedness in the nullmodel. In particular, X 1 is
a covariate that was randomly drawn from N(0, 1), α is the coefficient
and is 1, Ĝij is the standardized genotype value for the jthmarker of ith
subject and β is the genetic effect size following Nð0,τ=LÞ, where
τ =0.25, which is the variance component parameter. The time for
subject i is ti =minðTci,Tf iÞ and δi = I Tf i ≤Tci

� �
: We selected λ, the

mean of the exponential hazard function, corresponding to different
censoring rates ∑N

i= 1δi=N = 50%, 75% and 90%. We repeated the simu-
lation 100 times. For each phenotype set, a null frailtymodel wasfitted
in Step 1 with covariates including the first 4 genetic principal com-
ponents, which were estimated for all White-British participants in the
UK Biobank, and X 1. In Step 2, we conducted single variant association
tests on genetic markers on the even chromosome. In total, 8.3 × 108

were conducted. We evaluated the empirical type I error rates at the
type I error rate α = 1 × 10−6 and 5 × 10−8 as shown in Supplementary
Table 4 and Supplementary Fig. 7B, which suggests that GATE pro-
duces well-calibrated type I error rates in the presence of cryptic
relatedness at the corresponding significance levels.
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To evaluate the empirical power of GATE and compare the power
to COXMEG and SAIGE, phenotypes were generated under the alter-
native hypothesis for 10,000 samples, which contain 500 families and
5000 independent samples. The family pedigree is shown in Supple-
mentary Fig. 6. We simulated the phenotypes for the ith individual
under the alternative hypothesis β ≠0 in the linear term

ηi =X 1iα1 +X2iα2 +bi +∑
10
j = 1Ĝijβ of the underlying exponential hazard

function for the underlying failure time T fi =
�logðUiÞ
λexpðηiÞ , whereUi~uniform

(0, 1), Gij is the genotype values for the jth marker, β is the genetic log
hazard ratio, bi is the random effect simulated from Nð0,τψÞ with
τ =0.25. Two covariates, X1 and X2, were simulated from Bernoulli(0.5)
and N(0, 1), respectively, with coefficients α1 and α2 = 0:5. λ was
determined to have a censoring rate of 50%. 100 datasets were simu-
lated with 10 genetic markers with different hazard ratios. Power was
evaluated at α = 5 × 10−8 for MAF 0.05 and 0.2 as presented in Supple-
mentary Figs. 9 and 10.

UK Biobank TTE phenome
The time-to-event phenotypes for the UK Biobankwere constructed as
the disease phenotypes defined based on the hierarchical PheCodes37

that represent different disease groups. The ICD9 and ICD10 codes
were mapped to PheCodes using a combination of available maps
through the Unified Medical Language System and other sources,
string matching, and manual review19,37. For each PheCode, the sub-
jects who had the PheCodewere regarded as having failure events, and
the subjectswhodidnot have the PheCodewere regarded as censored.
For each failed subject, the TTE (failure time) was calculated by sub-
tracting the birth year from the earliest time of diagnosis of any of the
PheCode-specific ICD codes, rounded to the nearest full month. To
obtain the TTE (censoring time) for each censored subject, the birth
year was subtracted from the time of the last non-imaging visit to any
of the UKBiobank ascertainment centers, or the last time any ICD code
was recorded for that subject, or the time of death if death was
recorded during the course of the study, whichever is latest, rounded
to the nearest full month. For lifespan, the subjects who had their
death recorded were assigned the failed status with the ages at death
as the corresponding TTE, and the subjects who did not have their
death recorded were assigned the censored status with the TTE
defined as before.

FinnGen
FinnGen is a public–private partnership project combining genotype
data from Finnish biobanks and digital health record data from Finnish
health registries (https://www.finngen.fi/en). Release 5 analysis contains
218,792 samples after quality control with population outliers excluded
via principal component analysis based on genetic data. TTE pheno-
types were constructed from population registries and ICD10 codes,
and harmonizing definitions over ICD8 and ICD9, including ischemic
heart disease (N events = 30,952, N censored = 187,838, censoring
rate = 85.8%), female breast cancer (N events = 8401, N censored =
114,878, censoring rate = 93.2%), glaucoma (N events = 8591, N cen-
sored = 210,199, censoring rate = 96.1%) and Alzheimer’s disease (N
events = 3899, N censored = 207,324, censoring rate = 98.2%). We con-
ducted genome-wide survival analysis using GATE with the first ten
genetic PCs, sex, genotyping batch, and birth year as covariates and
240,000 pruned genetic markers for GRM estimation.

Patients and control subjects in FinnGen provided informed
consent for biobank research, based on the Finnish Biobank Act.
Alternatively, older research cohorts, collected prior to the start of
FinnGen (in August 2017), were collected based on study-specific
consent and later transferred to the Finnish biobanks after approval by
Fimea, the National Supervisory Authority for Welfare and Health.
Recruitment protocols followed the biobank protocols approved by
Fimea. The Coordinating Ethics Committee of the Hospital District of

Helsinki and Uusimaa (HUS) approved the FinnGen study protocol No.
HUS/990/2017.

The FinnGen study is approved by Finnish Institute for Health and
Welfare (THL), approval number THL/2031/6.02.00/2017, amend-
ments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/
6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019, Digital
and population data service agency VRK43431/2017-3, VRK/6909/
2018-3, VRK/4415/2019-3 the Social Insurance Institution (KELA) KELA
58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/
2019, and Statistics Finland TK-53-1041-17. The Biobank Access Deci-
sions for FinnGen samples and data utilized in FinnGen Data Freeze 5
include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34,
BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, Finnish Red
Cross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/
2017, Auria Biobank AB17-5154, Biobank Borealis of Northern Fin-
land_2017_1013, Biobank of Eastern Finland 1186/2018, Finnish Clinical
Biobank Tampere MH0004, Central Finland Biobank 1-2017, and Ter-
veystalo Biobank STB 2018001.

Genome build
The genomic coordinates reported in this paper were based on NCBI
Build 37/UCSC hg19.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
UK Biobank

Individual-level genotype and phenotype data from the UK Bio-
bank are available from http://www.ukbiobank.ac.uk. A formal appli-
cation to the UK Biobank is required to download the data.

FinnGen
Individual-level genotype data from Finnish biobanks and digital

health recorddata fromFinnishhealth registries (https://www.finngen.
fi/en) can be accessed from the Fingenious portal (https://site.
fingenious.fi/en/). A formal approval for the researchers is required
to access the data.

Availability of the GWAS results
TheGWAS results for 871 time-to-event phenotypes inUKBiobank

using GATE are currently available for public download at http://gate.
genohub.org/. Manhattan plots, Q–Q plots, and regional association
plots for each TTE phenotype as well as the PheWAS plots can be
browsed at http://phewas.genohub.org/. The Registry ofOpenData on
AWS is accessed through https://registry.opendata.aws/broad-ukb-
sumstats/.

Code availability
GATE is implemented as an open-source R package available at https://
github.com/weizhou0/GATE77. TheFAVOR61 portal is accessed through
favor.genohub.org.
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