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Abstract

Basic science breakthroughs in T cell biology and immune-tumor cell interactions ushered in 

a new era of cancer immunotherapy. Twenty years ago, cancer immunoediting was proposed 

as a framework to understand the dynamic process by which the immune system can both 

control and shape cancer and in its most complex form occurs through three phases termed 

elimination, equilibrium, and escape. During cancer progression through these phases, tumors 

undergo immunoediting, rendering them less immunogenic and more capable of establishing 

an immunosuppressive microenvironment. Therefore, cancer immunoediting integrates the 

complex immune-tumor cell interactions occurring in the tumor microenvironment and sculpts 

immunogenicity beyond shaping antigenicity. However, with the success of cancer immunotherapy 

resulting in durable clinical responses in the last decade and subsequent emergence of 

immuno-oncology as a clinical subspecialty, the phrase “cancer immunoediting” has recently, 

at times, been inappropriately restricted to describing neoantigen loss by immunoselection. 

This focus has obscured other mechanisms by which cancer immunoediting modifies tumor 

immunogenicity. While establishment of the concept of cancer immunoediting and definitive 

experimental evidence supporting its existence was initially obtained from pre-clinal models in the 

absence of immunotherapy, cancer immunoediting is a continual process that also occurs during 

immunotherapy in human cancer patients. Herein, we discuss the known mechanisms of cancer 

immunoediting obtained from preclinical and clinical data with an emphasis on how a greater 

understanding of cancer immunoediting may provide insights into immunotherapy resistance and 

how this resistance can be overcome.

Introduction

Cancer immunotherapy has emerged as a pillar of cancer therapy. Immune checkpoint 

therapy (ICT) with monoclonal antibodies targeting cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1)/PD-L1 are standard of care 
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treatments for certain patients with a range of different cancer types (1–5). Adoptive cell 

therapy (ACT) regimens using chimeric antigen receptor (CAR) T cells are FDA-approved 

treatments for subsets of leukemia, lymphoma, and advanced multiple myeloma patients (6). 

However, twenty years ago there was less interest in immuno-oncology and only relatively 

recently has there been a shift in focus from cancer cells to the tumor microenvironment 

(TME) and the critical interactions between immune cells and tumor cells.

The immune system can both restrain tumor progression and paradoxically promote tumor 

evolution and progression. Cancer immunoediting was proposed in the early 2000’s as 

a framework to understand the complex interactions between immune cells and tumors 

(7, 8). Cancer immunoediting initiates after transformation has occurred and may lead 

to elimination of transformed cells. If, however, the immune system does not completely 

eliminate the growing tumor cells, the cancer may enter a state of immune-mediated 

equilibrium. Immunological shaping of the tumor and establishment of a suppressive TME 

may lead to tumor escape and subsequent outgrowth. Cancer immunoediting is a continual 

process that occurs not only during the development and progression of tumors, but also 

occurs in patients treated with cancer immunotherapies, where the therapy affects the 

immunoediting process. This review will provide a brief history of cancer immunoediting 

and will place the concept in current context with a focus on emerging evidence in humans 

and implications for immunotherapy treatments moving forward.

Cancer Immunosurveillance

For a century, the concept that the immune system could detect and kill cancer cells, 

called cancer immunosurveillance, was wrought with controversy. Icons of 20th-century 

immunology, including Paul Ehrlich, F. Macfarlane Burnet and Lewis Thomas hypothesized 

that cancer immunosurveillance occurs, but definitive evidence was lacking until the 

turn of the 21st-century (8). With robust mouse tumor models, Robert Schreiber and 

colleagues provided initial evidence that cancer immunosurveillance, indeed, occurs in 

immunocompetent hosts (9). Moreover, Schreiber and colleagues demonstrated that the 

immune system both destroys cancer cells and shapes its outgrowth. This dual function of 

immunity to both control cancer (elimination, equilibrium) and promote cancer (escape) 

became the foundation for the cancer immunoediting hypothesis (7, 8). In this context, the 

original idea of cancer immunosurveillance becomes part of the elimination phase of cancer 

immunoediting. It has mistakenly become synonymous with immunoediting as detection and 

destruction of cancer cells by antigen-specific T cells. Rather, the cancer immunoediting 

hypothesis integrates the complex tumor-immune cell interactions occurring within the TME 

to sculpt immunogenicity beyond shaping antigenicity.

Cancer Immunoediting: an integrative hypothesis

Cancer immunoediting is a concept that emphasizes the dual host-protective and tumor-

sculpting actions of the immune system. It is postulated that cancer immunoediting 

consists of three phases: Elimination, Equilibrium, and Escape (Figure 1). Cancer 

immunoediting engages after transformation has occurred and non-immunological intrinsic 

tumor suppressive mechanisms have failed. Elimination is the first phase of cancer 
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immunoediting, whereby the innate and adaptive immune system act in concert to destroy 

the nascent tumor, thus leading to tumor “elimination”, the main tenet of the cancer 

immunosurveillance hypothesis. If, however, the immune system fails to eradicate the 

growing tumor cells, the cancer may enter the equilibrium phase where its outgrowth 

is immunologically restrained, but the cancer is not eliminated (10). The equilibrium 

phase can be a prolonged event, but further immunological sculpting of the tumor and 

establishment of a suppressive TME may lead to the escape phase of cancer immunoediting, 

where the clinically apparent disease of cancer manifests. It is the escape phase of cancer 

immunoediting that is often overlooked. During this phase, tumor cells may recruit immune 

cells to create an immunosuppressive TME and immune cells may induce tumor cells to 

express immune checkpoint molecules. Much of the initial experimental evidence supporting 

the cancer immunoediting hypothesis came from studies in the mouse MCA sarcoma model 

(8, 11). These studies uncovered the importance of several immune cell populations (e.g., T 

cells, NK cells) and molecules (e.g., type I and type II IFNs, FASL, TRAIL, Perforin) during 

cancer immunoediting. These findings have largely been consistent with subsequent data 

from a variety of animal tumor models and human cancer patients with additional cell types 

and molecules having also been uncovered as being integral during cancer immunoediting. 

The specific cells and effector molecules known to be involved in cancer immunoediting 

have been reviewed extensively elsewhere (11, 12).

From mice to humans: a shift in nomenclature

With the success of immune checkpoint therapy (ICT) translated to human cancer patients, 

a new era in oncology began (Figure 2) (13). The advances in cancer immunotherapy 

in the late 20th century were primarily driven by immunologists studying fundamental 

mechanisms of T cell activation and suppression (14–16). In some pre-clinical mouse 

models of cancer, antibodies targeting CTLA-4 and PD-1/PD-L1 were shown to be effective 

in treating cancers (1, 17, 18). Successful clinical trials for treatment of melanoma with 

ipilimumab (anti-CTLA-4) (3) resulted in FDA approval in 2011, followed by anti-PD-1 

therapies pembrolizumab (4) and nivolumab (5) for melanoma resulted in FDA approval in 

2014. On the heels of these therapy approvals, a sub-specialty within the clinical field of 

oncology emerged, called immuno-oncology, that is dedicated to the study and development 

of cancer immunotherapies, the immunologic monitoring of responses and adverse events of 

patients treated with cancer immunotherapies, and integration of tailored clinical treatment 

paradigms that vary widely from previously used chemotherapy methodologies (19).

The impact of immunotherapy on oncology cannot be overstated. In 2010, the International 

Society for Biological Therapy of Cancer (iSBTc) changed its name to Society for 

Immunotherapy of Cancer (SITC) (20). In the same year the National Institutes 

of Health announced the formation of the Cancer Immunotherapy Trials Network. 

International collaborations between Cancer Research Institute and the Association for 

Cancer Immunotherapy among others helped to build the emerging framework of immuno-

oncology that has accelerated clinical trial development for cancer patients receiving cancer 

immunotherapies (19). Since 2014, anti-PD-1/PD-L1 therapy that has now been approved 

for over 20 cancer indications and there were 4,400 clinical trials involving anti-PD-1/

PD-L1 therapy as of September 2020 (21). Beyond anti-PD-1/PD-L1 therapy, there are 
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thousands of cancer immunotherapy clinical trials currently ongoing globally with over 

500 unique targets (22). This furious pace is a testament to the success of previous 

immunotherapies (anti-PD-1/PD-L1 and anti-CTLA-4) but has become a daunting landscape 

to navigate.

It is no surprise, then, that the nomenclature of immune responses against cancer has shifted 

towards those used in clinical settings. How we discuss the interactions between immune 

cells and cancers is now more focused on clinical outcomes of patients in response to 

therapy rather than the cellular dynamics of tumor cells and immune cells occurring in the 

TME. Therefore, in the scenario when the immune system completely eradicates cancer 

(elimination) in response to immunotherapy, the patient is designated a complete responder 

(Figure 3). Patients whose cancers enter an equilibrium state with the immune system in 

response to immunotherapy are often referred to as a partial responder, durable responder 

or have durable benefit. Finally, patients whose tumors eventually escape immune attack 

are referred to as non-durable responders or non-responders. This last scenario may be 

due to primary or secondary resistance to immunotherapy, where primary resistance occurs 

when tumors fail to respond to immunotherapy (non-responders) and secondary (acquired) 

resistance occurs when a tumor that initially responds to immunotherapy progressively 

grows (non-durable responders) (23). More work is needed to dissect the complex and 

dynamic process of immunoediting that is occurring within cancer patients treated with 

immunotherapy to improve clinical outcomes.

Cancer immunoediting: more than neoantigens

A fundamental principle of cancer immunoediting is that recognition of tumor antigens 

by T cells can drive the immunological elimination or sculpting of an emergent cancer. 

Indeed, preclinical work has demonstrated that epigenetic silencing of highly immunogenic 

tumor antigens (24) and T cell immunoselection against tumor clones expressing strong 

rejection antigens (25) represent mechanisms of cancer immunoediting. In human cancer 

patients, there is evidence of immunoediting via neoantigen loss in certain solid tumor 

types (26). By comparing the rate of predicted neoantigens formed from nonsilent mutations 

(per total nonsilent mutations) to the observed mutational rate of silent mutations observed 

in TCGA datasets, fewer predicted neoantigens than would be expected in colorectal and 

kidney clear cell cancers were found, suggesting that tumor neoantigens were subject 

to immune selection pressure. A separate study reported that untreated non-small-cell 

lung cancer (NSCLC) patients displaying high intratumoral immune infiltration exhibited 

enhanced hypermethylation of promoter regions of genes encoding predicted mutant 

neoantigens and thus, lack of neoantigen expression (27). These hypermethylation events 

occurred less frequently in the corresponding non-mutant form of the same genes in other 

tumors. Analysis of metastatic tumors from pancreatic ductal adenocarcinoma patients 

revealed selective loss of “high-quality” neoantigens (with characteristics associated with 

long-term survivors) upon metastatic progression (28). In metastatic colorectal cancer 

patients, longitudinal analysis of tumor evolution at distinct metastatic sites revealed a lower 

frequency of immunogenic mutations than expected in tumors with a high immune infiltrate 

containing proliferating T cells located in proximity to tumor cells, suggesting that cancer 
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immunoediting favored the outgrowth of escape metastatic clones with fewer immunogenic 

neoantigens (29).

In addition to shaping the tumor antigenome, tumor-intrinsic loss of antigen presentation 

likely represents an additional mechanism of cancer immunoediting that, in some 

circumstances, may lead to primary or secondary resistance to immunotherapy (30–

33). Whole-exome cancer sequencing studies have indicated a relatively high frequency 

of somatic changes, including putative loss-of-function mutations in genes encoding 

human leukocyte antigen (HLA)/major histocompatibility complex (MHC) and B2M 
(encoding an essential component of HLA/MHC class I (HLA-I/MHC-I)) (26, 34–39). 

Although downregulation of HLA-I/MHC-I molecules can prompt natural killer (NK) cell-

mediated tumor cell killing, tumor cell shedding of NK co-stimulatory molecules, tumor 

upregulation of anti-apoptotic molecules, and cytokines frequently observed within the 

tumor microenvironment can facilitate avoidance of immune-mediated tumor killing (40–

42). Nevertheless, NK cells (and other innate lymphoid cells (ILCs)), as well as NKT cells 

do, indeed participate in the cancer immunoediting process (43, 44).

Alterations of tumor-intrinsic IFN-γ signaling can also lead to altered antigen processing 

and defects in tumor expression of HLA-I/MHC-I and, although not as commonly expressed 

in solid tumors, HLA-II/MHC-II (45). Human melanoma and lung adenocarcinoma cell 

lines that were found to be unresponsive to IFN-γ displayed defects in antigen presentation 

(9, 46) and in preclinical models, tumors rendered insensitive to IFN-γ resist immune 

rejection via defects in HLA-I/MHC-I antigen presentation (30). More recent work involving 

CRISPR screens in human tumor cell lines and mouse tumor models revealed that knocking 

out genes encoding components of IFN-γ signaling was associated with diminished T cell 

recognition of tumor cells and insensitivity to ICT (47, 48). Consistent with these findings, 

loss-of-function mutations in genes essential for IFN-γ signaling have been observed in 

tumors from some patients with primary resistance to immunotherapy (33, 49, 50). It should 

also be noted that IFN-γ can suppress tumor growth through mechanisms not directly 

related to antigen presentation, including by directly suppressing tumor cell proliferation 

(46, 49).

While cancer immunoediting shapes the tumor antigenome and subsequent antigenicity, 

the phrase “cancer immunoediting” has recently, at times, been inappropriately restricted 

to describing neoantigen loss by immunoselection. This focus has obscured other 

mechanisms by which cancer immunoediting modifies tumor immunogenicity. Avoidance 

of immune elimination and progression to either the equilibrium or escape phases of 

cancer immunoediting can occur through additional mechanisms including adaptive immune 

resistance, whereby cancer cells hijack pathways designed to limit inflammatory responses 

(Figure 4) (51, 52). Upregulation of immune checkpoint molecules (e.g., PD-L1) production 

of immunosuppressive cytokines; recruitment of T regulatory cells (Tregs) and suppressive 

myeloid cells (i.e., alternatively activated macrophages and myeloid derived suppressor cells 

(MDSC)); and activation of pathways including WNT-β-catenin to suppress dendritic cell 

(DC) recruitment and DC-mediated priming of antigen-specific CD8+ T cells and infiltration 

of T cells (T cell exclusion) are further mechanism by which cancer can escape immune 

control (2, 53–56). Additionally, PTEN loss can increase PD-L1 expression on tumor cells 
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and has been linked to a pro-tumor microenvironment characterized by immunosuppressive 

cytokines and other molecules such as IDO1, as well as Treg and suppressive myeloid cell 

infiltration (57). It is noteworthy that B cells also likely participate in the process of cancer 

immunoediting and have recently been implicated in responses to cancer immunotherapy 

(58–60). This is in contrast to certain pre-clinical models of cancer immunoediting, where B 

cells did not play a major role (11).

Cancer Immunoediting: How immunity shapes the tumor microenvironment

During the early successes of immune-checkpoint blockade therapy and the emergence 

of immuno-oncology, Hanahan and Weinberg proposed the next generation of cancer 

hallmarks (61). Cancer immunoediting integrates the emerging hallmark of ‘avoiding 

immune destruction’ and enabling characteristic of ‘tumor-promoting inflammation’ (61). In 

the decade since, there is plethora of human data to indicate that the immune system, indeed, 

is a firmly established hallmark of cancer. Moreover, immune-directed treatment is likely the 

most successfully targeted hallmark for therapy. Immune cells are key contributors to the 

TME, a dysfunctional tissue that may exceed the complexity of normal tissues. Immunity 

shapes cancer formation and sustains tumor progression during the escape phase. Following 

the cancer immunoediting hypothesis and the success of ICT, there is intense research 

focusing on how immune cells and tumor cells interact to shape the TME. Untangling TME 

heterogeneity is a key goal in developing next generation cancer immunotherapies through 

rational clinical trial design.

Cancer Immunoediting and the Cancer-Immunity Cycle

The cancer-immunity cycle (62) seeks to highlight the critical steps involved in establishing 

effective anti-tumor immunity. These steps are based on our fundamental understanding 

of general immune activation including antigen processing, antigen presentation, T cell 

priming, T cell infiltration, T cell recognition and T cell effector responses to generate 

anti-tumor immunity. Cancer immunoediting is involved throughout the proposed cancer-

immunity cycle steps and is particularly relevant at the final steps of T cell and tumor cell 

interactions that ultimately result in elimination, equilibrium, and escape. From a clinical 

care perspective, it is these final steps of T cell recognition and killing that occur within 

the TME that are the most critical and has been a major focus of immuno-oncology 

(Figure 5). Upon T cell recognition and attempted killing with release of IFN-γ, tumor 

cells upregulate expression of PD-L1 as an escape mechanism (63). This process of tumors 

adapting to immune attack to enter the escape phase of cancer immunoediting, is often 

referred to as adaptive resistance (Figure 4) (64). Unequivocal data exists that targeting 

the localized dysfunctional immune responses within the TME (i.e., anti-PD-1/PD-L1 

therapy), referred to as normalization cancer immunotherapy (65, 66), results in the most 

effective immunotherapy. Normalization cancer immunotherapy seeks to identify a specific 

and local tumor escape mechanism that can be selectively targeted within the TME to 

limit systemic toxicity, re-program a dysfunctional immune response, and restore a normal 

anti-tumor immune response that results in cancer cell elimination and tissue homeostasis 

(65, 66). The iterative, complex, and dynamic interactions of immune cells and tumor cells 

undergoing cancer immunoediting results in significant TME heterogeneity. Stratification of 
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the diverse immune compositions within the TME to select for the best immunotherapy for 

an individual patient is needed to optimize clinical outcomes.

Cancer Immunoediting and the Tumor-Immune Microenvironment (TIME)

The ongoing interplay between immune cells and cancer cells during the cancer 

immunoediting process within the TME creates unique immune environments, called tumor-

immune microenvironment (TIME) that has significant implications for cancer therapy (63, 

67). Classification and the clinical predictive relevance of such heterogeneity of TIME was 

first revealed by Galon et al., where they demonstrated that the density and location of 

intratumoral CD4+ Th1, cytotoxic, and memory T cells correlated with clinical outcome in 

colorectal cancer patients (68). Unique patterns of T cell infiltration, T-cell inflammatory 

gene signatures, presence of B cells and tertiary lymphoid structures, PD-L1 expression, 

and tumor mutational burden have all been used to classify TIME (58, 59, 63, 67, 69–71). 

These T-cell inflammatory gene signatures are often used to designate whether a tumor is 

“hot” or “cold” (Figure 5). One of the first strategies to define TIME subtypes used two 

parameters: PD-L1 expression and presence of infiltrating T cells (TILs) in the TME. In this 

case, four distinct TIME subtypes are identified: type I (neither PD-L1 nor TILs present); 

type II (both PD-L1 and TILs present); type III (no PD-L1, but TILS present); and type IV 

(PD-L1 present, but no TILs) (63, 67) (Figure 5). A recent iteration that seeks to classify the 

TIME indirectly uses the concepts of cancer immunoediting to develop the concept of the 

‘cancer-immune set point’ (72). The cancer-immune set point is the inherent immunological 

status of a tumor that results from an equilibrium of factors that promote or suppress anti-

tumor immunity. Using the cancer-immune set point, the TIME may be segregated into three 

phenotypes: “immune-inflamed”, “immune-excluded”, or “immune-desert” (72). A critical 

aspect of the cancer-immune set point is the integration of the frequency of peptide-MHC-

TCR interactions by tumor antigen-specific CD8+ T cells and the strength of TCR signaling. 

Two recent studies in human cancer patients demonstrate that the quality and quantity 

of tumor antigens drive T cell responses within the TME. In the first, single-cell RNA 

sequencing and single TCR sequencing were coupled with CITE-seq from four melanoma 

patients to interrogate tumor specific CD8+ T cells vs non-tumor reactive T cells (73). 

Melanoma-specific CD8+ T cells displayed an exhausted phenotype that was proportional to 

the abundance of melanoma antigens, suggesting that chronic T cell-tumor cell interactions 

“edits” T cells to become more dysfunctional (73). In the second study, combined single-cell 

RNA sequencing and single TCR sequencing was performed from 15 non-small cell lung 

cancer patients treated with neoadjuvant anti-PD-1 therapy (74). CD8+ T cells that were 

specific for mutation-associated neoantigens expressed an incomplete cytolytic program 

when compared to viral antigen-specific CD8+ T cells. Additionally, tumor-antigen specific 

CD8+ T cells from non-responders showed less TCR signaling and upregulated immune 

checkpoints and other inhibitors of T cell activation (74). Taken together, these studies and 

others, suggest that cancer immunoediting of tumor antigen-specific T cells and tumors 

bearing those antigens not only shapes antigenicity, but can reprogram T cell functional 

states, resulting in impaired immunotherapy responses. Bystander T cells that infiltrate 

the TME that are not cancer-specific are the most abundant infiltrating T cells in many 

cancers (75) and may play key roles in immunoediting and subsequent immunotherapy of 

cancer. Less is known about the contribution of bystander T cells to immunoediting, and 
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immunotherapy as compared to cancer-specific T cells, but bystander T cells are activated 

with effector functions (76) and may be targeted in the future (77). Immunoediting of the 

TIME through genomic instability and subsequent neoantigen generation, T cell recognition, 

and resultant tumor cell immunosuppressive programs stratifies tumors with different TIMEs 

that has implications for cancer immunotherapy strategies (Figure 5) (78, 79).

Cancer Immunoediting during immunotherapy

As clinically apparent tumors have entered the escape phase of cancer immunoediting, the 

goal of therapy is to drive elimination or, at the very least, hold cancer in equilibrium. 

The process of cancer immunoediting not only transpires during natural tumor progression 

but also likely occurs in response to immunotherapy (Figure 3) (80). This can result in 

secondary (acquired) resistance to immunotherapy, whereby a clinical response is observed 

(incomplete elimination or equilibrium), followed by subsequent progression (secondary 

escape). For example, cancer patients achieving objective responses to ICT frequently 

experience durable responses, but delayed relapses are sometimes observed often even 

despite continuous therapy (81). Due to the sheer number of patients treated with ICT, 

secondary resistance in this context has been the most frequently examined (82). Although 

secondary resistance is not well-understood, potential mechanisms that have been described 

and may be grouped into those that affect immune detection of cancers and those that affect 

immune killing of cancers (Figure 5).

First, cancer immunoediting can alter the antigenome during tumor progression in the 

absence of immunotherapy and this mechanism of cancer immunoediting also likely 

occurs during immunotherapy. In preclinical models, anti-PD-L1 therapy altered the 

mutational landscape and decreased the number of subclonal mutations predicted to 

function as neoantigens (83), suggesting potentiated immunoediting. In humans, analysis 

of 42 patient-matched pretreatment and resistant tumors from NSCLC patients treated 

with anti-PD-1 monotherapy or combined anti-PD-1 and anti-CTLA-4 revealed altered 

neoantigen landscape in multiple cases of secondary or acquired resistance (84). Most 

mutations that were eliminated were predicted neoantigens with loss transpiring from loss 

of heterozygosity (LOH), deletion of chromosomal regions containing truncal mutations, 

or elimination of neoantigen-expressing tumor subclones. A separate study suggested that 

ACT may also reshape the tumor neoantigen repertoire. Sequential tumor samples and 

intratumoral T cells from two melanoma patients that received ACT that included both 

CD8+ and CD4+ tumor-specific T cells showed that tumor cells displayed loss of multiple 

T cell-recognized neoantigens, either by LOH of the mutant allele or reduced expression 

of the mutant genes encoding the neoantigens (85). This indicated immunoediting by loss 

of expression of immunogenic antigens and suggested that therapeutic induction of broad 

neoantigen-specific T cell responses should pursued to avoid immunotherapy resistance. 

While the focus of the aforementioned studies was on neoantigens, alterations in expression 

of non-mutant shared antigens have been observed in response to immune selection pressure 

either exerted naturally or by vaccination with melanoma-associated peptides derived from 

Melan A/MART-1, tyrosinase, and pmel/gp100 (86). In addition, while CAR T cell therapies 

have demonstrated noteworthy efficacy against certain hematopoietic malignancies, relapses 
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do occur in a fraction of patients and these escape malignancies often exhibit down-

modulation or complete loss of CAR T cell-specific antigens (6, 87, 88).

Second, cancer immunoediting via tumor intrinsic alterations in antigen presentation has 

been observed in many tumor types and may lead to immunotherapy resistance (82). 

Some of the first clinical data demonstrating loss of β2M (and thus surface HLA-I/MHC-I 

expression) upon immunotherapy came from the Rosenberg group, whereby B2M mutations 

were detected in progressing tumors from melanoma patients who initially experienced a 

clinical response after receiving multiple forms of immunotherapy, including IL-2, IFNα, 

and/or ACT (89). Similar observations were made by other groups in case reports that 

noted acquired loss of HLA-I/MHC-I expression in relapsing metastatic melanoma lesions, 

including in a melanoma patient who experienced disease relapse after treatment with 

multiple forms of immunotherapy (36, 38, 90). Secondary resistance to ICT has been 

associated with acquired defects in β2M, including homozygous truncating and frameshift 

mutations and LOH (32, 91, 92). In a cancer vaccine setting, patients treated with a 

personalized mRNA vaccine displayed remarkable vaccine-induced tumor-specific T cell 

responses and evidence of reduced metastasis after vaccination (93). Of those experiencing 

disease recurrence, one patient showed complete response and regression of metastatic 

tumors following anti-PD1 therapy, while another patient who relapsed failed anti-PD1 

therapy, but was found to have a B2M mutation and loss of HLA-I/MHC-I expression.

Third, acquired defects in IFN-γ signaling pathways have been shown to mediate tumor 

escape in preclinical models and have also been observed in patients at the time of 

secondary resistance (46). In preclinical orthotopic pancreatic ductal adenocarcinoma 

models, objective responses were observed upon anti-PD-1/PD-L1 blockade. However, 

tumor escape variants emerged and were found to have defects in IFN-γ-induced TAP1 

expression, which is required for peptide transport into the ER and subsequent loading onto 

MHC-I (94). In humans, acquired loss-of-function mutations and LOH in genes encoding 

JAK1 or JAK2 were identified in two patients who responded to ICT but subsequently 

progressed (31). In a separate report, genomic analysis of melanoma tumors before and 

after nivolumab (anti-PD-1) in patients who first progressed on ipilimumab (anti-CTLA-4) 

or were ipilimumab-naive suggested immunotherapy can drive differential clonal evolution 

within tumors and select against potential neoantigenic mutations, in particular if tumors 

are not completely eliminated by treatment (95). Consistent with immunotherapy-induced 

cancer immunoediting, the authors observed a reduction in overall tumor mutational burden 

during anti-PD-1 therapy, with progressive disease correlating with subsequent selection 

of tumor clones containing mutations within the CDKN2A gene and the IFN-γ signaling 

pathway, events that are known to promote tumor escape. Subsequent studies have linked 

CDKN2A gene expression with response to immunotherapy (96) and CDKN2A loss-of-

function predicts immunotherapy resistance (97). This may be due to allelic overlap where 

loss of CDKN2A results in JAK2 loss, rendering tumor cells insensitive to IFN-γ signaling 

(98).

In addition, tumor escape and/or secondary resistance may be facilitated by induction of 

additional immunosuppressive pathways that inhibit destruction of cancers following cancer 

cell recognition (Figure 5). During ICT, upregulation of distinct immune checkpoints has 
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been observed (95, 99). Since many immune checkpoints are induced by T cell activation 

and inflammation in the TME, it is not entirely surprising that these would be expressed 

in response to anti-CTLA-4 and/or anti-PD-1/PD-L1. Although the checkpoint upregulated 

may depend on the tumor type, their upregulation nevertheless may facilitate primary or 

acquired resistance. Several studies have found increased expression of LAG3, TIM3, and 

VISTA in the TME at the time of relapse after initially responding to ICT (95, 100, 101). 

While preclinical models and clinical data suggest upregulation of these additional immune 

checkpoints can enable tumor outgrowth and mediate primary resistance, it is still unclear 

whether this is a common mechanism of acquired resistance.

In cases of acquired resistance, PTEN loss and enhanced WNT-β-catenin signaling has 

been observed. George et al. described a patient with metastatic uterine leiomyosarcoma 

who experienced a clinical response to anti-PD-1 (pembrolizumab) for more than 2 years. 

At the time of acquired resistance, biallelic PTEN loss was detected (102). A separate 

study described two melanoma patients who developed acquired immunotherapy resistance, 

with one patient acquiring biallelic PTEN loss after initially responding to anti-CTLA-4 

and anti-PD-1 and the other patient developing subsequent metastases displaying enhanced 

expression of β-catenin after demonstrating a durable partial response to a melanoma-

associated peptide and IL-12 vaccine (103).

It is important to acknowledge that while there is solid evidence for cancer immunoediting 

potentiating acquired resistance to immunotherapy, the specific means by which this 

occurs is often, in part, implied based on circumstantial information. Furthermore, the 

mechanisms behind tumor editing likely differs depending on the immunotherapy employed 

as well as the cancer type/location. In regards to the latter, distinct mechanisms of 

cancer immunoediting were observed when comparing preclinical genetically-engineered 

mouse models (GEMM) of sarcoma and lung cancer, whereby despite both tumor models 

expressing the same Kras mutation and harboring deletion of p53, the means by which 

cancer immunoediting shaped the immunogenicity and outgrowth of tumors differed 

between the two tumor models (24, 104). It is therefore of upmost importance to further 

define cancer immunoediting across a spectrum of tumor types and immunotherapies to 

better anticipate and respond to acquired resistance. In human cancer patients, metastatic 

lesions demonstrate unique cancer mutations, likely due to genetic and epigenetic factors 

(105). Different TME within the same patient may help to explain dissociated responses 

of individual metastatic lesions within the same patient to immunotherapy (106). Thus, 

identifying unique mechanism of cancer immunoediting within distinct metastatic lesions 

will also be critical in developing novel immunotherapies.

Conclusions

Cancer Immunoediting remains a useful framework to understand the complex and dynamic 

relationships between cancer cells, immune cells, and stromal cells from initial tumor 

cell transformation to cancer development and ultimately cancer immunotherapy. As 

many patients do not experience complete tumor elimination, some patients may entire 

equilibrium and transform cancer to a chronic disease, requiring new and emerging 

immunotherapies to keep cancer at bay. The early and ongoing dynamic immune cell 
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and tumor cell interactions occurring in the TME underscore the case for earlier use 

of immunotherapies rather than late-stage, advanced cancers. This approach is becoming 

more common with adjuvant therapy or neoadjuvant therapy with surgical, chemotherapy 

or radiation treatment. Immuno-oncology has transformed cancer care, but significant 

challenges remain. There needs to be a continued focus on the dynamic immune 

cell and tumor cell interactions within the TME, the underlying principle of cancer 

immunoediting, to identify mechanisms of immunotherapy resistance and employ strategies 

to overcome resistance. Understanding the natural immunity to cancer may provide insights 

to “normalize” the dysfunctional immune response to cancers occurring in the TME (65, 

66). Cancer immunoediting during immunotherapy may help identify new targets or optimal 

approaches to achieve normalization cancer immunotherapy.
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Figure 1: The cancer immunoediting process.
The cancer immunoediting hypothesis provides a framework to decipher the dynamic 

and complex interactions between immune cells and cancer cells within the tumor 

microenvironment. These interactions may be anti-tumor or pro-tumor; thereby highlighting 

the dual role of immune cells in both preventing tumors from growing and/or enhancing 

tumor growth. Cancer immunoediting consists of three phases: Elimination, Equilibrium, 

and Escape. Elimination is the first phase of cancer immunoediting, whereby the innate 

and adaptive immune system act in concert to destroy the nascent tumor, thus leading to 
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tumor destruction and tissue homeostasis or normalization. When the immune system fails 

to eradicate the tumor cells, the cancer may enter the equilibrium phase where its outgrowth 

is immunologically restrained, but the cancer is not eliminated. Further immunological 

sculpting of the tumor and establishment of a suppressive tumor microenvironment may lead 

to the escape phase of cancer immunoediting, where the cancer becomes clinically apparent 

disease and spreads to other organs.
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Figure 2: The development of immuno-oncology.
Fundamental insights into T cell activation and inhibition in the late 20th century provided 

the rationale to targeting immune inhibitory receptors such as CTLA-4 and PD-1 or PD-

L1 to treat cancer in pre-clinical cancer models. At the beginning of the 21st century, 

successful targeting of “immune checkpoints” ushered in the first clinical trials in human 

cancer patients. Cancer immunotherapy provided greater response rates with longer duration 

than traditional chemotherapy for some cancers. Subsequently, the subspecialty immuno-

oncology was borne dedicated to the study and development of cancer immunotherapies, 

the immunologic monitoring of responses and adverse events of patients treated with cancer 

immunotherapies and tailored clinical treatment paradigms. Insights gained from immuno-

oncology are often then brought back to the research laboratory in ‘reverse translation’ to 

overcome challenges such as resistance to immunotherapy.
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Figure 3: Cancer immunoediting occurs naturally and during cancer immunotherapy.
A) Cancer immunoediting was initially described during natural immune-tumor cell 

interactions in the absence of immunotherapy. During natural anti-tumor immunity, the 

immune system may detect and destroy a nascent tumor during the elimination phase, 

resulting in immunosurveillance and prevention of clinically detectable cancer. Tumors 

may enter a dynamic equilibrium between pro-tumor and anti-tumor effects, resulting in 

tumor dormancy. However, subsequent immunoediting of tumor immunogenicity may result 

in the development of an immunosuppressive tumor microenvironment and dysfunctional 

anti-tumor immune response that outweighs anti-tumor effects, resulting tumor escape and 

subsequent cancer. B) Cancer immunoediting is a continually process that also occurs during 

cancer immunotherapy of established advanced cancers in human patients. If successful, 

cancer immunotherapy can correct or normalize a dysfunctional immune response in the 

tumor microenvironment and drive the elimination of the tumor with resultant durable 

benefit. If complete elimination of the tumor is not achieved with immunotherapy, there 

could be an establishment of the equilibrium phase where the patient’s cancer partially 

responds to therapy and still has durable benefit. However, many cancers fail to respond 
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to specific immunotherapies and continue to escape immune control. These non-responders 

either never respond to immunotherapy (primary resistance) or initially respond to treatment, 

but then undergo further immunoediting and subsequent escape (secondary or acquired 

resistance).
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Figure 4: Adaptive immune resistance.
Upon T cell detection of cancer and activation, antigen-specific T cells produce IFN-γ 
to eliminate cancer. However, some cancers and myeloid cells such as macrophages or 

dendritic cells (DCs) upregulate PD-L1 (also known as B7-H1) in response to immune 

attack and IFN-γ signaling. Subsequent upregulation of PD-L1 binds to activated T cells 

expressing PD-1 and inhibits T cells in a process termed adaptive immune resistance. 

Targeting this local, dysfunctional immune response within the tumor microenvironment 

with anti-PD-1 or anti-PD-L1 immunotherapy, reduces the T cell inhibition, allowing the T 

cells to become re-activated and eliminate cancer cells through cytokines (IFN-γ, TNFα) 

and cytolytic programs with perforin (PFN) and granzyme B (GzmB). Targeting adaptive 

immune resistance with anti-PD-1/PD-L1 therapy is an example of normalization cancer 

immunotherapy.

Gubin and Vesely Page 22

Clin Cancer Res. Author manuscript; available in PMC 2023 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Cancer immunoediting shapes tumor immunogenicity with impacts for patient-
centered cancer immunotherapy.
The dynamic immune-tumor cell interactions generate significant tumor microenvironment 

heterogeneity. Two key features for anti-tumor immunity and elimination of cancer include 

immune detection of cancers and immune killing of cancer. The cancer immunoediting 

process sculpts tumor immunogenicity through a variety of mechanisms that affect either 

immune detection or killing of cancers. Escape from immune detection may include antigen 

immunoselection, defects in antigen presentation, loss of interferon signaling pathways and 

T cell exclusion. Escape from immune killing may include expression of immune inhibitory 

molecules (“immune checkpoints”) that inhibit T cell function, secreted immunosuppressive 

factors, recruitment of immunosuppressive immune cells, and exclusion of T cells. T cell 

exclusion by either secreted factors or stromal barriers inhibits both immune detection and 
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killing of caners. Together, immunoediting of the tumor microenvironment creates unique 

tumor-immune microenvironments (TIME) that stratifies responses to immunotherapies. 

For example, classifying tumors by the presence of tumor infiltrating T cells (TILs) and 

expression of immunotherapy target PD-L1 creates four distinct TIME subclassifications 

that affects response to anti-PD immunotherapy (63, 67): type I (neither PD-L1 nor TILs 

present); type II (both PD-L1 and TILs present); type III (no PD-L1, but TILs present); and 

type IV (PD-L1 present, but no TILs). More broadly, TIME can be considered as either 

‘hot’ tumors with significant immune infiltration or “cold” tumors with little infiltration or 

anti-tumor immunity. Unique immunotherapy strategies are needed for each unique TIME 

for a patient-centered caner immunotherapy.
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