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Abstract

Purpose: Childhood obesity is a global health concern, with >340 million youth considered 

overweight or obese. In addition to contributing greatly to health care costs, excess adiposity 

associated with obesity is considered a major risk factor for premature mortality from 

cardiovascular and metabolic diseases, and is also negatively associated with cognitive and brain 

health. A complementary line of research highlights the importance of cardiorespiratory fitness, a 

byproduct of engaging in physical activity, on an abundance of health factors, including cognitive 

and brain health.

Methods: This study investigated the relationship among excess adiposity (visceral adipose 

tissue [VAT], subcutaneous abdominal adipose tissue [SAAT]), total abdominal adipose 

tissue [TAAT], whole-body percent fat [WB%FAT], Body Mass Index (BMI), and fat-free 

cardiorespiratory fitness (FF-VO2max) on resting-state functional connectivity (RSFC) in 121 (f 

= 68) children (7–11 years) using a data-driven whole-brain multi-voxel pattern analysis.
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Results: Multi-voxel pattern analysis revealed brain regions that were significantly associated 

with VAT, BMI, WB%FAT and FF-VO2 measures. Yeo’s (2011) RSFC-based 7-network cerebral 

cortical parcellation was used for labeling the results. Post hoc seed-to-voxel analyses found 

robust negative correlations of VAT and BMI with areas involved in the visual, somatosensory, 

dorsal attention, ventral attention, limbic, fronto-parietal and default mode networks. Further, 

positive correlations of FF-VO2 were observed with areas involved in the ventral attention and 

fronto-parietal networks. These novel findings indicate that negative health factors in childhood 

may be selectively and negatively associated with the 7 Yeo-defined functional networks, yet 

positive health factors (FF-VO2) may be positively associated with these networks.

Conclusions: These novel results extend the current literature to suggest that BMI and adiposity 

are negatively associated with, and cardiorespiratory fitness (corrected for fat-free mass) is 

positively associated with, resting state functional connectivity networks in children.
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INTRODUCTION

Childhood obesity is a global health concern. Around the world, over 340 million children 

and adolescents aged 5–19, and 38 million children under the age of 5, are considered 

overweight or obese (1). Obesity has become the focus of many public health efforts in 

the United States due to increasing prevalence over the last few decades. In addition to 

contributing greatly to health care costs (2), excess adiposity associated with obesity is 

considered a heritable neurobehavioral disorder that is highly sensitive to environmental 

conditions (3), a major risk factor for premature mortality from cardiovascular and metabolic 

diseases (4), and has recently been associated with negative cognitive (5–7) and brain (8–13) 

health outcomes. Notably, children with obesity commonly become adults with obesity, with 

52% of adults over the age of 18 considered overweight (1.9 billion adults) or obese (650 

million adults) (1). As such, considerable efforts have been taken to reduce the negative 

health outcomes associated with childhood obesity, as assessed via Body Mass Index (BMI). 

Previous research has highlighted the importance of cardiorespiratory fitness, a byproduct of 

engaging in physical activity, on an abundance of physical health outcomes throughout the 

lifespan, including the prevention of obesity (14) and the promotion of cognitive and brain 

health (15, 16). Therefore, investigations into the relationship between excess adiposity and 

cardiorespiratory fitness are necessary to understand the effects on brain health.

Given that a hallmark of obesity is excess adiposity, distinguishing between amount and 

type of adipose tissue within the body is of further importance. Dual-Energy X-Ray 

Absorptiometry (DXA) is used as the gold-standard method of characterizing adipose tissue 

within the body, such as the distinction between subcutaneous and visceral adipose tissues. 

Whole-body percent fat (WB%FAT), derived from the DXA scan, represents the total mass 

of fat divided by total body mass (17). Subcutaneous abdominal adipose tissue (SAAT) 

lies beneath the skin and on top of the abdominal musculature. In adults, approximately 

80% of total fat is stored at SAAT. Visceral adipose tissue (VAT) is located in the body 
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cavity beneath the abdominal muscles, surrounding the liver, pancreas, and intestines. VAT 

accounts for 20% of total fat in men and 5–8% in women (18), and preadolescent boys 

tend to accumulate more VAT than girls (19). Consequently, VAT is considered a more 

dangerous type of adipose tissue when accumulated in excess. As such, VAT is also a 

strong predictor of age-related cognitive impairment in humans (20), and has been related 

to impaired cognitive function in children (5–7). Here, we define total abdominal adipose 

tissue (TAAT) as the total adipose tissue within these regions (SAAT and VAT).

Functional Connectivity and Childhood Obesity

Cognitive functions during childhood are sensitive to obesity and the health complications 

associated with obesity (5). Further, childhood obesity has been associated with magnetic 

resonance imaging (MRI) studies of brain structure (11, 12, 21) and function (fMRI) 

(8, 9, 13). Individual differences, such as adiposity and obesity, have been associated 

with variance in brain structures among children and adolescents. For example, early life 

factors such as birth weight, birth height and breast feeding have been associated with 

grey matter volumes in regions related to higher-order cognition and emotion regulation 

(12), and lean mass index was positively associated with white matter volumes in tracts 

that subserve executive function, memory, and attention (10). Similarly, different types of 

adipose tissue are selectively associated with cognitive and brain functions. Specifically, 

better performance on tasks of intellectual abilities and cognitive efficiency were associated 

with less VAT in children with normal weight (7). However, worse performance on tasks of 

intellectual abilities and cognitive efficiency were associated with greater VAT in children 

with obesity (7). Additionally, in children with obesity, VAT has been selectively associated 

with poorer neuroelectric indices of executive function compared to SAAT (44), and VAT 

has also been associated with poorer cognitive abilities in children compared to SAAT and 

WB%FAT (7). Further, fMRI studies have identified differences in resting state functional 

connectivity (RSFC) associated with obesity across the lifespan. In adults, obesity has been 

associated with alterations in salience network connectivity (9), and specific reductions in 

activity in brain regions associated with memory (hippocampus, angular gyrus, dorsolateral 

prefrontal cortex) compared to their normal weight counterparts during tasks of episodic 

memory (8). Collectively, cognitive and brain studies demonstrate robust evidence for 

negative associations among children and adults with obesity.

Functional Connectivity and Cardiovascular Fitness in Children

A complimentary line of research has continually demonstrated a beneficial influence 

of fitness on cognitive and brain function in children (22–25) and adult populations 

(16). Of specific focus, children with greater fitness demonstrate positive associations 

with neuroelectric indices of cognitive function (24, 25), greater hippocampal volume 

(as measured using MRI) coupled with better relational memory task performance (23), 

and greater efficiency of brain networks underlying cognitive function (22). Additionally, 

in a sample of healthy young adults using a connectome-wide association approach, 

positive brain-fitness (cardiovascular fitness and RSFC) relationships were present (16). 

Notably understudied, however, is the influence of cardiorespiratory fitness on RSFC in 

preadolescent children.
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Few studies have investigated the differential relationships of underlying brain network 

correlates with excess adiposity and fitness in preadolescent children. Notably, greater 

cardiorespiratory fitness in children with overweight/obesity has been related to greater grey 

matter volumes in premotor cortex, supplementary motor cortex, and hippocampus, which 

were also related to better academic performance (26). Differences in brain structure among 

weight status and physical activity or fitness have also been supported elsewhere (27, 28). 

Additionally, sedentary behaviors and overweight/obesity in childhood have been negatively 

associated with grey matter volume (28), and white matter microstructure (27) in children.

Current Study

Consequently, research continues to demonstrate that fitness has a beneficial effect on 

childhood brain health. However, risk factors associated with obesity, including excess 

adiposity and risk for developing metabolic syndrome, appear to dampen various aspects of 

this trajectory. As such, the primary objective of the current study was to decompose the 

brain-fitness-adiposity relationship in children, by using an unbiased data-driven approach 

with multi-voxel patten analysis. The aim of multi-voxel pattern analysis is to derive 

seeds based on the data prior to performing a post hoc analysis on the seeds to analyze 

brain connectivity patterns (29). Multi-voxel pattern analysis is a well-suited method for 

uncovering subtle representational differences in a precise manner, especially when these 

representations are hypothesized to be distributed (30). The current analysis also used a 

preprocessing technique, aCompCor, which allows for the interpretation of anticorrelations 

between different cortical networks (31). We investigated the relationship between different 

types of adipose tissue and cardiorespiratory fitness on RSFC networks in preadolescent 

children. We predicted that functional connectivity would be differentially and selectively 

associated with adiposity and BMI, compared to cardiorespiratory fitness. We predicted 

that VAT and BMI would be negatively associated with functional connectivity. We further 

predicted that WB%FAT, TAAT and SAAT would be positively associated with functional 

connectivity, as previous studies suggest a positive relationship between these measures 

of adiposity and cognition in children with normal weight (7). Lastly, we predicted that FF-

VO2 would be positively associated with functional connectivity. VAT is considered to be the 

more metabolically dangerous type of adipose tissue when accumulated in excess, compared 

to SAAT, TAAT, and WB%FAT. Finally, an abundance of previous research demonstrates the 

positive influence of cardiorespiratory fitness on brain health, which provides a basis for our 

predication of a positive association between these variables.

METHODS

Participants

The present study includes 121 participants that were used in the final analysis. This sample 

size originates from combined imaging data from a subset of the 283 children between 7–

11-years-old who were recruited to participate in the FITKids2 trial (n = 192, baseline data 

only) (ClinicalTrials.gov identifier numbers: NCT01334359) and the FLEX study (n= 91). 

All participants provided written assent and their legal guardians provided written informed 

consent in accordance with the Institutional Review Board of the University of Illinois at 

Urbana Champaign. Participants were administered the Kaufman Brief Intelligence Test 
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or the Woodcock Johnson (III) to assess IQ, a Tanner Staging System (32) questionnaire 

to assess pubertal status, and the Physical Activity Readiness Questionnaire to screen for 

health issues exacerbated by physical exercise. Socioeconomic status (SES) was determined 

using a trichotomous index based on participation in free or reduced-price meal program 

at school, the highest level of education obtained by parents, and the number of parents 

who worked full time (33). Legal guardians completed health history and demographics 

questionnaires. Based on these questionnaires, participants included in this analysis did not 

receive special educational services from their school, were right-handed, reported no use 

of medications that influenced central nervous system function, qualified as prepubescent, 

and had normal or corrected-to-normal vision. Participants were excluded if there was (1) a 

presence of neurological disorders and physical disabilities, and other factors that precluded 

participation in the physical aspects of the study, such as not completing: (2) the mock 

MRI session to successfully screen for claustrophobia (3) the aerobic fitness test, or the 

(4) dual-energy X-ray absorptiometry (DXA) scan to assess body composition. Participants 

were further excluded from data analyses if (5) they did not complete the MRI/fMRI scans 

(n = 133), (6) did not complete both resting state scans or had missing brain slices in the 

field-of-view (n = 16), or (7) they had excessive removal of data after scrubbing resulting 

in less than 5-min (34) of useable data (n = 13; see ‘fMRI Preprocessing’ for criteria). 

Data from 121 participants were used for final analysis (Table 1). There were no significant 

differences between participants who were included or excluded from analysis based on 

age, sex, SES, pubertal timing, or IQ (all p’s > 0.05). While the removal of 13 participants 

due to data scrubbing related issues that resulted in scans with less than 5-min of useable 

data is quite large, previous papers have found a 30–50% scan attrition rate due to motion 

in preadolescent children using even less stringent movement criteria (compared to 19% 

herein) (35). Further, increased scanning motion has been associated with obesity (36, 37), 

and head motion artifacts have also been found to influence intrinsic functional connectivity 

measurements (38). Consequently, care was taken to sufficiently remove scans with motion. 

Because of the initial sample size, head-motion-related artifacts, as well as the high amounts 

of motion in a preadolescent and obese populations, stringent quality control methods (see 

‘fMRI Preprocessing’) was used in the data analysis pipeline.

Weight Status and Adiposity Assessment

Standing height and weight measurements were completed with participants wearing light-

weight clothing and no shoes. Height and weight were measured using a stadiometer (Seca; 

model 240) and a Tanita WB-300 Plus digital scale (Tanita, Tokyo, Japan), respectively. 

Weight status was determined with body mass index (BMI), calculated by dividing body 

mass (kg) by height (m) squared [(kg/m)2]. The Centers for Disease Control and Prevention 

growth charts (39) were used to determine individual BMI and BMI percentiles for age 

and sex values. Children from the current sample were categorized into the following BMI 

classes: underweight (n = 4, 3.3% of sample), normal weight (n=72, 59.5%), overweight 

(n=22, 18.2%), and obese (n=23, 19%). Adiposity measurements included VAT, SAAT, 

TAAT, and WB%FAT. Whole-body and regional soft tissue were measured by DXA using 

a Hologic QDR 4500A Discovery bone densitometer (software version 13.4.2; Hologic, 

Bedford, MA), as an accurate and valid measure of body composition in the pediatric 

population (40). Central adiposity (i.e., VAT, SAAT, TAAT) and WB%FAT was estimated 
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using an algorithm that models subcutaneous abdominal adipose tissue at the fourth lumbar 

vertebra and subtracts it from the regional abdominal region fat (6).

Cardiorespiratory Fitness Testing

Maximal oxygen consumption was measured on a treadmill using a graded VO2max 

exercise test, with a computerized indirect calorimetry system (ParvoMedics true Max 

2400). A modified Balke protocol was utilized, whereby participants walked or ran at 

a constant speed with increasing grade increments of 2.5% every two minutes until 

volitional exhaustion, with time interval averages of VO2 and respiratory exchange rate 

(RER) assessed every 20 seconds. The protocol was administered on a LifeFitness 92T 

motor-driven treadmill (LifeFitness, Schiller Park, IL) with expired gases analyzed using a 

ParvoMedics TrueOne2400 Metabolic Measurement System (ParvoMedics, Sandy, Utah). 

Heart rate was assessed throughout the test with a Polar Heart Rate Monitor. The children’s 

OMNI scale (41) was used to assess ratings of perceived exertion every two minutes. 

VO2max qualification was based upon achieving at least three of the following four criteria: 

(i) a peak heart rate ≥ 185 bpm and a heart rate plateau, (ii) RER ≥ 1.0, (iii) an OMNI rating 

of perceived exhaustion ≥ 8, and/or (iv) a plateau in oxygen consumption corresponding to 

an increase of less than 2 ml/kg/min despite an increase in intensity (41). Fat-Free VO2max 

(FF-VO2; ml/min/kg-lean mass) was calculated using absolute VO2max (L/min) and lean 

mass (g) as the primary measure of fitness. Total lean mass (g) was derived from the DXA 

scanner, and was entered into the following equation: FF- VO2 = (Absolute VO2max (L/

min) / Total lean mass (g))*1000. This measure has previously been shown to be the primary 

contributor to aerobic capacity in children of varying body mass (40), and has been used in 

previous research when assessing adiposity, fitness, cognitive or brain outcomes (7, 42–44).

MRI Data Acquisition

Imaging data were collected on a 3T Siemens Magnetom Trio whole-body scanner 

with 12-channel radiofrequency head coil (Siemens Healthcare, Erlangen, Germany). High-

resolution structural data were acquired using a T1-weighted MPRAGE sequence with 0.9 

mm isotropic resolution (TR = 1900 ms, TE = 2.32 ms, TI = 900 ms) over 4 min 26 sec. 

Resting scans were collected for 8–11 minutes using a T2*-weighted EPI sequence (TR = 

2000 ms, TE = 25 ms, flip angle = 90°, GRAPPA acceleration factor = 2, 92 × 92 matrix 

resolution, voxel size 2.6 × 2.6 × 3 mm3).

fMRI Preprocessing

Data were preprocessed using the default analysis pipeline in CONN toolbox (45), which 

includes realignment, slice timing correction, outlier detection, segmentation, normalization 

with respect to MNI template, and smoothing (6-mm FWHM kernel). The Artifact Detection 

Toolbox (ART) (http://www.nitrc.org/projects/artifact_detect) was used to flag scans with 

mean signal intensity outside 3 standard deviations from global mean and/or 0.5 mm scan-

to-scan motion. To assure scan quality, these “invalid scans” were then regressed out. After 

data scrubbing, a minimum of 5-min scan time was required to include a participant in the 

analysis (34). Bandpass filtering was executed at 0.008–0.1 Hz. A component-based noise 

correction method (aCompCor) was used for denoising (46) as implemented in the CONN 

toolbox, as this method allows for interpretation of anticorrelations. The combination of 
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aCompCor and ART toolboxes, allows for an optimized pre-processing approach for the 

analysis of functional connectivity data.

Multi-Voxel Pattern Analysis

Whole-brain connectome-wide multi-voxel pattern analysis was used as an agnostic, data 

driven approach to identify seed regions for standard seed-to-voxel analysis of resting state 

data using CONN toolbox (45, 47). Principal components analysis (PCA) was used to 

reduce the dimensionality of the resultant data. First, 64 PCA components were retained 

for each participant’s voxel-to-voxel correlation structure. A second PCA was run across all 

participants and the first 6 components were retained to maintain a conservative 20:1 ratio 

of participants-to-components (47). An F-test was performed on all 6 multi-voxel pattern 

analysis components. Physiological measures for adiposity, body composition, and fitness 

(BMI, SAAT, TAAT, VAT, WB%FAT, and FF-VO2) were entered separately in the multi-

voxel pattern analysis to determine patterns of functional connectivity associated with each 

of these measures, for a total of six separate analyses (body composition: BMI; adiposity: 

SAAT, TAAT, VAT, WB%FAT; and fitness: FF-VO2). Age, IQ, SES, and pubertal timing 

were entered as covariates in second level analyses as they correlated with physiological 

measures. In addition, mean motion did not correlate with IQ, SES or pubertal timing 

measures (all p’s > 0.05). A height-level statistical threshold of p < 0.001, cluster threshold 

of p < 0.005 false discovery rate (FDR)-corrected, and k > 50 were used to determine 

significant clusters. These clusters were then used as seeds for seed-to-voxel post hoc 
RSFC analyses to explore patterns of Yeo’s 7-network parcellation (2011) (48) functional 

connectivity differences between these seed time-courses and those with the rest of the 

brain, which were associated with adiposity and body composition. Post hoc analyses used a 

height threshold of whole-brain p < 0.001 and FDR-corrected cluster threshold of p < 0.005 

with non-parametric statistics to reduce Type 1 error due to multiple comparisons (49). An 

additional post hoc analysis was conducted by adding mean motion as a covariate and the 

patterns of connectivity did not change.

Supplementary Statistical Analysis

Pearson product-moment correlations were conducted between aerobic fitness (FF-VO2) and 

adiposity measures (BMI, VAT, SAAT, TAAT, WB%FAT). Next, mediation analyses using 

the R mediation process package (50) were performed to assess (i) whether fitness (FF-VO2) 

mediated the associations between adiposity (BMI, VAT) and adiposity-associated RSFC 

outcomes; and (ii) whether adiposity factors (BMI, VAT) mediated associations between 

fat-free fitness (FF-VO2) and fitness-associated RSFC outcomes. The total effects (effect of 

X [predictor variable] on Y [outcome variable]), direct effects (effect of X on Y accounting 

for M [mediator] [average direct effect]) and indirect effects (the mediation effect) are 

reported. The presence of statistical mediation was determined through nonparametric 

bootstrap confidence intervals via 5000 bootstrap resamples of the estimated indirect 

effect. The estimated indirect effect (mediation effect) corresponds to the reduction in 

the independent variable effect on the dependent variable when adjusted for the mediator. 

Multiple comparisons were corrected using Benjamini and Hochberg’s false discovery rate 

(FDR), at a q value of 0.05, after pooling the P values from the mediation analyses for each 

predictor model.
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RESULTS

Statistically significant seed regions from the multi-voxel pattern analysis are displayed in 

Figure 1 and in Table 2. A whole-brain threshold of p < 0.001 and FDR-corrected cluster 

threshold of p < 0.005 were used to determine significant clusters.

Results from the multi-voxel pattern analysis-derived clusters can be seen in Figure 2 and 

Table 2. A height threshold of whole-brain p < 0.001, FDR-corrected cluster threshold of p < 

0.005, and K ≥ 50 cluster level threshold, was used for parametric post hoc characterization.

Results from the correlation analysis between physiological variables can be see in 

Table 3 and Figure 3. As expected, adiposity variables (BMI, SAAT, TAAT, VAAT, 

and WB%FAT) were highly and significantly correlated with each other. FF-VO2 was 

significantly negatively correlated with SAAT (r = −0.259, p ≤ 0.05), TAAT (r = −0.231, p ≤ 

0.05), and WB%FAT (r = −0.186, p ≤ 0.05), but was not correlated with BMI (r = −0.174, p 
> 0.05) or VAT (r = −0.04, p > 0.05).

BMI

Multi-Voxel Pattern Analysis Results.—Analyses revealed six significant clusters 

associated with BMI located in the right para-hippocampal gyrus (cluster a, Fig 1a).

Post Hoc Seed-to-Voxel Characterization of Multi-Voxel Pattern Analysis-
Derived Clusters of Interest.—The seed region located in the right para-hippocampal 

gyrus (cluster a) was found to be negatively correlated with the visual, somatosensory, dorsal 

attention, ventral attention, limbic, fronto-parietal, and default mode networks, as a function 

of BMI (Figure 2a).

VAT

Multi-Voxel Pattern Analysis Results.—Analyses revealed nine significant clusters 

associated with VAT located in the left middle frontal lobe (cluster b, Fig 1b).

Post Hoc Seed-to-Voxel Characterization of Multi-Voxel Pattern Analysis-
Derived Clusters of Interest.—The seed region located in left middle frontal lobe 

(cluster b) was found to be negatively correlated with visual, somatosensory, dorsal 

attention, ventral attention, limbic, and default mode networks, as a function of VAT (Figure 

2b).

WB%FAT

Multi-Voxel Pattern Analysis Results.—Analyses revealed six significant clusters 

associated with WB%FAT, located in the left middle temporal gyrus (cluster c, Fig 1c).

Post Hoc Seed-to-Voxel Characterization of Multi-Voxel Pattern Analysis-
Derived Clusters of Interest.—The seed region located in the left middle temporal 

gyrus (cluster c) was not significantly correlated with any of the 7 Yeo-defined functional 

networks, as a function of WB%FAT (Figure 2c).
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SAAT

Multi-Voxel Pattern Analysis Results.—There were no significant clusters associated 

with SAAT.

TAAT

Multi-Voxel Pattern Analysis Results.—There were no significant clusters associated 

with TAAT.

FF-VO2

Multi-Voxel Pattern Analysis Results.—Analyses revealed three significant cluster 

associated with FF-VO2, located in the left cuneus (cluster d, Fig 1d).

Post Hoc Seed-to-Voxel Characterization of Multi-Voxel Pattern Analysis-
Derived Clusters of Interest.—The seed region located in the left cuneus (cluster d) was 

significantly correlated with ventral attention, and fronto-parietal networks, as a function of 

FF-VO2.

Mediation Results

Given that adiposity and fitness measures were differentially associated with RSFC 

outcomes, we asked whether (i) fitness mediated the relationship between adiposity on 

adiposity-associated RSFC outcomes (see Supplemental Table S1, Supplemental Digital 

Content, SDC 1), and (ii) whether adiposity mediated the relationship between fitness on 

fitness-associated RSFC outcomes (see Supplemental Table S2 and Table S3, Supplemental 

Digital Content, SDC 1). Supplemental Table S1 (see Supplemental Digital Content, SDC 

1) displays the results of the first mediation analyses, whereby FF-VO2 did not mediate the 

relationship between VAT (g) or BMI and RSFC outcomes. Supplemental Tables S2 and 

S3 (see Supplemental Digital Content, SDC 1) display the results of the second mediation 

analyses, whereby adiposity (BMI: Supplemental Table S2, VAT: Supplemental Table S3; 

see Supplemental Digital Content, SDC 1) did not mediate the relationship between FF-VO2 

and RSFC outcomes.

DISCUSSION

This study used an agnostic, connectome-wide multi-voxel pattern analysis approach 

to identify whole-brain RSFC associations with adiposity, body composition, and 

cardiorespiratory fitness in preadolescent children. We found that a number of network 

connectivity patterns were differentially associated with negative health factors (VAT, BMI), 

compared to positive health factors (fat-free fitness). Specifically, BMI was negatively 

correlated with RSFC in the visual, somatosensory, dorsal attention, ventral attention, 

limbic, fronto-parietal, and default mode networks. Additionally, VAT was negatively 

correlated with RSFC in the visual, somatosensory, dorsal attention, ventral attention, 

limbic, and default mode networks, which confirmed our a priori prediction. Alternatively, 

FF-VO2 was correlated with ventral attention, and fronto-parietal networks, which also 

confirmed our a priori prediction. Notably, WB%FAT, TAAT, and SAAT were unrelated 

to any of the functional networks, failing to confirm our prediction. Together, the data 
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described herein provide novel support for a differential adiposity-fitness-brain relationship 

in preadolescent children. Overall, there was a negative effect of adiposity-related patterns, 

and a positive effect of fitness-related patterns, on whole-brain functional connectivity in 

preadolescent children.

Additionally, mediation analyses revealed that FF-VO2 did not mediate the relationship 

between adiposity (BMI, VAT) and RSFC, and that adiposity (BMI, VAT) did not mediation 

the relationship between FF-VO2 and RSFC. Notably, FF-VO2 was not correlated with 

either BMI or VAT. As such, the negative effects of adiposity-related RSFC patterns, 

and the positive effect of fitness-related RSFC patterns suggest these are relationships are 

independent from each other. These results indicate that positive health factors (such as 

increased fitness), alongside negative health factors (such as obesity) act differentially and 

independently from each other on RSFC networks.

The original results presented herein advance our understanding of the underlying functional 

networks associated with physiological health factors in children, which is important to 

consider given the global health concerns associated with childhood obesity. As such, 

considerable efforts should be taken to reduce the negative health outcomes associated with 

childhood obesity, such as with the promotion of cardiovascular fitness through physical 

activities. Accordingly, previous investigations into the relationship between aerobic fitness, 

obesity, and cognitive and brain function within the FITKids2 sample has found that 9 

months of physical activity prevents the decline of obesity-associated neuroelectric function 

during preadolescent development (44).

The patterns identified in the current study are similar to patterns identified in previous 

research in children. For example, adolescents with obesity showed reduced global 

functional connectivity in the insula, the middle temporal cortex, and the DLPFC, 

compared to normal weight participants (51), indicating negative associations between 

negative health factors (childhood obesity) and RSFC. Additionally, physical activity in 

preadolescent children was recently found to be positively associated with resting state 

network connectivity in parietal cortices, supplementary motor cortex, putamen, and right 

primary motor cortex (52), indicating positive associations between positive health behaviors 

(physical activity) and RSFC.

The negative associations found with VAT are of particular interest, because excess VAT has 

been linked to poorer intellectual and cognitive abilities among children with obesity (7). 

However, VAT is also positively associated with intellectual abilities and cognitive efficiency 

among normal weight children (7). Adiposity and cognition research thus demonstrates 

a negative association between excess VAT and cognitive function only in children with 

obesity. Neuroimaging studies further suggest negative associations between VAT and brain 

structure (11, 12, 21) and function (8, 9, 13). This relationship is particularly concerning 

considering the dangerous metabolic nature of VAT, such that increased VAT is related to a 

higher risk of metabolic diseases, has a greater lipid turnover and a higher fat uptake (53), 

and contributes to insulin resistance (18) due to the production of inflammatory cytokines 

and hormones (53). Consequently, VAT is considered to be the more dangerous type of 

adipose tissue when accumulated in excess, compared to SAAT and TAAT, and has been 
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related to impaired cognitive function in children (5–7). Following previous research, no 

associations were found between SAAT, TAAT and RSFC in the current study. This extends 

the current literature, which demonstrates a selective relationship for adiposity measures, 

such that VAT is negatively and uniquely associated with cognitive and brain outcomes (7). 

The selective adiposity associations observed in the current study are important to consider 

when evaluating the effect of VAT on Yeo’s (48) functional connectivity networks, as these 

networks have been associated with cognitive function in humans.

The concept of functional connectivity alludes to the notion that the purpose of neural 

populations is to collectively interact within the brain to produce sensorimotor and cognitive 

abilities (54). Additionally, the structural organization of the human cerebral cortex is 

suggested to derive from intrinsic functional connectivity, further indicating that information 

processing in the brain involves interactions among distributed areas of neural populations 

(48). As such, associations with physiological measures, including findings from the current 

study, on the spontaneous fluctuations in the BOLD signal via fMRI may elucidate the 

neural representation of individual differences in functional architecture, which may also 

be associated with cognitive processes. As excess VAT in childhood has been negatively 

implicated with cognitive abilities (7), the results from the current study suggest a negative 

relationship between adiposity and functional brain networks.

The agnostically-derived positive associations with cardiorespiratory fitness and RSFC in 

the current study contribute to the strong breadth of literature in this area across the 

lifespan. However, the results herein are the first to demonstrate positive associations 

between fat-free cardiorespiratory fitness and whole-brain RSFC in preadolescent children, 

as previous work has focused on associations with physical activity (55), hippocampal 

connectivity (56), or young adult (16) populations. Further, the current study is also the first 

to differentiate between positive (fitness) and negative (BMI, VAT) health factors on RSFC 

patterns. Subsequently, we have demonstrated that data driven RSFC methodologies are a 

strong candidate for investigating neuroimaging markers of the beneficial effect of fitness 

on brain function, and how obesity negatively influences this trajectory in preadolescent 

children. As such, our findings provide (1) novel support for a differential adiposity-fitness-

brain relationship in preadolescent children, such that adiposity-related patterns showed 

negative correlations, and fitness-related patterns showed positive correlations within the 

Yeo networks; (2) support for the use of multi-voxel pattern analysis methodologies in 

future neuroimaging studies which assess the influence of functional brain imaging; and (3) 

support for the use of multi-voxel pattern analysis results from the current study as seeds 

in seed-to-voxel analyses when investigating relationships between brain and fitness and/or 

obesity in children.

Limitations

These findings should be interpreted in light of several limitations. The data were cross-

sectional in nature, and as such, causal associations between adiposity, BMI and fitness 

cannot be inferred. Similarly, because RSFC was assessed at one time point, this study 

is unable to account for fluctuations of resting state focus, which may occur over longer 

periods of time. Additionally, the current study did not directly assess cognitive function, 
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and as such, assumptions of RSFC networks and their associations with cognitive function 

should be taken lightly. Further, the current study used a data-driven approach to identify 

RSFC networks. Future studies could benefit from using a hypothesis-based approach to 

seed selection, based on the data-driven seeds identified herein, as well as previously 

identified areas associated with adult populations and fitness (i.e., default mode, dorsal 

and ventral attention, and frontoparietal networks) and adiposity (i.e., prefrontal cortex, 

hippocampus, angular gyrus, and salience network). The comparison between adult- and 

child-identified RSFC networks could provide evidence toward changes during brain 

development over the lifespan. Lastly, as previously discussed, child populations and 

individuals with obesity are two populations within the current sample associated with 

greater amounts of motion artifact. As such, the aggregation of the two populations resulted 

in a high amount of movement that occurred during data collection resulting in the loss of 

a number of participants who did not meet the required criteria of at least 5 minutes of 

clean scanning data. However, the stringent motion artifact criteria are also a strength of the 

current study, as previous research has found that movement causes issues with the integrity 

of RSFC measures (37). Further, the sample of 121 participants is also a strength of the 

current study, as this is relatively larger than previous RSFC studies in children.

CONCLUSIONS

To the best of our knowledge, this is the first data-driven analysis investigating the 

association of positive and negative health factors on RSFC outcomes in preadolescent 

children. Using connectome-wide multi-voxel pattern analysis, we report robust negative 

associations between BMI, VAT and RSFC patterns with areas involved with the visual, 

somatosensory, dorsal attention, ventral attention, limbic, fronto-parietal, and default mode 

networks. Further, we report robust positive associations between fitness and RSFC patterns 

with areas involved in the ventral attention and fronto-parietal networks. Of particular 

interest is the differential nature of these relationships to VAT, BMI and fitness. Overall, 

these novel findings advance our understanding of the underlying RSFC networks associated 

with physiological health factors in children, and augment support for the utility of whole-

brain data-driven methodologies. Childhood obesity is a global health concern which 

contributes greatly to healthcare costs and is a major risk factor for premature mortality 

from cardiovascular and metabolic diseases. As such, considerable efforts should be taken 

to reduce the negative health factors associated with childhood obesity, such as with the 

promotion of cardiovascular fitness through physical activity.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The results of the present study do not constitute endorsement by the American College of Sports Medicine.

Funding

Support for this project was provided by National Institute of Child Health and Human Development grant 
HD069381 awarded to Drs. Hillman and Kramer. These sources did not play a role in the study design, collection, 

Logan et al. Page 12

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis or interpretation of the data, nor in the writing of the report and decision to submit the article for 
publication.

Conflict of Interest and Funding Source:

Support for this project was provided by National Institute of Child Health and Human Development grant 
HD069381 awarded to Drs. Hillman and Kramer. These sources did not play a role in the study design, collection, 
analysis or interpretation of the data, nor in the writing of the report and decision to submit the article for 
publication. The authors have no relevant financial interests to disclose. The authors have no financial or proprietary 
interests in any material discussed in this article. The authors of this document report no conflicts of interested 
associated with the collection, dissemination, or interpretation of this research. No patents, copyrights, or royalties 
are involved or included in this work. The results of this study are presented clearly, honestly, and without 
fabrication, falsification, or inappropriate data manipulation. The results of the present study do not constitute 
endorsement by the American College of Sports Medicine.

Data Availability

The datasets generated during and/or analyzed during the current study are available from 

the corresponding author on reasonable request due to the need for a formal data sharing 

agreement.

REFERENCES

1. WHO. Obesity and Overweight Geneva, Switzerland 2020 [updated 1 April, 2020]. World 
Health Organization]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/obesity-
and-overweight#.

2. Hammond RA, Levine R. The economic impact of obesity in the United States. Diabetes Metab 
Syndr Obes. 2010;3:285–95. [PubMed: 21437097] 

3. O’Rahilly S, Farooqi IS. Human obesity: a heritable neurobehavioral disorder that is highly sensitive 
to environmental conditions. Diabetes. 2008;57(11):2905–10. [PubMed: 18971438] 

4. Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43. [PubMed: 
10766250] 

5. Kamijo K, Pontifex MB, Khan NA, et al. The negative association of childhood obesity to cognitive 
control of action monitoring. Cereb Cortex. 2012;24(3):654–62. [PubMed: 23146965] 

6. Khan NA, Baym CL, Monti JM, et al. Central adiposity is negatively associated with hippocampal-
dependent relational memory amoung overweight and obese children. J Pediatr. 2015;166(2):302–8. 
[PubMed: 25454939] 

7. Raine LB, Drollette ES, Kao S-C, et al. The associations between adiposity, cognitive function, and 
achievement in children. Med Sci Sports Exerc. 2018;50(9):1868–74. [PubMed: 29727406] 

8. Cheke LG, Bonnici HM, Clayton NS, Simons JS. Obesity and insulin resistance are associated 
with reduced activity in core memory regions of the brain. Neuropsychologia. 2017;96:137–49. 
[PubMed: 28093279] 

9. García-García I, Jurado MÁ, Garolera M, et al. Alterations of the salience network in obesity: a 
resting-state fMRI study. Hum Brain Mapp. 2013;34(11):2786–97. [PubMed: 22522963] 

10. Gracia-Marco L, Esteban-Cornejo I, Ubago-Guisado E, et al. Lean mass index is positively 
associated with white matter volumes in several brain regions in children with overweight/obesity. 
Pediatr Obes. 2020:15(5):e12604. [PubMed: 31920013] 

11. Saute R, Soder R, Alves Filho J, Baldisserotto M, Franco A. Increased brain cortical thickness 
associated with visceral fat in adolescents. Pediatr Obes. 2016;13(1):74–7. [PubMed: 27788560] 

12. Solis-Urra P, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Early life factors, gray matter brain 
volume and academic performance in overweight/obese children: The ActiveBrains project. 
Neuroimage. 2019;202:116130. [PubMed: 31465844] 

13. Stice E, Yokum S, Burger KS, Epstein LH, Small DM. Youth at risk for obesity show 
greater activation of striatal and somatosensory regions to food. J Neurosci. 2011;31(12):4360–6. 
[PubMed: 21430137] 

Logan et al. Page 13

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight#
https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight#


14. Schmidt M, Magnussen C, Rees E, Dwyer T, Venn A. Childhood fitness reduces the long-term 
cardiometabolic risks associated with childhood obesity. Int J Obes (Lond). 2016;40(7):1134–40. 
[PubMed: 27102049] 

15. Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci 
2015;4:27–32.

16. Talukdar T, Nikolaidis A, Zwilling CE, et al. Aerobic fitness explains individual differences in 
the functional brain connectome of healthy young adults. Cereb Cortex. 2018;28(10):3600–9. 
[PubMed: 28968656] 

17. Wong MC, Ng BK, Kennedy SF, et al. Children and adolescents’ anthropometrics body 
composition from 3-D optical surface scans. Obesity (Silver Spring). 2019;27(11):1738–49. 
[PubMed: 31689009] 

18. Freedland ES. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: 
implications for controlling dietary carbohydrates: a review. Nutr Metab. 2004;1(1):12.

19. Lee S, Kuk JL, Hannon TS, Arslanian SA. Race and gender differences in the relationships 
between anthropometrics and abdominal fat in youth. Obesity (Silver Spring). 2008;16(5):1066–
71. [PubMed: 18356853] 

20. Whitmer R, Gustafson D, Barrett-Connor E, Haan M, Gunderson E, Yaffe K. Central obesity 
and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057–64. 
[PubMed: 18367704] 

21. Gracia-Marco L, Esteban-Cornejo I, Ubago-Guisado E, et al. Lean mass index is positively 
associated with white matter volumes in several brain regions in children with overweight/obesity. 
Pediatr Obes. 2020;15(5):e12604. [PubMed: 31920013] 

22. Voss MW, Chaddock L, Kim JS, et al. Aerobic fitness is associated with greater efficiency of the 
network underlying cognitive control in preadolescent children. Neuroscience. 2011;199:166–76. 
[PubMed: 22027235] 

23. Chaddock L, Erickson KI, Prakash RS, et al. A neuroimaging investigation of the association 
between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. 
Brain Res. 2010;1358:172–83. [PubMed: 20735996] 

24. Hillman CH, Buck SM, Themanson JR, Pontifex MB, Castelli DM. Aerobic fitness and cognitive 
development: Event-related brain potential and task performance indices of executive control in 
preadolescent children. Dev Psychol. 2009;45(1):114–29. [PubMed: 19209995] 

25. Hillman CH, Castelli DM, Buck SM. Aerobic fitness and neurocognitive function in healthy 
preadolescent children. Med Sci Sports Exerc. 2005;37(11):1967–74. [PubMed: 16286868] 

26. Esteban-Cornejo I, Cadenas-Sanchez C, Contreras-Rodriguez O, et al. A whole brain volumetric 
approach in overweight/obese children: Examining the association with different physical fitness 
components and academic performance. The ActiveBrains project. Neuroimage. 2017;159:346–
54. [PubMed: 28789992] 

27. Rodriguez-Ayllon M, Esteban-Cornejo I, Verdejo-Román J, et al. Physical fitness and white 
matter microstructure in children with overweight or obesity: the ActiveBrains project. Sci Rep. 
2020;10(1):12469. [PubMed: 32719329] 

28. Zavala-Crichton JP, Esteban-Cornejo I, Solis-Urra P, et al. Association of sedentary behavior with 
brain structure and intelligence in children with overweight or obesity: the ActiveBrains project. J 
Clin Med. 2020;9(4):1101.

29. Thompson WH, Thelin EP, Lilja A, Bellander B-M, Fransson P. Functional resting-state fMRI 
connectivity correlates with serum levels of the S100B protein in the acute phase of traumatic 
brain injury. Neuroimage Clin. 2016;12:1004–12. [PubMed: 27995066] 

30. McNorgan C, Smith GJ, Edwards ES. Integrating functional connectivity and MVPA through a 
multiple constraint network analysis. Neuroimage. 2020;208:116412. [PubMed: 31790752] 

31. Chai XJ, Ofen N, Gabrieli JD, Whitfield-Gabrieli S. Selective development of anticorrelated 
networks in the intrinsic functional organization of the human brain. J Cogn Neurosci. 
2014;26(3):501–13. [PubMed: 24188367] 

32. Emmanuel M, Bokor BR. Tanner Stages: StatPearls Publishing, Treasure Island (FL); 2020.

Logan et al. Page 14

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



33. Birnbaum AS, Lytle LA, Murray DM, Story M, Perry CL, Boutelle KN. Survey development 
for assessing correlates of young adolescents’ eating. Am J Health Behav. 2002;26(4):284–95. 
[PubMed: 12081361] 

34. Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic 
functional connectivity as a tool for human connectomics: theory, properties, and optimization. 
J Neurophysiol. 2010;103(1):297–321. [PubMed: 19889849] 

35. Durston S, Tottenham NT, Thomas KM, et al. Differential patterns of striatal activation in young 
children with and without ADHD. Biol Psychiatry. 2003;53(10):871–8. [PubMed: 12742674] 

36. Beyer F, Prehn K, Wüsten KA, et al. Weight loss reduces head motion: Revisiting a major 
confound in neuroimaging. Hum Brain Mapp. 2020;41(9):2490–4. [PubMed: 32239733] 

37. Ekhtiari H, Kuplicki R, Yeh H-w, Paulus MP. Physical characteristics not psychological state or 
trait characteristics predict motion during resting state fMRI. Sci Rep. 2019;9(1):419. [PubMed: 
30674933] 

38. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional 
connectivity MRI. Neuroimage. 2012;59(1):431–8. [PubMed: 21810475] 

39. CDC. Centers for Disease Control and Prevention Growth Charts. Centers for Disease Control and 
Prevention; 2012.

40. Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL. Total body fat does not influence 
maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841–8. [PubMed: 
10918530] 

41. Utter AC, Robertson RJ, Nieman DC, Kang J. Children’s OMNI Scale of Perceived Exertion: 
walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):139–44. [PubMed: 11782659] 

42. Imboden MT, Kaminsky LA, Peterman JE, et al. Cardiorespiratory fitness normalized to fat-free 
mass and mortality risk. Med Sci Sports Exerc. 2020;52(7):1532–7. [PubMed: 31985577] 

43. Larsen RJ, Raine LB, Hillman CH, Kramer AF, Cohen NJ, Barbey AK. Body mass and 
cardiorespiratory fitness are associated with altered brain metabolism. Metab Brain Dis. 
2020;35(6):999–1007. [PubMed: 32350752] 

44. Logan NE, Raine LB, Drollette ES, et al. The differential relationship of an afterschool physical 
activity intervention on brain function and cognition in children with obesity and their normal 
weight peers. Pediatr Obes. 2021;16(2):e12708. [PubMed: 33249759] 

45. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and 
anticorrelated brain networks. Brain Connect. 2012;2(3):125–41. [PubMed: 22642651] 

46. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. Neuroimage. 2007;37(1):90–101. [PubMed: 17560126] 

47. Guell X, Arnold Anteraper S, Gardner AJ, et al. Functional connectivity changes in retired Rugby 
League players: a data-driven functional magnetic resonance imaging study. J Neurotrauma. 
2020;37(16):1788–96. [PubMed: 32183583] 

48. Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by 
intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65. [PubMed: 21653723] 

49. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent 
have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5. [PubMed: 
27357684] 

50. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-
based approach: Guilford publications; 2017.

51. Moreno-Lopez L, Contreras-Rodriguez O, Soriano-Mas C, Stamatakis EA, Verdejo-Garcia 
A. Disrupted functional connectivity in adolescent obesity. Neuroimage Clin. 2016;12:262–8. 
[PubMed: 27504261] 

52. Salvan P, Wassenaar T, Wheatley C, et al. Multimodal imaging brain markers in early adolescence 
are linked with a physically active lifestyle. J Neurosci. 2021;41(5):1092–104. [PubMed: 
33436528] 

53. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic 
syndrome. Endocr Rev. 2000;21(6):697–738. [PubMed: 11133069] 

Logan et al. Page 15

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



54. Friston K, Frith C, Liddle P, Frackowiak R. Functional connectivity: the principal-component 
analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):5–14. [PubMed: 
8417010] 

55. Chaddock-Heyman L, Weng TB, Kienzler C, et al. Brain Network Modularity Predicts 
Improvements in Cognitive and Scholastic Performance in Children Involved in a Physical 
Activity Intervention. Front Hum Neurosci. 2020;14:346. [PubMed: 33100988] 

56. Esteban-Cornejo I, Stillman CM, Rodriguez-Ayllon M, et al. Physical fitness, hippocampal 
functional connectivity and academic performance in children with overweight/obesity: The 
ActiveBrains project. Brain Behav Immun. 2021;91:284–95. [PubMed: 33049365] 

Logan et al. Page 16

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Whole-brain multi-voxel pattern analysis results depicting the connectivity patterns 

significantly associated with body mass index (BMI, Fig 1a), visceral adipose tissue (VAT, 

Fig 1b) whole-body percent fat (WB%FAT, Fig 1c), and Fat-Free VO2 (FF-VO2, Fig 1d).
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Figure 2. 
Results from the second-level seed-to-voxel RSFC analysis for multi-voxel pattern analysis 

clusters associated with BMI (Fig 2a, clusters a1-a6), VAT (Fig 2b, clusters b1-b5), FF-VO2 

(Fig 2c, clusters d1-d4).

Logan et al. Page 18

Med Sci Sports Exerc. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Correlation plot between physiological variables (adiposity: WBPFAT, TAAT, SAAT, VAT; 

BMI, and FF-VO2).
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Table 1.

Participant demographics and body composition

Measure Mean ± sd

n 121 (68 female)

Age (years) 9.3 ± 1.1 (range: 7.6 – 12.5)

Pubertal Timing 1.44 ± 0.5

IQ 111.2 ± 13.3

SES 2.1 ± 0.8

VO2Fat-free (ml/kg(lean)/min) 62.7 ± 7.8 (range: 46.91 – 93.92)

BMI 19.0 ± 4.2 (range: 13.07 – 35.64)

SAAT (g) 797.6 ± 540.3 (range: 135.57 – 2758.82)

TAAT (g) 984.7 ± 627.4 (range: 245.16 – 3435.58)

VAT (g) 187.1 ± 114.2 (range: 30.77 – 676.76)

WBFAT (%) 31.1 ± 6.9 (range: 17.44 – 48.59)
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Table 2.

Body composition, adiposity and fitness associated resting state functional connectivity.

Model FC 
Regions

Peak 
Coordinates 

(MNI)

Peak Coordinates 
(Brain Region)

BA Voxels per Cluster (k) Total 
K

F t p-FDR

x y z Visual Somato-
sensory

Dorsal 
Attention

Ventral 
Attention

Limbic Fronto-
Parietal

Default 
Mode

Not 
Labelled

BMI Seed
MVPA 
(a) 24 58 28 ParaHippocampal_R Right-Amygdala (53) 10 63 73 5.18 *0.0003

Voxels
cluster 
a1 −52 2 −18 Temporal_Mid_L Left-BA38 553 738 186 223 99 63 1804 411 4077 −8.36 *0.0000

cluster 
a2 58 −12 0 Temporal_Sup_R

Right-
PrimAuditory 
(41) 585 762 297 102 19 1 563 312 2641 −8.17 *0.0000

cluster 
a3 28 −74 −20 Cerebelum_6_R Right-BA19 845 375 1220 −5.51 *0.0000

cluster 
a4 −38 −48 −20 Fusiform_L

Left-
Fusiform 
(37) 356 247 30 70 703 −5.81 *0.0000

cluster 
a5 38 −36 −20 Fusiform_R

Right-
Fusiform 
(37) 415 79 36 26 415 −5.56 *0.0000

cluster 
a6 −20 60 −14 Frontal_Sup_Orb_L Left-BA11 192 3 117 52 364 −6.28 *0.0000

VAT Seed
MVPA 
(b) −30 34 50 Frontal_Mid_L Left-BA8 9 21 86 41 157 6.44 *0.0000

Voxels
cluster 
b1 −56 −10 −10 Temporal_Mid_L Left-BA22 53 224 108 151 491 24 2445 471 3697 −8.75 *0.0000

cluster 
b2 56 −6 −16 Temporal_Mid_R Right-BA22 148 193 217 221 489 7 1599 494 3368 −8.35 *0.0000

cluster 
b3 −42 −56 −16 Fusiform_L

Left-
Fusiform 
(37) 461 220 61 57 799 −6.15 *0.0000

cluster 
b4 44 −50 −20 Fusiform_R

Right-
Fusiform 
(37) 294 64 72 430 −4.86 *0.0000

cluster 
b5 −2 50 −18 Rectus_L Left-BA11 184 129 41 354 −5.62 *0.0000

WB%FAT Seed
MVPA 
(c) −52 −60 22 Temporal_Mid_L Left-BA39 74 16 90 6.35 *0.0000

Voxels
cluster 
c1 16 56 −26 Frontal_Sup_Orb_R Right-BA11 27 19 94 140 −6.32 0.0066

cluster 
c2 −30 −88 −20 Cerebelum_Crus1_L

Left-
VisualAssoc 
(18) 87 20 107 −5.38 0.0143

cluster 
c3 −20 50 −18 Frontal_Mid_Orb_L Left-BA11 62 3 23 88 −5.03 0.0238

FF-VO2 Seed
MVPA 
(d) −12 −88 18 Cuneus_L

Left-
VisualAssoc 
(18) 51 20 71 5.03 *0.0004

Voxels
cluster 
d1 −2 14 36 Cingulum_Mid_L Left-BA32 2 569 69 114 754 6.44 *0.0000

cluster 
d2 −42 14 −2 Insula_L Left-Insula (13) 1 420 1 25 20 130 597 8.06 *0.0000
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Model FC 
Regions

Peak 
Coordinates 

(MNI)

Peak Coordinates 
(Brain Region)

BA Voxels per Cluster (k) Total 
K

F t p-FDR

x y z Visual Somato-
sensory

Dorsal 
Attention

Ventral 
Attention

Limbic Fronto-
Parietal

Default 
Mode

Not 
Labelled

cluster 
d3 −32 52 28 Frontal_Mid_L Left-BA10 216 48 6 15 285 6.10 *0.0000

cluster 
d4 42 12 2 Insula_R Right-BA44 253 19 272 5.97 *0.0000

SAAT Seed MVPA −2 38 38 Frontal_Sup_Medial_L Left-BA8 1 52 5 4.61 0.0228

Voxels - - - - - - - - - - - - - - - - -

TAAT Seed MVPA −4 40 38 Frontal_Sup_Medial_L Left-BA9 1 58 4 4.53 0.0125

Voxels - - - - - - - - - - - - - - - - -

*
denotes significance at the p-FDR ≤ 0.005 level and K≥50 (Cluster Level Threshold)
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Table 3.

Correlation table between physiological variables (adiposity: WBPFAT, TAAT, SAAT, VAT; BMI, and FF-

VO2).

BMI VAT (g) WBFAT (%) TAAT (g) SAAT (g) VO2_FF (mL/kg(lean)/min)

BMI r - .870** .811** .902** .863** −0.174

p - 0 0 0 0 0.056

VAT (g) r .870** - .693** .801** .719** −0.04

p 0 - 0 0 0 0.663

WBFAT (%) r .811** .693** - .891** .889** −.186*

p 0 0 - 0 0 0.041

TAAT (g) r .902** .801** .891** - .992** −.231*

p 0 0 0 - 0 0.011

SAAT (g) r .863** .719** .889** .992** - −.259**

p 0 0 0 0 - 0.004

VO2_FF (mL/kg(lean)/min) r −0.174 −0.04 −.186* −.231* −.259** -

p 0.056 0.663 0.041 0.011 0.004 -

**
Correlation is significant at the 0.01 level (2-tailed).

*
Correlation is significant at the 0.05 level (2-tailed).
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