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Abstract

Purpose: PD-L1 expression on tumor cells (TC) is associated with response to anti-PD-1-based 

therapies in some tumor types, but its significance in ccRCC is uncertain. We leveraged tumor 

heterogeneity to identify molecular correlates of TC PD-L1 expression in ccRCC and assessed 

their role in predicting response to anti-PD-1 monotherapy.

Experimental Design: RNA-sequencing was performed on paired TC PD-L1 positive and 

negative areas isolated from 8 ccRCC tumors and transcriptomic features associated with PD-

L1 status were identified. A cohort of 232 metastatic ccRCC patients from the randomized 

CheckMate (CM)-025 trial was used to confirm the findings and correlate transcriptomic profiles 

with clinical outcomes.

Results: In both the paired samples and the CM-025 cohort, TC PD-L1 expression was 

associated with combined overexpression of immune- and cell proliferation-related pathways, 

upregulation of T-cell activation signatures, and increased tumor-infiltrating immune cells. In the 

CM-025 cohort, TC PD-L1 expression was not associated with clinical outcomes. A molecular 

RCC subtype characterized by combined overexpression of immune- and cell proliferation-related 

pathways (previously defined by unsupervised clustering of transcriptomic data) was enriched 

in TC PD-L1 positive tumors and displayed longer progression free survival (HR 0.32; 95% CI 

0.13–0.83) and higher objective response rate (30% versus 0%, p=0.04) on nivolumab compared to 

everolimus.

Conclusions: Both tumor cell-extrinsic (immune-related) and -intrinsic (cell proliferation-

related) mechanisms are likely intertwined in the regulation of TC PD-L1 expression in ccRCC. 

The quantitation of these transcriptional programs may better predict benefit from anti-PD-1-based 

therapy compared to TC PD-L1 expression alone in ccRCC.

Keywords

Gene expression; gene pathways; immune checkpoints; biomarker; cell proliferation; immune 
cells; PD-1
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Introduction

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 pathway have become a 

standard of care in multiple cancer types, including clear cell renal cell carcinoma (ccRCC), 

which represents the most common type of kidney cancer in adults (1,2).

PD-L1 expression is a physiological immunomodulatory mechanism involved in the 

regulation of inflammation that is hijacked by tumor cells to escape the immune system. 

PD-L1 expression on tumor cells (TC) correlates with response to ICI-based therapies in 

some tumor types, particularly non-small cell lung cancer (NSCLC). In ccRCC, however, 

correlation with clinical outcome has been inconsistent, but more evident in the first-

line setting (3). Tumor heterogeneity (intratumoral as well as between primary tumor 

and metastases) (4), poor tissue quality and possibly suboptimal assay sensitivity, likely 

contribute to this lack of association. The identification of signaling pathways that are 

associated and possibly regulate tumor cell PD-L1 expression in ccRCC might not only 

shed light on ccRCC biology but could also provide more robust predictors that might help 

identify patients that respond to PD-1/PD-L1 targeting.

The genomic and transcriptomic determinants of PD-L1 expression are poorly understood 

in the context of ccRCC. Positive regulators identified in other tumor types include pro-

inflammatory cytokines and signaling pathways such as interferon IFN-γ (5–7), IL-6 (8), 

IL-8 (9), IL-17, TNF-α (10), IL-27 (11,12), STAT3 (13,14), NFkB/RELA (6,15,16), JUN 

(13,17), TGF-β via SMAD2 (18) and oncogenic actors such as MYC (19–21), HIF-1α 
(22,23), YAP (24), PTEN loss and PI3K-AKT-mTOR pathway (6,13,25–27), CUL3 via 

KEAP1 and NRF2 (28), RAS (23,29–31), EGFR (27,30,32–34), ALK (35–41). Moreover, 

genetic amplification at 9p24.1 involving the CD274 gene (coding for PD-L1) has been 

identified in Hodgkin lymphoma (42), B cell lymphoma (42,43), NSCLC (44), gastric 

cancer (45), where it has been linked to increased PD-L1 protein expression but its 

prevalence in ccRCC is very low (46). MEK-ERK signaling was found to be an activator 

in some cancers (13,29,47) and a negative regulator in others (26,48). Numerous micro 

RNAs were also found to be either positive or negative regulators of PD-L1 expression in 

various cancer types (39). Methylation of the PD-L1 promoter has been associated with 

decreased PD-L1 expression in various cancer types (49). Finally, PD-L1 expression and 

tumor mutational burden were shown to be independent in most tumor types (50).

In RCC cell lines, treatment with IL-4 and TNF-α was accompanied by STAT6 

phosphorylation and activation of NFkB, and had a synergistic effect on the induction of 

PD-L1 expression (51). PD-L1 was also shown to be upregulated by HIF-2α (52,53). A 

recent analysis of tumor samples from patients with advanced RCC, metastatic urothelial 

carcinomas, and advanced/metastatic NSCLC showed that tumors positive for PD-L1 on 

either the TC or immune cells were enriched for immune signatures including IFN-ɣ, 

immune checkpoints, and cytotoxicity. PD-L1 negative tumors presented with an increase in 

metabolic pathways involved in ATP biosynthesis and oxidative phosphorylation/amino acid 

biosynthesis (54).
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In this study, we leveraged tumor heterogeneity to understand the molecular underpinning 

of PD-L1 expression in ccRCC by analyzing paired samples with either positive or negative 

TC PD-L1 expression, isolated from individual tumors. We then confirmed our findings in 

a cohort of patients treated with an immune checkpoint inhibitor (nivolumab) or an mTOR 

inhibitor (everolimus) in the context of a clinical trial (CheckMate-025) (55).

Materials and Methods

Patients

Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from eight patients with 

ccRCC were selected from the archives of Brigham and Women’s Hospital and Beth Israel 

Deaconess Medical Center. Each sample had highly heterogeneous expression of PD-L1 

in tumor cells and showed the presence of discrete tumor regions characterized by either 

positive or negative PD-L1 expression. Informed written consent’ was obtained from each 

subject or each subject’s guardian Institutional Review Board approval was obtained locally 

before tissue collection and immunohistochemical staining.

A subset of patients included in the CheckMate-025 (CM-025) randomized open label trial 

of nivolumab versus everolimus in metastatic ccRCC, previously analyzed by our group 

(56,57), was used as a validation cohort. Specifically, a total of 232 patients with available 

WHO/ISUP grade evaluation, TC PD-L1 immunohistochemistry results (positivity defined 

as ≥1% positive TC), and RNA-sequencing data were analyzed.

The study was performed according to the principles of the Declaration of Helsinki.

Pathological evaluation and immunohistochemistry (IHC) analysis for PD-L1 and CD8 
expression in paired samples

Nuclear grade was evaluated according to the 2016 WHO/ISUP classification (58). 

Sarcomatoid differentiation was defined according to criteria discussed at the International 

Society of Urological Pathology 2012 Consensus Conference.

IHC studies in the 8 paired samples were performed on FFPE tissue sections. Staining 

was performed using an extensively validated antibody against PD-L1 [405. 9A11 mouse 

monoclonal antibody, 1:100 of 1.3 mg/mL, Dr. G. Freeman laboratory, Dana-Farber Cancer 

Institute, Boston, MA, and commercially available through Cell Signaling Technology 

(CST); (4,59–61)] and an antibody against CD8 [C8/144B, 1:100 Agilent (Cat#M710301–

2, RRID:AB_2075537)]. Tumor sections were stained with Bond Rx Autostainer (Leica 

Biosystems) using the Bond Polymer Refine Detection Kit (DS9800; Leica Biosystems). 

Antigen retrieval was performed with Bond Epitope Retrieval Solution 2 (EDTA, pH = 

9.0) for 30 minutes for the anti-PD-L1 antibody and 20 minutes for the anti-CD8 antibody. 

All slides were counterstained with hematoxylin, dehydrated in graded ethanol and xylene, 

mounted, and coverslipped. Available tissue section from 6 paired samples were stained for 

CD8. The slides immunostained for CD8 were subsequently scanned using the Leica XT 

scanner (Leica Biosystems) and the density of CD8 positive cells was measured using the 

multiplex IHC algorithm v2.3.4 of the HALO software (Indica Labs).
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RNA sequencing (RNA-seq)

PD-L1 positive and negative areas to be microdissected were visualized by a light 

microscope and circled with a marker (on the IHC-stained slides) by an expert pathologist 

(S. Signoretti). The areas of interest were identified on de-paraffinized 4-micron-thick 

unstained slides by comparing the tissue with the circled areas on the corresponding 

IHC-stained slide. Microdissection was performed by scraping tissue of interest from the 

slide using a sterile syringe needle and/or a scalpel blade. The microdissected tissue 

was then placed in a sterile tube containing RNA extraction buffer. RNA extraction was 

performed using an AllPrep DNA/RNA FFPE Mini Kit (Qiagen Cat# 80234), according to 

the manufacturer instructions.

As previously described (56) RNA quality was assessed with Caliper LabChip GX2 

(Perkin Elmer). The percentage of fragments with a size greater than 200 nt (DV200) was 

calculated. The RNA-Seq libraries were prepared using a transcriptome capture approach 

(TruSeq RNA Access Library Prep Kit (Illumina)) following a validated SOP. Briefly, total 

RNA samples are fragmented, randomly primed for first and second strand cDNA synthesis 

ensuring strandedness, and then enriched into indexed double-stranded cDNA libraries. 

Indexed libraries are then subsequently enriched for coding RNA using hybrid capture 

probes specific for coding RNA. After enrichment, the libraries were quantified with qPCR 

using the KAPA Library Quantification Kit for Illumina Sequencing Platforms, followed by 

equimolar pooling. Flowcell cluster amplification and sequencing were performed according 

to the manufacturer’s protocols using HiSeq 2000 or 2500 (Illumina). Each run was a 76 bp 

paired-end.

Transcriptomic analysis

RNA-seq data from the CM-025 cohort (56) and 8 pairs were aligned using STAR (62), 

quantified using RSEM (63), and evaluated for quality using RNA-seqQC2 (64). Samples 

with low quality were excluded according to (56). Estimated counts per transcript data were 

imported from RSEM and aggregated to the gene-level with DESeqDataSetFromTximport() 

function from tximport method (65). Differential gene expression analysis on PD-L1 effect 

was performed using DESeq2 package (DESeq2, RRID:SCR_015687) (66) between PD-L1 

positive and PD-L1 negative samples. For the cohort of 8 paired samples, a paired Wald test 

was performed by adding a pair level factor in the design model. For the CM-025 cohort, 

only PD-L1 status was included in the design model. The “normal” type shrunken log2 

fold change for each sample was ranked and used for the GSEA prerank analysis (67) with 

fgsea package (68) and MSigDB’s hallmark gene set (69). All p values were corrected by 

Benjamini–Hochberg false discovery rate correction with q<0.25 considered significant.

Single sample GSEA (ssGSEA) score was computed using the R package ‘GSVA’ to obtain 

sample-level GSEA scores for MSigDB’s hallmark gene sets. Only ssGSEA scores from the 

29 commonly upregulated pathways were plotted according to the percentage of positive TC 

PD-L1 for CM-025 cohort. ssGSEA scores for each hallmark pathways were normalized to 

mu=0 and variance=1.
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Inflammatory signature analysis

Inflammatory signature analysis was performed using 6 immune-related signatures listed 

below:

1. IMmotion150_Angio:VEGFA,KDR,ESM1,PECAM1,ANGPTL4,CD34 (70).

2. IMmotion150_Teff:CD8A,EOMES,PRF1,IFNG,CD274 (70).

3. IMmotion150_Myeloid:IL6,CXCL1,CXCL2,CXCL3,CXCL8,PTGS2 (70).

4. JAVELIN:CD3G,CD3E,CD8B,THEMIS,TRAT1,GRAP2,CD247,CD2,CD96,PR

F1,CD6,IL7R, 

ITK,GPR18,EOMES,SIT1,NLRC3,CD244,KLRD1,SH2D1A,CCL5,XCL2,CST

7,GFI1,KCNA3, PSTPIP1 (71).

5. Merck18 :PSMB10,HLA-DQA1,HLA-DRB1,CMKLR1,HLA-E, 

NKG7, CD8A,CCL5,CXCL9, 

CD27,CXCR6,IDO1,STAT1,TIGIT,LAG3,CD274,PDCD1LG2,CD276 (72).

6. CytolyticScore: PRF1, GZMA (73).

The signature score was calculated as the arithmetic mean of TPM of all genes in that 

signature for each sample. Comparisons of each signature score between groups (PD-L1 

positive vs. PD-L1 negative) were done with the non-parametric Wilcoxon rank-sum test 

for the CM-025 cohort and paired Wilcoxon test for the 8 pairs cohort, respectively. All 

comparisons were two-sided with an alpha level of 0.05. All p values were corrected by 

Benjamini–Hochberg false discovery rate correction with q<0.25 considered significant.

CibersortX analysis

As previously described (56) the CIBERSORTx deconvolution algorithm (74) was used 

to infer immune cell infiltration from RNA-seq data, in absolute mode, using the LM22 

signature, with B mode batch correction, quantile normalization disabled, and 1,000 

permutations. All samples which had a p-value for deconvolution >0.05 were considered 

to have failed deconvolution and were therefore discarded from all downstream analyses. 

Relative cell proportions were obtained by normalizing the CIBERSORTx output to the 

sample-level sum of cell counts (to obtain percentages of immune infiltration). A constant of 

10−6 was added to all proportions in order to allow the computation of immune cell ratios. 

All immune cell proportions and ratios were compared using a non-parametric Wilcoxon 

rank-sum test with Benjamini–Hochberg correction. Due to the low number of samples, we 

did not detect any immune cells in 8 pairs cohort that was significant at q<0.25. We instead 

used a p-value threshold of 0.05 for assessing statistical significance. Significant results, 

with q-values at the 0.05 and 0.25 thresholds in the CM-025 cohort are indicated by ** and * 

symbols, respectively.

Molecular subtypes analysis

Non-negative Matrix Factorization (NMF) on IMmotion 151 cohort: According to Motzer et 

al. (75), we selected 3072 genes (top 10%) with the highest variability across 823 tumors 

from IMmotion 151 cohort, using Median Absolute Deviation (MAD) analysis. Subclasses 
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were then computed using consensus NMF clustering method (76) with k=7 factors to 

decompose the log2-transformed TPM matrix and evaluate the stability of the solutions 

using a cophenetic coefficient.

Random Forest Validation on CM-025 Cohort: To validate molecular subtypes derived in 

IMmotion151, we used the random forest machine learning algorithm (R package random- 

Forest) to derive a classifier and then predict the NMF clusters in an independent data 

set (CM-025). Before learning the random forest classifier, we preprocessed the data to 

generate the training set. We limited the gene expression matrix to genes common between 

CM-025 and the top 10% most variable genes in IMmotion151 (n = 2790). Next, we 

log2-transformed and z-score normalized the TPM matrix in each set to ensure that the test 

and training set were on the same scale. Finally, we trained the random forest classifier on 

the IMmotion151 cohort and then applied the training classifier to predict the NMF classes 

in CM-025 cohort. Since the 2790 genes common between IMmotion151 and CM-025 

cohort did not include cluster 7 genes (SNORD-family genes), our CM-025 cohort did not 

identify the 7th cluster as described in (67).

For categorical variable analysis, Pearson’s Chi-squared test with continuity correction was 

used. Survival analyses were conducted using Cox-proportional hazard models, and p values 

were calculated using the log-rank test.

Endogenous Retrovirus (ERV) analysis

As previously described (56) we implemented a pipeline to quantify the expression of 

ERVs in RNA-seq data. Briefly, a reference set of 3,173 hERV sequences was first 

obtained from Vargiu et al. (77). Bowtie2 v2.3.4.3 (78) (Bowtie 2, RRID:SCR_016368) 

was used to align RNA-Seq FASTQ files for pairs to hg38 human transcriptome. 

All unmapped, single-end mapped, and ill-formed pair-end alignments to the human 

transcriptome were selected and aligned to hERV reference transcriptome using bowtie2. 

Mapped reads to hERV reference were kept, followed by filtering of single-end perfect 

matches to the human transcriptome. Finally, pair-end alignments with no more than 

one mismatch and single-end alignments with perfect matches to the hERV reference 

but not to human transcriptome were preserved. Duplicates in the final kept reads 

were removed using MarkDuplicates tool in Picard v2.19.0 (http://broadinstitute.github.io/

picard) (Picard, RRID:SCR_006525) and then quantified using HTSeq (79) v0.11.0 

(HTSeq, RRID:SCR_005514) with the settings (htseq-count --stranded=no --mode=union 

--secondary-alignments=score--supplementary-alignments=score --nonunique=all -a 0). Raw 

counts of paired-end and single-end alignments were added with different weights (pair-

counts×2+single-counts) and then normalized to TPM. Differential expression analysis was 

performed on TPM values for each ERV between PD-L1 positive and PD-L1 negative 

samples using a non-parametric Wilcoxon rank-sum test for CM-025 and paired Wilcoxon 

test for 8 pairs. A p-value threshold of 0.05 was used for statistical significance.

Data availability statement

Relevant data are available from the corresponding authors and/or are included in the 

manuscript. Gene signature scores are available in Supplementary Table 1 for the 8 
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pairs and in Supplementary Table 4 for the CheckMate 025 cohort. Clinical data for the 

CheckMate 025 cohort are available in Supplementary Table 4. Differentially expressed 

genes between PD-L1 positive and negative samples, gene set enrichment scores, and 

immune deconvolution data (by CIBERSORTx), are available in Supplementary Tables 2, 3, 

5, respectively, for both the 8 pairs and the CheckMate 025 cohort. Normalized RNA-seq 

expression data are available in Supplementary Table 6 for the 8 pairs and in Supplementary 

Table 7 for the CheckMate 025 cohort. ERV expression (inferred from RNA-seq data) are 

available in Supplementary Table 8 for the 8 pirs and in Supplementary Table 9 for the 

CheckMate 025 cohort.

Results

Pathologic features associated with tumor cell PD-L1 expression in paired samples

To identify potential drivers of PD-L1 expression in human ccRCC, we selected 8 patients 

with tumors displaying a highly heterogeneous expression of PD-L1 in tumor cells (TC), 

as assessed by immunohistochemistry. Specifically, these tumors were characterized by 

the coexistence of areas containing PD-L1-positive tumor cells with areas in which tumor 

cells were consistently PD-L1-negative. In the PD-L1-positive areas, the percentage of 

PD-L1-positive cells ranged from 15 to 95% (Figure 1).

By analyzing individual tumors, we observed that in PD-L1-expressing areas, the WHO/

ISUP nuclear grade was similar or higher compared to corresponding PD-L1-negative areas. 

Overall, 6/8 (75%) of tumors were WHO/ISUP grade 4 in the PD-L1 positive areas versus 

1/8 (12.5%) in the PD-L1 negative areas. A sarcomatoid component was identified in 3 

patients and was restricted to the PD-L1 positive area of the tumor in all cases (Table S1).

Analysis of tumor-infiltrating lymphocytes (TILs) revealed that the mean density of CD8+ 

TILs was 238 cells/mm2 in the PD-L1 positive areas (0–754 cells/mm2) and 81 cells/mm2 in 

the PD-L1 negative areas (5–395 cells/mm2). Paired sample comparison highlighted a strong 

trend in favor of a higher CD8+ TIL infiltration in PD-L1 positive areas (p= 0.063 with 

Wilcoxon).

Tumor cell PD-L1 expression is associated with combined overexpression of immune- and 
cell proliferation-related pathways

To better understand the mechanisms of PD-L1 regulation in tumor cells of ccRCC, we 

performed RNA sequencing and identified differentially expressed genes between TC 

PD-L1 positive and negative areas in the paired samples (Table S2). The analysis of the 

transcriptomic data using paired gene set enrichment analysis and the 50 Hallmark genes 

set from the Molecular Signatures Database showed a significant (FDR q value <0.25) 

overexpression of multiple oncogenic and inflammatory pathways (Figure 2A and Table S3). 

Most pathways (72%) upregulated in the PD-L1 positive regions continued to be upregulated 

on repeated analysis after removing the 3 pairs with sarcomatoid component (Figure S1A, 

B). Five pathways (45%) upregulated in the PD-L1 negative regions were shared between 

the 8 pairs and the 5 non-sarcomatoid pairs (Figure S1A, C); these included pathways 
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involved in fatty acid metabolism, oxidative phosphorylation, NOTCH and WNT signaling, 

and a gene set correlated with inactive KRAS state (KRAS_DN).

To assess the robustness of our findings in an external dataset, we conducted the same 

analysis on a cohort of 232 pre-treatment tumors with known TC PD-L1 status (52 PD-L1 

positive [16 WHO/ISUP grade 2/3, 36 grade 4] and 180 TC PD-L1 negative [136 WHO/

ISUP grade 2/3, 44 grade 4]) from patients with metastatic ccRCC who received either 

the anti-PD-1 antibody nivolumab or the mTOR inhibitor everolimus (Table S4), as part of 

the CM-025 trial (Figure 2B). Twenty-nine Hallmark pathways were upregulated in both 

the PD-L1 positive areas of the discovery cohort and the PD-L1 positive tumors of the 

CM-025 validation cohort (Figure 2C). These pathways could broadly be classified into two 

classes: (i) immune-related pathways (e.g. IFN-α and IFN-γ responses, allograft rejection, 

TNF-α), and (ii) cell-intrinsic pathways involved in cell proliferation (e.g., G2M checkpoint, 

E2F targets, MYC targets), and other oncogenic processes (e.g. mTOR signaling and the 

epithelial-mesenchymal transition) (Figure 2A, B). Only 5 pathways upregulated in the 

context of TC PD-L1 expression were unique to the 8 paired samples, and four others 

were unique to the CM-025 samples (Figure 2C). Downmodulation of KRAS signaling 

(KRAS_DN) was the only Hallmark pathway significantly upregulated in PD-L1 negative 

samples of both patient cohorts (Figures 2D). Representative GSEA plots for common 

pathways between the two cohorts are shown in Figures 2E–F.

We then calculated ssGSEA scores for each of the 29 pathways commonly upregulated 

in PD-L1 positive samples to evaluate the relative level of activity of each pathway in 

individual tumors of the CM-025 cohort. A graphical representation of the ssGSEA scores 

sorted by TC PD-L1 levels showed that most TC PD-L1 positive tumors displayed combined 

overexpression of both immune-related and cell proliferation-related pathways (Figure S2).

Since both this study and prior investigations by our group and others demonstrated that 

TC PD-L1 expression is positively associated with tumor grade in ccRCC, we evaluated 

differential gene expression between PD-L1 negative and positive samples without the 

interference of grade, by repeating the analysis in the subset of WHO/ISUP grade 4 

tumors from the CM-025 cohort (44 PD-L1 negative, 36 PD-L1 positive) (Table S4). 

Twenty-seven pathways that were found to be upregulated in PD-L1 positive tumors within 

the grade 4 subset were consistent with those obtained by the analysis of the entire CM-025 

cohort (Figure S3A, S3C). In addition, 2 pathways upregulated in PD-L1 negative tumors 

(including downmodulation of KRAS signaling) were identified in both the grade 4 subset 

and the entire CM-025 cohort (Figure S3A, S3D). We also studied the subset of tumors 

with WHO/ISUP grade 2 or 3 (16 PD-L1 positive, 136 PD-L1 negative), although the small 

number of PD-L1 positive samples in this group likely limited the power of the analysis. 

Nevertheless, we found that signatures of mTOR signaling and immune response were 

still significantly overexpressed in the PD-L1 positive tumors. Downmodulation of KRAS 

signaling pathway remained significantly overexpressed in the PD-L1 negative tumors 

(Figure S3B, S3D).
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A molecular RCC subtype characterized by combined overexpression of immune- and cell 
proliferation-related pathways shows improved response to anti-PD-1 monotherapy

A recent analysis of the IMmotion 151 trial in patients with advanced ccRCC identified 

transcriptionally defined ccRCC molecular subtypes (clusters) with improved outcomes 

to the anti-PD-L1 antibody atezolizumab in combination with the anti-VEGF antibody 

bevacizumab relative to the VEGF receptor inhibitor sunitinib (75). Of note, one of 

the subtypes associated with an improved outcome to ICI, the T effector/proliferative 

subtype (cluster 4), was characterized by high levels of PD-L1 expression on immune 

cells and showed overexpression of inflammatory and cell cycle pathways (75) significantly 

overlapping with those found to be upregulated in association with TC PD-L1 expression 

in our datasets (Figure 2). When we applied the same clustering algorithm to the CM-025 

cohort, we observed that tumors expressing PD-L1 on tumor cells were enriched in the T 

effector/proliferative subtype (cluster 4) (Figure 3A, B). Moreover, patients in cluster 4 had 

improved PFS on nivolumab relative to everolimus (HR 0.32; 95% CI 0.13–0.83) (Figure 

3C, D). In addition, 30% of patients in cluster 4 treated with nivolumab achieved CR or 

PR, compared to 0% of the patients treated with everolimus (p=0.04) (Figure S6). It should 

be noted that TC PD-L1 expression was not by itself significantly associated with clinical 

outcome in the CM-025 cohort (Figure S4).

Tumor cell PD-L1 expression is associated with higher levels of T-cell activation

Recent studies of ccRCC transcriptomic datasets have identified gene signatures of T-cell 

activation that predict favorable outcomes to ICI relative to targeted therapies and an 

angiogenesis signature associated with improved outcome in patients treated with a VEGFR-

tyrosine kinase inhibitor (i.e., sunitinib). Here we investigated the link between T cell 

activity and tumor cell PD-L1 expression by comparing signature scores in PD-L1 positive 

and negative samples.

In the 8 paired samples, levels of T-cell activation signatures (IMmotion 150 Teff 

signature, the JAVELIN signature, the Merck18 signature, and the Cytolytic signature) were 

numerically higher in the PD-L1 positive tumor areas with statistical significance (q<0.25). 

The IMmotion 150 angiogenesis signature was significantly enriched in the PD-L1 negative 

tumor areas (q<0.25) (Figure 4A). In the CM-025 cohort, all four T-cell activation signatures 

were significantly upregulated in the PD-L1 positive tumors (q<0.25). No signature was 

significantly upregulated in the PD-L1 negative tumors (Figure 4A).

Tumor cell PD-L1 expression is associated with higher levels of tumor-infiltrating immune 
cells

To gain insights into the composition of the tumor microenvironment of ccRCCs expressing 

PD-L1 on cancer cells, we performed RNAseq data deconvolution using CibersortX (Table 

S5). In the 8 paired samples, we observed that levels of total leukocytes, gamma delta 

T cells, eosinophils, CD4 memory activated T cells, neutrophils, and CD8 T cells were 

numerically overrepresented in the TC PD-L1 positive areas but without reaching the 

statistical significance (p<0.05, q<0.25). Levels of T cells CD4 naïve (p<0.25) and mast 

cells resting (p<0.05) were numerically more prominent in the PD-L1 negative areas (Figure 

4B).
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In the CM-025 cohort, M1 macrophages, total leukocytes, follicular helper T cell, CD8 

T cell, regulatory T cells (Tregs), and CD4 memory activated T cells were significantly 

(p<0.05) overrepresented in the TC PD-L1 positive tumors. CD4 memory resting T cells 

were significantly overrepresented in the PD-L1 negative tumors (p<0.05) (Figure 4C).

Endogenous Retroviruses (ERVs) are differentially expressed between PD-L1 positive and 
negative tumor samples

There is evidence that ERVs can elicit an anti-tumor immune response and may predict 

response to ICI in ccRCC (57,80,81). Using RNA sequencing data, we explored the 

expression of endogenous retroviruses in relation to the TC PD-L1 status.

Analysis of the 8 paired samples revealed that 34 ERVs were differentially expressed 

between PD-L1 positive and negative regions (p<0.05 and log2 fold change >1) with nine 

ERVs overexpressed in the PD-L1 positive areas and 25 in the PD-L1 negative ones (Figure 

S5A, S5C).

In the CM-025 cohort, 55 ERVs were significantly overexpressed in the PD-L1 positive 

tumors and 190 in the PD-L1 negative ones (Figure S5B, S5D). Only one ERV was 

found to be overexpressed in the PD-L1 positive samples of both the 8 pairs and 

the CM-025 cohort (ERVH-7 or 4185_chr14:76044307–76053991) (Figure S5C). Six 

ERVs were overexpressed in PD-L1 negative samples in both cohorts (ERVH-6 or 

1313_chr4:9640061–9648771; ERVFRD-2 or 1812_chr5:37086510–37094092; ERVH-1 or 

3250_chr10:53788498–53799321; ERV9-1 or 3199_chr10:17052206–17060764; ERVH-4 

or 3081_chr9:82752251–82760393; ERVH-2 or 505_chr2:35026065–35031792) (Figure 

S5D).

Discussion

Prior studies have demonstrated that several signal transduction pathways can individually 

upregulate PD-L1 expression in mouse models and human cell lines of multiple tumor types, 

including melanoma, prostate, colon, pancreas, breast, and sarcomas (39–41). Through 

the analysis of patient samples and paired tumor areas, we have shown that both tumor 

cell-intrinsic and -extrinsic mechanisms are likely intertwined in the regulation of TC PD-L1 

expression in ccRCC.

By conducting a controlled study focused on the comparison of transcriptomic data obtained 

from PD-L1 positive and PD-L1 negative areas isolated from individual ccRCC tumors, 

we found that TC PD-L1 expression was associated with increased inflammatory signals 

mediated by cytokines (e.g. IFN-α and IFN-γ responses, allograft rejection, TNF-α) as 

well as enhanced cell cycle and oncogenic pathways (e.g. G2M checkpoint, E2F targets, 

MYC targets, mTOR signaling). Importantly, these findings were confirmed through the 

analysis of an independent cohort of patients from a phase III clinical trial of nivolumab 

versus everolimus in metastatic ccRCC (CM-025). In line with the observation that cytokine 

signaling correlated with upregulation of PD-L1 in cancer cells, we found that T cell 

activation signature levels as well as levels of tumor infiltrating immune cells were higher in 

TC PD-L1 positive samples. One possible limitation of these findings is that in ccRCC, high 
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nuclear grade is known to be associated with both TC PD-L1 expression (4) and increased 

levels of inflammation (82) and cell proliferation (83) (found to be associated with TC 

PD-L1 expression in this study), raising the concern that it might represent a confounding 

variable. However, by performing a sensitivity analysis in the grade 4 or grade 2/3 tumor 

subsets of the CM-025 cohort, we obtained results largely overlapping with those observed 

in the entire cohort, suggesting that the correlates of TC PD-L1 expression identified by our 

investigation are independent of tumor grade.

There is substantial evidence that signaling through several cytokines (e.g. IFN-ɣ, IFN-α, 

TNF-α, IL-6 and others) can induce expression of PD-L1 in cancer cells (39–41). In 

line with recent findings from Banchereau and colleagues (54), our results suggest that 

cell-extrinsic immune-related signals are likely critical for TC PD-L1 regulation in ccRCC 

tumors. On the other hand, several tumor cell-intrinsic oncogenic signals that were found 

to be consistently associated with TC PD-L1 expression in our study (e.g. MYC and PI3K-

AKT-mTOR) have also been shown to regulate PD-L1 protein levels in preclinical models of 

various tumor types (39–41). Of note, Messai and colleagues recently reported that PD-L1 

represents a direct target of HIF-2α in ccRCC cell lines (52). In our study, the hypoxia 

pathway was generally upregulated in TC PD-L1 positive samples (with the exception of 

the G2/3 sample subset). However, the lack of a specific gene signature of HIF-2α activity 

in ccRCC limits the robustness of our analysis. In summary, in the context of previously 

published data, our results raise the possibility that cell-extrinsic signaling through cytokines 

(largely released by immune cells) are not solely responsible for PD-L1 expression in 

ccRCC cancer cells, which might require concomitant tumor cell-intrinsic pro-oncogenic 

signals. Importantly, however, some of the pathways found to be associated with TC PD-L1 

expression and considered to be tumor cell-intrinsic in this study (e.g. glycolysis, mitotic 

spindle, fatty acid metabolism) have been recently reported to be upregulated in immune 

cells (CD8 positive T cells) in the RCC microenvironment (84). Therefore, in absence 

of single cell RNA seq data, it is not possible to determine whether these transcriptional 

programs are activated in the tumor cells and/or in the tumor-infiltrating immune cells. 

In conclusion, further analyses of ccRCC model systems are needed to formally test the 

hypothesis that tumor cell-intrinsic pathways play a central role in the is regulation of PD-L1 

expression in ccRCC.

The anti-PD-1 antibody nivolumab is approved for the treatment of patients with metastatic 

ccRCC as monotherapy (after VEGFR inhibitor failure) and in combination with the 

anti-CTLA4 antibody ipilimumab or the multi-kinase inhibitor cabozantinib (as frontline 

therapies). PD-L1 expression in tumor cells is currently an FDA-approved biomarker for 

nivolumab-based therapies in other tumor types, including NSCLC (85) and Head and Neck 

Squamous Cell Carcinoma (86). Yet, in the context of ccRCC, its predictive value remains 

uncertain (3,87). Since accurate assessment of PD-L1 expression by immunohistochemistry 

is particularly challenging in ccRCC (4,88,89), the transcriptomic correlates of TC PD-L1 

expression identified here not only provide insights into ccRCC biology the but might 

facilitate the development of more robust and clinically significant biomarkers for ICI 

response in this tumor type. Motzer and colleagues recently proposed a ccRCC classification 

system based on analysis of transcriptomic data and identified tumor subtypes with 

improved response to atezolizumab (anti PD-L1) in combination with bevacizumab (anti-
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VEGF) versus sunitinib (VEGFR inhibitor) in the IMmotion 151 trial (75). We noticed 

that the transcriptomic features of one of the subtypes associated with better outcome 

on atezolizumab plus bevacizumab (the T effector/proliferative subtype, cluster 4) largely 

overlapped with those of TC PD-L1 positive samples in our study. Indeed, cluster 4 

displayed significant upregulation of both immune (T-effector, JAK/STAT, and INF-α 
and -ɣ) and cell cycle (G2M, E2F targets, MYC targets) transcriptional programs. As 

predicted, when we classified tumors from the CM-025 trial using the clustering algorithm 

from Motzer et al, we found that cluster 4 was enriched for tumors expressing PD-L1 

on tumor cells. Of note, TC PD-L1 expression itself was not associated with clinical 

outcome in the CM-025 trial, either in the entire patient population (55) or in the subset 

of patients analyzed here. In contrast, our analysis showed that patients in cluster 4 displayed 

improved ORR and PFS on nivolumab relative to everolimus. These findings suggest that, 

compared to TC PD-L1 status, co-expression of immune and cell cycle gene signatures 

(i.e. transcriptomic correlates of PD-L1 expression) may provide better predictive value for 

response to anti-PD1-based immunotherapy in metastatic ccRCC. Additional investigations 

of clinical trial samples (especially in the frontline setting) are warranted to confirm our 

results. Interestingly, a recent analysis of RNA-seq data from the CheckMate 214 trial 

showed that overexpression of several gene sets associated with TC PD-L1 expression in our 

study (Apoptosis, Reactive Oxygen Species Pathway, IL-6/JAK/STAT3 Signaling, Allograft 

Rejection, and Inflammatory Response) was associated with longer PFS in patients treated 

with nivolumab plus ipilimumab but with shorter PFS in patients treated with sunitinib (90)

Through the analysis of paired samples, we have shown that ccRCC tumors can harbor 

PD-L1 positive and PD-L1 negative tumor regions that are characterized by distinct 

transcriptional states. It should be noted that this intratumoral heterogeneity represents a 

major challenge for the development of clinically meaningful biomarkers of response to 

immune checkpoint inhibitors in this tumor type.

It has been hypothesized that in ccRCC, aberrantly expressed ERVs might represent tumor 

antigens that are recognized by tumor infiltrating immune cells. Indeed, ERV expression 

levels have been shown to correlate with levels of intratumoral immune cells, cytolytic 

activity, and immune checkpoint molecules and have been associated with response to ICI 

(57,73,91,92). Here we attempted to identify ERVs upregulated in tumor samples expressing 

PD-L1 in the tumor cells. Only one ERV (ERVH-7) was overexpressed in PD-L1 positive 

samples of both cohorts. The function of ERVH-7 in tumor biology is unexplored and 

further investigation is necessary to determine if ERVH-7 plays a role in eliciting anti-tumor 

immunity in ccRCC. Please note that none of the ERVs overexpressed in either PD-L1 

positive or PD-L1 negative samples of both cohorts were found to be associated with clinical 

outcome to anti-PD1 therapy in a prior study from our group (56).

Our study has some limitations. First, the discovery cohort included only a small number of 

PD-L1 positive and negative paired samples. Second, although we utilized samples from a 

prospective clinical trial, this was an ad hoc analysis that should be considered exploratory 

in nature. Third, tumor samples from the CM-025 trial were largely collected from surgeries 

(mostly nephrectomies) that took place before the patients received any systemic therapy. 

Since patients were enrolled in the trial after failing VEGFR TKIs, the tumor tissues that 
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we analyzed might not entirely be representative of VEGFR TKI resistant metastatic lesions 

that were targeted by the treatment with nivolumab or everolimus. As a consequence, our 

findings need to be further investigated in the context of patient cohorts that have received 

front-line anti-PD-1-based therapy. Fourth, the ERV analysis that we performed is highly 

exploratory and the clinical significance of the findings is uncertain.

In conclusion, our results suggest that PD-L1 regulation in ccRCC cells is a complex 

process involving multiple tumor cell-intrinsic and -extrinsic pathways, which might act 

in an interconnected and synergistic fashion. The quantitation of these transcriptional 

programs might better predict benefit from anti-PD-1 based therapy compared to TC PD-L1 

expression alone in metastatic ccRCC.
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Statement of translation relevance

The anti-PD-1 antibody nivolumab is approved, either alone or in combination with 

other agents, for the treatment of patients with metastatic clear cell renal cell carcinoma 

(ccRCC). While tumor cell (TC) PD-L1 expression by immunohistochemistry is a 

biomarker of response to nivolumab-based therapies in some tumor types, its clinical 

utility in ccRCC is uncertain. By analyzing paired samples from individual tumors 

as well as tissue specimens from a randomized phase 3 clinical trial of nivolumab 

versus everolimus (CheckMate 025), we demonstrated that in ccRCC, PD-L1 expression 

in TC is associated with increased activity of both immune- and cell-proliferation-

related pathways and that a molecular subtype of RCC characterized by combined 

overexpression of these pathways shows better outcome to nivolumab relative to 

everolimus. Our findings indicate that the quantitation of transcriptional programs 

correlated with TC PD-L1 expression may be a clinically useful predictor of response 

to anti-PD-1-based therapy in metastatic ccRCC.
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Figure 1. Clear cell RCC with heterogeneous tumor cell PD-L1 expression and CD8 positive cell 
infiltration.
Representative low magnification images of tissue sections from a ccRCC stained with 

hematoxylin & eosin (A) or immunostained for PD-L1 (B) or for CD8 (C) (scale bars: 

1mm). Higher magnifications of the selected PD-L1 positive (D, E, F) and PD-L1 negative 

(G, H, I) areas are also shown (scale bars: 100μm).
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Figure 2. Immune- and cell proliferation-related pathways are enriched in TC PD-L1 positive 
samples.
Hallmark pathways differentially expressed (q<0.25) between PD-L1 positive and PD-L1 

negative samples in (A) 8 pairs and (B) CM-025 cohort. Red color pathways are tumor 

intrinsic and blue color pathways are tumor extrinsic. Bold black dashed lines indicate 

q<0.25 and gray dashed lines indicate q<0.05. Venn diagram of significant pathways 

(q<0.25) in the 8 pairs and CM-025 cohort that are enriched in (C) PD-L1 positive and 

(D) PD-L1 negative samples. Representative GSEA plots for common pathways between the 

8 pairs and CM-025 cohort that are enriched in (E) PD-L1 positive and (F) PD-L1 negative 

samples.
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Figure 3. A molecular subtype of RCC characterized by overexpression of immune- and cell 
proliferation-related pathways (cluster 4) shows significantly improved PFS on nivolumab 
relative to everolimus in the CM-025 cohort.
A) Heatmap of genes included in transcriptional signatures. Samples are grouped by 

molecular subtypes (NMF_GROUP) determined by NMF clustering according to Motzer 

et al (75). The number of patients in each NMF group is: 1=31; 2=72; 3=56; 4=32; 5=17; 

6=28. B) TC PD-L1 expression by immunohistochemistry in each NMF_GROUP. p value 

was obtained from Pearson’s chi-square test. C) Forest plots for PFS hazard ratios by 

NMF_GROUP between patients treated with everolimus (Evero) versus nivolumab (Nivo). 

mPFS: median PFS. D) Kaplan-Meier curves of PFS by NMF_GROUP in the nivolumab or 

everolimus treatment arm. p value was calculated using log-rank test.
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Figure 4. TC PD-L1 positive samples are characterized by higher levels of both T-cell activity 
and tumor-infiltrating immune cells.
A) Barplot of gene signatures between two cohorts (8 pairs: light orange bars; CM-025 

cohort: orange bars). Bold black dashed lines indicate statistical significance with q<0.25 

and gray dashed lines indicate q<0.05. CibersortX p values of all immune cells distribution 

between PD-L1 positive and PD-L1 negative samples for (B) 8 pairs and (C) CM-025 

cohort. Bold black dashed lines indicate statistical significance with p<0.05 and gray dashed 

lines indicate p<0.25. ** indicates q<0.05, * indicates q<0.25.
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