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Abstract

Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to 

improve targeting and evaluation of responses to therapy in this disease are needed. Here, 

we integrate quantitative magnetic resonance imaging (MRI) data with biologically-based 

mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic 

therapy (NAST) on an individual basis. Specifically, 56 TNBC patients enrolled in the ARTEMIS 

trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then 

paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were 
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acquired before treatment and after two and four cycles of A/C. A biologically-based model 

was established to characterize tumor cell movement, proliferation, and treatment-induced cell 

death. Two evaluation frameworks were investigated using: 1) images acquired before and after 

two cycles of A/C for calibration and predicting tumor status after A/C, and 2) images acquired 

before, after two cycles, and after four cycles of A/C for calibration and predicting response 

following NAST. For Framework 1, the concordance correlation coefficients between the predicted 

and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 

0.94, respectively. For Framework 2, the biologically-based model achieved an area under the 

receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating 

pathological complete response (pCR) from non-pCR, which is statistically superior (P < 0.05) 

to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured 

after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal 

dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response.
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Introduction

Neoadjuvant systemic therapy (NAST) is widely considered the standard-of-care for 

treatment of stage II-III, locally advanced triple-negative breast cancer (TNBC). NAST 

increases the success rate for breast conservation surgery by reducing tumor burden and 

provides the opportunity to treat micrometastases in a naïve state, thereby improving 

progression-free survival of patients (1, 2). Importantly, TNBC patients who achieve 

a pathological complete response (pCR) in the neoadjuvant setting have a favorable 

recurrence-free survival; in contrast, patients who have residual disease after NAST are 

at increased risk of early recurrence and death (3, 4). Unfortunately, based on recent pooled 

analysis of 52 studies from 1999 to 2016, only 32.6% of TNBC patients treated with 

standard taxane/anthracycline-based NAST have a pCR or minimal residual disease at the 

time of surgical resection (4).

Development of novel neoadjuvant treatment regimens has provided opportunities to 

tailor treatment for individual patients to improve outcomes for TNBC (5–7). Thus, it is 

becoming increasingly important to develop techniques which can accurately predict the 

individual TNBC patient’s response to NASTs. If it could be definitively determined that 

a therapeutic regimen is unlikely to achieve pCR for a patient, then risk-adapted therapy 

could be adopted, with addition of rationally-based treatments or removal of unnecessary 

components, potentially improving outcomes and lowering side effects. In particular, the 

importance of being able to remove patients from ineffective therapies, as early as possible, 

is difficult to overstate given their significant toxicities (8), including increased likelihood 

of hospitalization, cardiac damage, leukemia, and even death (9). Moreover, accurately 

predicting response to NAST would enable identification of exceptional responders who 
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might benefit from treatment de-escalation (10), including the possibility of non-surgical 

management of their disease (11).

Numerous efforts have been devoted to investigating approaches that can accurately 

distinguish pCR from non-pCR patients early in NAST. Imaging biomarkers derived from 

magnetic resonance imaging (MRI), positron emission tomography, and ultrasound imaging 

have been shown to be strongly correlated with the response of breast tumors to NAST 

(12–14). In particular, MRI measurements before and during NAST have been valuable 

predictors of pCR, especially the functional tumor volume (FTV) derived from dynamic 

contrast-enhanced (DCE-) MRI and the apparent diffusion coefficient (ADC) derived from 

diffusion-weighted (DW-) MRI (15–18). More recently, the methods of artificial intelligence 

have been used to extract features from high-dimensional data to build predictive models 

for differentiating pCR from non-pCR in breast cancer (19, 20). However, the majority 

of these approaches for predicting or assessing response have the intrinsic limitation of 

being population-based. Importantly, population-based approaches, which rely exclusively 

on statistical inference from properties of large populations, inevitably obscure conditions 

specific to the individual patient over time (21), especially for a disease as heterogeneous 

as cancer (22). Conversely, biologically-based models employing patient-specific data have 

the potential to shift the paradigm from population- to individual-based approaches (7). 

Furthermore, biologically-based mathematical modeling of tumor response can not only 

predict the changes in global metrics summarizing tumor burden (e.g., total tumor volume 

and cellularity), but also reveal biologically specific information (e.g., spatially-resolved 

maps of proliferation, pharmacokinetics, and each patient’s sensitivity to the administered 

therapies). It promises unique opportunities to characterize tumor pathophysiology, to 

rigorously forecast long-term outcomes, and even optimize treatment plans on a patient-

specific basis (23, 24).

In this contribution, we develop a clinical-computational approach to establish patient-

specific models to make early predictions on the spatiotemporal development and response 

of individual TNBC patients to standard-of-care NAST. As this model can represent a 

physical object (i.e., tumor), predict the behavior of the object given influences (i.e., 

treatments), and enable decision-making to optimize the future behavior of the object (i.e., 

improve the treatment outcomes) (25, 26), we posit that our methodology represents a 

practical manifestation of digital twins in oncology. The approach requires no population-

based training of models; instead, it integrates an individual patient’s multiparametric MRI 

data obtained at multiple time points during their treatment (Fig. 1A) with biologically-

based mathematical modeling. In particular, two frameworks were constructed to determine 

the predictive utility of each patient’s digital twin (Fig. 1B). In Framework 1, we seek 

to employ digital twins to predict the outcome of a single NAST regimen (i.e., A/C); 

specifically, we evaluate the accuracy of digital twins to predict global metrics related to 

change in tumor burden, as well as spatiotemporally resolved tumor dynamics at the end 

of A/C (Fig. 1C). In Framework 2, we seek to employ digital twins to predict the outcome 

of the entire NAST (i.e., both A/C and paclitaxel); specifically, we evaluate the accuracy of 

digital twins to predict individual pCR or non-pCR status at the completion of NAST (Fig. 

1D).
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Materials and Methods

Patients and MRI Data

Treatment-naïve patients with biopsy-confirmed TNBC were enrolled in the prospective, 

Institutional Review Board–approved clinical trial, “A Robust TNBC Evaluation FraMework 

to Improve Survival” (ARTEMIS, NCT02276442). Among patients who signed informed 

consent between June 2018 to January 2020, those who had clinical stage I–III disease, 

had completed NAST with a complete series of MRI scans, and had known post-surgical 

pathology were included in this study (n = 56).

Each patient underwent multiparametric MRI acquisitions before treatment (baseline/V1), 

after two cycles (V2), and after four cycles (V3) of the standard-of-care (neoadjuvant) 

doxorubicin and cyclophosphamide (A/C). (Each “cycle” of A/C is 2 weeks; see Fig. 

1A.) Patients with disease progression, or <70% reduction in tumor volume at the end of 

A/C (27), were offered the opportunity to enroll in a biomarker-guided clinical trial using 

targeted bio/chemotherapy to complete therapy (n = 9). Patients not meeting the criteria 

for suboptimal response to A/C were recommended to continue standard-of-care paclitaxel 

weekly for 12 cycles (n = 43), or double-dosed every 3 weeks for four cycles (n = 4). (The 

exact paclitaxel regimen for each patient’s was determined by their physician.) All patients 

received surgery after NAST. The post-surgical pathology was used to classify patients as 

pCR or non-pCR; pCR was defined as the absence of residual invasive and in situ cancer on 

hematoxylin and eosin evaluation of the complete resected breast specimen and all sampled 

regional lymph nodes following completion of NAST (28).

MRI was performed on a GE Discovery MR750 or MR750w whole-body scanner (GE 

Healthcare) with an eight-channel bilateral breast coil. In particular, the DCE-MRI data 

was acquired using a 3D DISCO sequence with bipolar readouts (29) (Fig. 2A) and the 

following scan parameters: field-of-view = 30 × 30 cm2, matrix size = 320 × 320, slice 

thickness/spacing = 3.2/−1.6 mm, number of slices = 140, flip angle = 12°, repetition/echo 

time = 8/2 ms. After one pre-contrast phase was obtained, a single bolus of contrast agent 

(Gadovist, Bayer HealthCare) was injected (0.1 mL/kg at ~ 2 mL/second followed by 

saline flush) at the start of the post-contrast acquisition. The temporal resolution of the 

DISCO series ranged from 8 to 15.5 s (median = 11 s), depending on the slice coverage, 

which resulted in the number of post-contrast phases varying from 32 to 64 (18). The 

DW-MRI was acquired using a 2D spin-echo sequence of the diseased breast with the 

following scan parameters: field-of-view = 16 × 16 cm2, matrix size = 80 × 80, slice 

thickness/spacing = 4/0 mm, number of slices = 16, flip angle = 90°, repetition/echo time = 

4000/70 ms. The b-values used were 100 and 800 s/mm2. The apparent diffusion coefficient 

(ADC) map was calculated using a GE AW server (v3.2, GE Healthcare, Milwaukee, 

WI). The tumors were manually segmented by two board-certified breast radiologists with 

4–12 years of experience (authors MB, RMM). Tumor segmentations were reviewed by 

two breast fellowship trained radiologists with 19 and 20 years of experience (authors 

GMR, BEA). The entire tumor volume was segmented on two early phases (60 and 150 

s) of the DCE-MRI using an in-home software package developed in MATLAB (R2021b, 

Mathworks, Natick, MA). All segmentations were further refined using the thresholding tool 

Wu et al. Page 4

Cancer Res. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02276442


of the package to exclude non-tumor voxels that were determined by radiologists. Necrotic 

regions and artifacts from the biopsy clip were manually segmented and excluded by two 

radiologists (authors MB, RMM).

Image processing

All MRI data from each patient were processed through a pipeline that consists of three 

components: 1) pre-processing, 2) inter-visit registration, and 3) post-processing (Fig. 

2B–D). This highly automated pipeline allows efficient processing of multi-visit, multi-

parametric MRI with minimal user input.

First, the multiparametric images are co-localized to the same imaging grid to align slices 

and voxel locations. Specifically, DCE-MRI collected bilaterally were trimmed to the DW-

MRI field-of-view covering the diseased breast, and the slices of DW-MRI and ADC maps 

were linearly interpolated to match the slice locations of DCE-MRI. A rigid registration was 

applied on the DCE-MRI to align all phases in one scan to the pre-contrast phase (MATLAB 

function, imregtform). A rigid registration was applied between the co-localized DCE-MRI 

and DW-MRI data to remove the small mismatches between the image volumes.

Second, an inter-visit image registration was performed to account for the change of 

breast tissue shape and patient position across MRI visits. Specifically, the registration was 

performed to align the images from V1 and V3 to the images from V2. The algorithm 

consisted of a rigid registration of the tumor ROIs for initial alignment, followed by a 

deformable b-spline, non-rigid registration on the whole breast with a rigidity penalty on 

the tumor regions (30–32). This rigidity penalty was imposed to preserve the tumor volume 

and shape across all visits. This registration was developed based on MATLAB and an 

open-source, command-line software, Elastix (33).

Third, the post-processing was performed as preparation for the subsequent predictive 

modeling. Specifically, a semi-automatic segmentation of the breast contour was performed 

on the pre-contrast frame of DCE-MRI based on a manually chosen intensity threshold, 

followed by a smoothing of the segmented mask edge (MATLAB function, imgaussfilt). 
A two-class k-means clustering (MATLAB function, kmeans) was used to segment 

fibroglandular and adipose tissues in each pre-contrast DCE-MRI (34). The enhancement 

of each DCE-MRI was calculated by subtracting the pre-contrast phase from the average 

of the post-contrast phases. A tumor cellularity map, N(x,t), was estimated based on the 

measured ADC map of each MRI visit (35):

N x, t = θ ADCw − ADC x, t
ADCw − ADCmin

, [1]

where ADCw is the ADC of free water (3 × 10−3 mm2/s), ADC(x,t) is the ADC value for the 

voxel at position x and time t, and ADCmin is the minimal (positive) ADC value in the tumor 

for the patient across all visits. The carrying capacity, θ, describes the maximum number 

of tumor cells that can physically fit within a voxel, which was determined by assuming a 

spherical packing density of 0.7405 and a nominal tumor cell radius of 10 μm (30).
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Image-guided biologically-based modeling

We have previously developed a biologically-based mathematical model to represent 

the spatiotemporally-resolved dynamics of tumor growth and response to NAST (30, 

36). Specifically, a reaction-diffusion partial differential equation is used to describe the 

evolution of tumor cells, N(x,t), in response to the therapies, as shown in Eq. [2]:

∂N x, t
∂t = ∇ · D x, t ∇N x, t

Movement

Tumor cell diffusion

+ k x 1 − N x, t
θ N x, t

Proliferation

− N x, t ∑
i

λi x, t

treatment‐induced death

Reaction

,
[2]

where a detailed list of variables, parameters, their definitions and assignments are given 

in Supplemental Table S1. The first term on the right-hand side of Eq. [2] describes the 

movement of tumor cells, as well as the compression of surrounding tissue, by a diffusion 

process coupled to tissue mechanical properties (37) via Eq. [3]:

D x, t = D0e−γσ x, t , [3]

where D0 is the tumor cell diffusion coefficient in the absence of external forces. The 

exponential term reduces tumor cells’ mobility due to the surrounding tissue stiffness 

via the von Mises stress, σ(x,t), and an empirical coupling constant, γ. The von Mises 

stress was calculated for the fibroglandular and adipose tissues within the breast, with the 

fibroglandular tissue assigned a greater stiffness than the adipose tissue. Technical details on 

the mechanical-coupled diffusion can be found in (37). The proliferation of the tumor cells 

(second term on right-hand side of Eq. [2]) is described by logistic growth with a spatially 

varying proliferating rate, k(x), and a global carrying capacity, θ. The effects of administered 

therapies (third term on the right-hand side of Eq. [3]) is modeled as the treatment-induced 

death rates of tumor cells, λi(x,t). The death rates are determined by the concentration of the 

administered drugs and the exponential decay of their efficacies:

λi x, t = αi ∑
j = 1

Ji
e−βi t−τi, j C x, τi, j , i = 1, 2, and 3, [4]

where αi is the efficacy of the ith administered drug, and i = 1, 2, and 3 refers to doxorubicin, 

cyclophosphamide, and paclitaxel, respectively. As each drug was administered multiple 

times during the therapeutic regimen, the total effectiveness of drugs at time t was an 

accumulation of all administered cycles and their decays; that is, the jth administration of 

the ith drug was conducted at time τi,j at a total of Ji times. The decay of drug efficacy 

from each administration is represented by the decay rate of βi. The spatial distribution of 

ith drugs caused by the jth administration of this therapy, C(x, τi,j), is determined by the 

enhancement of DCE-MRI (30). Specifically, from the last DCE-MRI data collected before 

the injection at τi,j, the area under the DCE-MRI time course is calculated at each voxel 

and normalized by the maximum value within the tumor. The voxel-wise normalized area 
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under the curve represents the map of drug concentration induced by this injection (see 

Supplemental Section 1.1 for details).

Eqs. [2–4] are personalized by the imaging and clinical data of each patient. Specifically, 

the geometry of the computational domain is determined by the segmented breast contour, 

tumor, and fibroglandular/adipose tissues. The tumor cellularity map at each imaging time 

point is determined from the ADC map obtained at the corresponding time point via Eq. 

[1]. The sequential cellularity maps are then used for patient-specific calibration of the 

model parameters (i.e., k(x), D0, αi, and βi). Additionally, the DCE-MRI acquired during 

NAST were used for updating the spatial distribution of the administered drugs and the 

mechanical properties of breast tissues. The model constrained by patient-specific data was 

implemented in MATLAB and solved with the finite difference method. Details of the 

numerical implementation can be found in (30, 36).

Digital twin frameworks

As shown in Fig. 1C, Framework 1 focuses on employing digital twins to predict the 

outcome of a single NAST regimen (i.e., A/C). Specifically, for each patient, the processed 

images from V1 and V2 are imported with the treatment regimen and calibrated to 

Eqs. [2–4]. The calibrated model is the digital twin as it represents patient-specific 

pathophysiological properties of tumor growth and response, including pre-treatment tumor 

shape and cellularity, the proliferation rate and mobility of tumor cells, and the efficacy and 

decay of administered drugs (A/C). As the efficacy and decay rates were strongly coupled 

and challenging to simultaneously calibrate with only two-time-points, the decay rates of 

A/C were randomly sampled five times from ranges found in the published literature (38): 

β1 ∈ [0.01, 0.6] day−1, β2 ∈ [1.0, 5.4] day−1. With each set of sampled β1 and β2, the 

efficacy of A/C was calibrated, resulting in five parameter sets (see Supplemental Section 

2.1). By applying the remainder of the A/C (i.e., all A/C after V2; Fig. 1C) to the digital 

twin, the patient-specific spatiotemporally-resolved tumor cell distributions are predicted up 

to the end of A/C; one prediction is given by each parameter set, resulting in a median and 

a range of predictions. Furthermore, for each patient, global metrics—total tumor cellularity 

(TTC) and total tumor volume (TTV)—are derived from the spatiotemporally-resolved 

predictions.

The predictive accuracy of Framework 1 is evaluated both temporally and spatially. The 

temporal accuracy is assessed by the agreement between the predicted and measured global 

metrics (i.e., TTC and TTV). In particular, the concordance correlation coefficient (CCC; 

see Supplemental Section 1.2) is computed between the predicted and measured changes of 

TTC at the end of A/C; similarly, the CCC is computed between the predicted and measured 

changes of TTV. The spatial accuracy is assessed by the difference between the predicted 

and measured spatially-resolved tumor cell distributions. In particular, for each patient, the 

percent change of tumor cell counts from baseline (V1) to the end of A/C (V3) can be 

calculated at each location, x. We calculate the change from predicted and measured tumor 

cell distributions (i.e., ΔTCDp(x) and ΔTCDm(x), respectively), then the spatially-resolved 

difference is given by ΔTCDp(x) – ΔTCDm(x). In each patient, this difference is reported 

as the median and interquartile range within the original tumor region; across the cohort, 
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the differences are evaluated by the mean and 95% confident interval (CI) of the median 

difference from each patient. (Considering five predictions are given for each patient, all the 

evaluations above are based on the median of the five predictions.)

As show in Fig. 1D, Framework 2 focuses on employing digital twins to predict the 

outcome of the entire NAST (i.e., both A/C and paclitaxel). Specifically, for each patient, 

the processed images from V1, V2, and V3 are imported into the mechanism-based model 

for initialization and calibration. The calibrated model is the digital twin. (Note that the 

three-time-point data enables calibration of the efficacy and decay rates simultaneously 

within the same ranges assumed in Framework 1, so the sampling scheme in Framework 1 

is not needed for Framework 2.) As no imaging data were available during the paclitaxel 

regimen, the efficacy of paclitaxel was set to literature value, α3 = 0.3 day−1 (43), and the 

decay rate of paclitaxel was assumed as the average of calibrated A/C decay rate; β3 = (β1 + 

β2)/2. (See Supplemental Section 2.1 for details.) By applying paclitaxel to the digital twin, 

it predicts the patient-specific spatiotemporally-resolved tumor cell distributions, TTC, and 

TTV at the end of NAST.

The output of Framework 2 is evaluated by the ability of the digital twins to differentiate 

pCR and non-pCR. Specifically, receiver operating characteristic (ROC) analysis is 

performed on the predicted TTC and TTV. We report the area under ROC curve (AUC), 

sensitivity (i.e., the ability to correctly identify residual tumor at final surgical pathology), 

and specificity (i.e., the ability to correctly identify pCR at final surgical pathology) based 

on the optimal cut-off. Additionally, the AUC/sensitivity/specificity from the predicted TTC 

and TTV were compared to those obtained by the measured TTC and TTV. The 95% CIs 

of the AUCs were computed and compared via DeLong’s method (39), with P < 0.05 

considered statistically significant.

Data availability statement

Raw data for this study were generated at the University of Texas MD Anderson Cancer 

Center. Raw data are not publicly available due to IRB restrictions of data containing 

information that could compromise research participant privacy and/or consent. The derived 

data that support the findings of this study are available from the corresponding author upon 

reasonable request.

Results

Framework 1: Patient-specific predictions of the spatiotemporal response to A/C

A cohort of 50 patients was used in Framework 1. Six patients were excluded from the 

entire patient cohort (n = 56) due to image acquisition error or artifacts (n = 1), unsuccessful 

inter-visit registration caused by a large change of breast shape between visits (n = 1), and a 

complete response of the tumor at V2 which led to no data for model calibration (n = 4).

Each patient’s digital twin provided a range of estimated treatment efficacies of A/C (e.g., 

Fig. 3A–B), simulating a range of treatment outcomes (e.g., Fig. 3C–D). Specifically, Fig. 

3C presents a patient who had a suboptimal response to A/C (i.e., V3 imaging showed 

a <70% reduction in tumor volume). The digital twin predicted a mean (range) TTC and 

Wu et al. Page 8

Cancer Res. Author manuscript; available in PMC 2023 March 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TTV of 3.17×108 (3.05×108 – 3.29×108) cells and 3.19×103 (3.15×103 – 3.23×103) mm3 

at V3, respectively. This corresponds to predicted decreases of 49.55% (47.60% – 51.50%) 

and 36.14% (35.44% – 36.84%) for TTC and TTV at V3, respectively. In comparison, 

the measured decreases are 38.99% and 32.58% for TTC and TTV at V3, respectively. In 

contrast, Fig. 3D presents a patient who had a good response to A/C (i.e., V3 imaging 

showed > 70% reduction in tumor volume). The digital twin predicted a TTC and TTV of 

3.82×106 (1.69×106 – 5.94×106) cells and 12.63 (0.00 – 25.27) mm3 at V3, respectively. 

This corresponds to predicted decreases of 98.00% (96.88% – 99.11%) and 99.24% (98.48% 

– 100.00%) for TTC and TTV at V3, respectively. In comparison, the measured decrease 

is 100% for both TTC and TTV at V3. Across the cohort, the CCC between the predicted 

and measured changes in TTC at V3 was 0.95 (Fig. 3E); the CCC between predicted 

and measured changes in TTV was 0.94 (Fig 3F). These results indicate a high predictive 

accuracy and precision (i.e., uncertainty in the model’s prediction; see Supplemental Section 

2.2 for interpretation) of the temporal dynamics of the response of TNBC to neoadjuvant 

A/C (Table 1).

Importantly, the personalized digital twins provide not only the global metrics summarized 

in the previous paragraph, but also the spatiotemporal evolvement of each patient’s tumor. 

Fig. 4A and 4B show the measured and predicted tumor cell distributions, respectively, 

from the central slice of the same two example patients; and Fig. 4C and 4D present the 

3D rendering of measured and predicted tumor volumes, respectively. In both cases, the 

digital twins successfully capture the lack (Fig. 4A) or presence (Fig. 4B) of response. 

Quantitatively, for the first patient, the difference between the predicted and measured 

change of tumor cell distributions at V3 has a median (interquartile range) of −3.30% 

(−22.07% – 0.00%); for the second patient, the difference has a median (interquartile range) 

of 0.00% (0.00% – 0.00%). The median differences across all patients had a mean (95% 

CI) of 0.20% (−20.35% – 20.75%) at V3 (Fig. 4E). These results indicate high predictive 

accuracy and precision of spatially-resolved predictions of tumor cell distributions in TNBC 

patients in response to neoadjuvant A/C (Table 1).

Framework 2: Patient-specific prediction of final pathological response

A cohort of 37 patients (18 pCR, 19 non-pCR) was used in Framework 2. After excluding 

the six patients from the entire cohort (n = 56) as conducted in Framework 1, thirteen 

more patients were excluded due to presumed non-response to further standard-of-care 

chemotherapy and enrollment into clinical trials (n = 9; part of ARTEMIS schema), missing 

the schedule of paclitaxel (n = 2), and errors in image acquisition (n = 2; ADC maps did not 

cover the entire tumor at V3).

For each patient, the personalized digital twin estimated treatment efficacies based on the 

V1 – V3 images (Fig. 5A), and represented tumor dynamics in response to A/C. These 

results were then used to predict the response to paclitaxel and, therefore, final treatment 

outcome after all NAST (Fig. 5C). For example, Fig. 5C shows the digital twin was able to 

be calibrated during the A/C regimen and used to predict no regrowth during paclitaxel for 

a patient that did, in fact, achieve pCR after NAST. In contrast, Fig. 5D shows the digital 

twin captured an initial response and then subsequent regrowth during A/C, and predicted 
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strong regrowth before and during paclitaxel, resulting in a predicted TTC and TTV values 

of 9.03×108 and TTV of 5.21×103 mm3, respectively, after NAST.

Across the cohort, as shown in Table 2, the predicted TTC and TTV (based on the model 

calibrated with the V1-V3 data) from the digital twins both achieved an AUC of 0.89 (0.78 

– 0.99) for distinguishing pCR from non-pCR (with post-surgical pathology as the ground 

truth). In comparison, the measured TTV or TTC (based on the V3 data) achieved an 

AUC of 0.78 (0.62 – 0.94) for distinguishing pCR from non-pCR. Furthermore, using the 

predicted TTC and TTV, the specificity was 0.95 and 0.89, respectively. In comparison, if 

using the measured TTV or TTC, the specificity was only 0.79. These results demonstrate 

that compared to the directly measured data, the digital twins improved the prediction 

of final response. Specifically, the AUC was improved by 14.28% for TTC (P = 0.04; 

significant) and 13.83% for TTV (P = 0.07). The specificity was improved by 20.25% and 

12.66% for TTC and TTV, respectively; the sensitivity was unchanged.

Discussion

We have developed a digital twin approach to achieve early, patient-specific, 

spatiotemporally-resolved predictions of the response of TNBC patients to neoadjuvant 

doxorubicin, cyclophosphamide, and paclitaxel. This approach was based on a biologically-

based mathematical model calibrated with multi-visit, multiparametric MRI acquired for 

the individual patient. Thus, the methodology represents a significant step away from 

population-based predictions, and towards individual-based predictions.

Framework 1 shows how the digital twin employs the imaging data from individual patients 

acquired early in the course of neoadjuvant A/C to make very accurate predictions of 

tumor status at the conclusion of A/C. The CCC between the predicted and measured 

values of total tumor burden and total tumor volume were 0.95 and 0.94, respectively. This 

strongly indicates that early changes during the A/C regimen contain sufficient information 

to calibrate the digital twin and confidently predict tumor response at the end of A/C. This 

observation aligns with previous reports demonstrating that metrics from early-treatment 

MRI are strong predictors of NAST response in breast cancer (15–18, 40). This provides 

strong support that our approach could be used to adjust treatment regimens on a patient-

specific basis. For example, our approach could be applied after the first two cycles of A/C 

to predict if further dosing with A/C should be continued, or if an alternative intervention 

should be considered.

Framework 2 shows how the digital twin employs the imaging data from individual patients 

acquired during the A/C portion of NAST to make accurate predictions of their final 

pathological status (i.e., pCR or non-pCR) at the completion of all NAST, with an AUC 

= 0.89. Importantly, using the tumor volume measured at the end of A/C yielded only an 

AUC = 0.78; thus, the digital twin provided a substantial improvement on the AUC (14%). 

Comparing to previous MRI-based predictions of breast cancer response to NAST (17, 18, 

40, 41), the digital twin also shows an improved accuracy. Both our previous study (18) and 

an I-SPY study (41) reported the best discrimination between pCR/non-pCR in TNBC using 

the optimized mid-treatment FTV, with AUC = 0.85. Moreover, the addition of post-NAST 
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ADC to FTV showed an improvement for predicting response in TNBC, increasing AUC 

from 0.71 to 0.81 (17). Combining a pharmacokinetic parameter (i.e., kep) with ADC 

measured post one-cycle NAST yielded an AUC = 0.88 in breast cancer (40). Moreover, the 

predictive accuracy of the digital twin is comparable to state-of-the-art, machine learning 

(ML)-based predictions. For example, Ravichandran et al. applied a convolutional neural 

network (CNN) to predict pCR from pre-treatment DCE-MRI and achieved an AUC of 0.77 

in a total of 166 breast cancer patients (42). A more recent CNN-based study using both 

pre- and post-treatment DCE-MRI achieved an AUC of 0.91 in a cohort of 42 breast cancer 

patients (43).

Importantly, our digital twin approach has several inherent advantages comparing to ML 

algorithms. First, ML methods rely on access to a large patient population to train the 

algorithm and this training dataset must include all relevant pathophysiological features of 

the disease under investigation, have high-quality annotations, and be generalizable from one 

population to the next. In contrast, our approach calibrates a biologically-based model using 

patient-specific data to make patient-specific predictions, which does not require population-

based training or annotation labels. Second, ML can be difficult to interpret biologically due 

to complex modeling features. In contrast, the digital twins provide an accurate prediction 

not only of pCR status at the conclusion of NAST, but also of the mechanistic interpretation 

of the tumor development during NAST. For example, our modeling framework can capture 

the initial and subsequent responses to A/C as depicted in Fig. 3A–D for patients with 

very different response dynamics. Third, because the digital twin parameters quantify and 

elucidate the observed tumor response dynamics, it provides another potential application: 

predicting response to multiple candidate therapeutic regimens. Thus, digital twins built on 

quantitative imaging data can provide—early in the course of NAST—a practical way to 

optimize individual treatment plans and hasten truly personalized cancer care (44).

There are, however, a few areas of our digital twin that require further investigation. First, 

instead of utilizing DCE-MRI to inform the spatial distribution of delivered drug, coupling 

the tumor-response model (i.e., Eq. [2]) with drug delivery and/or tumor angiogenesis 

models (45, 46) could estimate drug distribution more accurately. Second, instead of 

assuming cell death is merely proportional to drug concentration (i.e., the last term on 

the right-hand side of Eq. [2]), a model accounting for detailed therapeutic mechanisms and 

pharmacodynamics could improve predictive accuracy (47, 48). Third, our methodology is 

not currently capable of predicting invasion to the lymph nodes or axilla, which limits the 

accuracy for predicting pathological response or residual cancer burden (see Supplemental 

Section 2.3 for additional analysis). Of course, building more comprehensive models 

necessitates either more assumptions or more measurements, so a careful balance of model 

complexity and predictive accuracy must be sought.

While the dataset employed in this study is much larger and more homogeneous than our 

previous preliminary study (36), there are still a few points about the cohort that could 

affect the analysis. Framework 1 excluded four patients with no visible tumor at V2. This 

decision was made so we did not overestimate the accuracy of our predictions as such 

patients also show no visible tumor at V3,thereby resulting in a 100%-accurate prediction 

without really testing the modeling. Additionally, the absence of pathological evaluation at 
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the intermediate time point led to the lack of “ground-truth” for Framework 1. Framework 

2 excluded nine patients due to enrollment in other trials, causing the cohort to be enriched 

with pCR patients. This could lead to an overestimation of accuracy for differentiating pCR/

non-pCR (see Supplemental Section 2.4 for additional analysis). Future efforts will seek to 

apply our digital twin formalism to larger patient population, with a more typical partition of 

pCR/non-pCR, for further validation.

While we (and others) have worked hard to characterize errors in the measurements 

themselves (34, 49, 50), the processing (e.g., segmentation, registration) steps are also 

potential sources of error that can be propagated through the modeling pipeline and 

lead to bias in the prediction. A detailed investigation suggested that an un-anticipated 

changes in ADC values and distribution, as well as the appearance of necrotic regions, 

are potential sources of error (see Supplemental Section 2.5). Additionally, Framework 1 

involved sampling the drug decay rates, which introduces an uncertainty in the predicted 

tumor response and limits the accuracy for predicting final pathology (see Supplemental 

Section 2.6). However, compared to previous attempts of simultaneously calibrating the drug 

efficacy and decay (36), this procedure not only ensures a more robust model calibration, but 

also allows the uncertainty in tumor dynamics to be quantified and interpreted. Another 

source of uncertainty is the setting of drug efficacy and decay rate of paclitaxel in 

Framework 2, due to the lack of imaging during the paclitaxel portion of NAST. One 

solution is to incorporate more measurements during NAST, especially after alternating 

the therapies, so that the digital twin can be updated to preserve an accurate prediction. 

Of course, it is important to note the goal of the digital twin is not to provide a perfect 

reproduction of the patient’s situation. Rather, a realistic goal is to provide an accurate and 

practical formalism that provides clinically actionable insights. In the present contribution, 

we have achieved this goal in the context of predicting the response of early-stage triple-

negative breast cancer to neoadjuvant systemic chemotherapy.

This study also supports the value of longitudinal MRI in cancer care. Currently, only 

pre-treatment MRI is standard for assessing breast cancer patients. While increasing to 

multiple MRIs will increase the cost for imaging, the benefit of early detection of (for 

example) chemo-resistance would help to avoid unnecessary toxicity and costs. Both this 

and prior studies showed that follow-up imaging after the first 1 – 3 cycles (15–18, 40, 41), 

of NAST is helpful for the early prediction of response. Including even one follow-up MRI 

(enough to enable model calibration) would be of great benefit.

Conclusion

We have developed patient-specific digital twins via integrating longitudinal, 

multiparametric MRI data with biologically-based mathematical modeling. This technique 

accurately captures the spatiotemporal response of TNBC to NAST and achieves high 

accuracy and specificity for predicting the final pathological status for each individual 

patient. The success of this approach demonstrates the potential of digital twins to shift the 

paradigm from assessing response to predicting and, eventually, optimizing response.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance

Integrating MRI data with biologically-based mathematical modeling successfully 

predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate 

a paradigm shift from simply assessing response to predicting and optimizing therapeutic 

efficacy.
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Figure 1. The two Frameworks to predict patient-specific response to NAST.
Panel A shows the timeline of treatment administration and data acquisition for each patient. 

Panel B illustrates the processing-modeling pipeline to generate patient-specific digital 

twins. Two frameworks are established to evaluate the predictive ability of the digital twins. 

Framework 1 (Panel C) employs digital twins to predict the outcome of the doxorubicin 

and cyclophosphamide (A/C) regimen. Patient-specific images from visits 1 (V1) and 2 (V2) 

along with the schedule of A/C provide the input to which the digital twin is calibrated. 

Once calibrated, the digital twin outputs a prediction of the spatiotemporal development of 

the tumor in response to A/C. The prediction is then directly compared to the V3 images. 

Framework 2 (Panel D) employs digital twins to predict the outcome of the entire NAST. 

Images from V1, V2, and V3, along with the schedule of both A/C and paclitaxel, are given 

as input, and the digital twin outputs a prediction of whether the patient will achieve a pCR. 

The prediction is then directly compared to the post-surgical pathological response.
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Figure 2. Flow charts of MRI data processing.
Panel A shows an example set of DW-MRI and DCE-MRI data acquired at one visit of 

a patient. Panels B-D illustrates the three steps of the processing pipeline, respectively. 

In panel B, multiparametric images are trimmed to the same field-of-view (FOV) and 

registered. In panel C, images from V1 and V3 are registered to those from V2. In 

panel D, tissue segmentation and calculation of tumor cellularity (from the DW-MRI data) 

are performed. These steps prepare the data for calibration with the biologically-based 

mathematical model and establishing each patient’s digital twin.
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Figure 3. Temporal accuracy of patient-specific predictions of the response of TNBC to A/C.
Panels A and B show the time courses of calibrated therapeutic efficacies over the A/C 

regimen in two representative patients, respectively. Panels C and D present the temporal 

dynamics predicted by the digital twins of the same two patients, in which subpanels (i) and 

(ii) represent the change of tumor cellularity (TTC) and tumor volume (TTV), respectively. 

In each panel, red circles present the measured TTC or TTV at certain time points, while 

blue curves and shadows present the predicted median and range of dynamics, respectively. 

Very small differences are observed between the measured and predicted changes of TTC 

and TTV over time in the example patients. Panels E and F plot the correlation between the 

measured and predicted changes of TTC and TTV (CCC = 0.95 and 0.94), respectively, in 

the cohort. These results indicate high precision and accuracy for predicting patient-specific 

temporal dynamics of TNBC in response to A/C.
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Figure 4. Spatial accuracy of patient-specific predictions of the response of TNBC to A/C.
Panels A and B show the measured and predicted tumor cell distributions on the central 

tumor slice for two patients. Panels C and D show the 3D renderings of the measured 

and predicted change of those two tumor shapes. Very small differences are observed 

between the measured and predicted tumor cell distributions or tumor shapes in the patients. 

Panel E presents the difference between the measured and predicted change of tumor 

cell distributions in the cohort. The median (red circle) and interquartile range (blue bar) 

of difference within each patient’s tumor region are presented. The difference across all 

patients has a mean (95% CI) of 0.20% (−20.35% – 20.75%). These results indicate a high 

accuracy of the digital twins for predicting patient-specific spatial dynamics of TNBC in 

response to A/C.
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Figure 5. Accuracy of patient-specific prediction of final pathological response.
Panels A and B show the time courses of calibrated therapeutic efficacies during NAST in 

two example patients, respectively. Panels C and D present the temporal dynamics predicted 

by the digital twins for the same two example patients, in which subpanels (i) and (ii) 
represent the change of tumor cellularity (TTC) and tumor volume (TTV), respectively. 

Panel E presents the ROC analysis of differentiating pCR from non-pCR based on predicted 

(blue) and measured (red) TTC; Similarly, panel F presents the ROC analysis based on 

predicted and measured TTV. The larger AUCs of blue curves compared to red curves in 

both panels E and F indicates superior accuracy for predicting final pathological response.
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Table 1.

Statistical evaluation of patient-specific predictions of the TNBC response to A/C

time point╲metric

temporal accuracy spatial accuracy

CCC between predicted and 

measured ΔTTC
a

CCC between predicted and 

measured ΔTTV
b

mean (95% CI) of the median differences between 

predicted and measured ΔTCD
c

V2 1.00 0.99 0.22% (−3.34% – 3.78%)

V3 0.95 0.94 0.20% (−20.35% – 20.75%)

Note:

a
ΔTTC = change of total tumor cellularity from pre-treatment to time point V2 or V3

b
ΔTTV = change of total tumor volume from pre-treatment to time point V2 or V3

c
ΔTCD = change of spatially-resolved tumor cell distribution within original tumor region from pre-treatment to time point V2 or V3
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Table 2.

Statistical evaluation of patient-specific prediction of final pathological response

metric╲statistic AUC (95% CI) Sensitivity Specificity

TTC
Measured 0.78 (0.62 – 0.94) 0.72 0.79

Predicted 0.89 (0.78 – 0.99) 0.72 0.95

TTV
Measured 0.78 (0.62 – 0.94) 0.72 0.79

Predicted 0.89 (0.78 – 0.99) 0.72 0.89
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