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Summary

Stepped wedge cluster randomized controlled trials are typically analyzed using models that 

assume the full effect of the treatment is achieved instantaneously. We provide an analytical 

framework for scenarios in which the treatment effect varies as a function of exposure time (time 

since the start of treatment) and define the “effect curve” as the magnitude of the treatment effect 

on the linear predictor scale as a function of exposure time. The “time-averaged treatment effect”, 

(TATE) and “long-term treatment effect” (LTE) are summaries of this curve. We analytically 

derive the expectation of the estimator δ  resulting from a model that assumes an immediate 

treatment effect and show that it can be expressed as a weighted sum of the time-specific treatment 

effects corresponding to the observed exposure times. Surprisingly, although the weights sum to 

one, some of the weights can be negative. This implies that δ  may be severely misleading and 

can even converge to a value of the opposite sign of the true TATE or LTE. We describe several 

models, some of which make assumptions about the shape of the effect curve, that can be used to 

simultaneously estimate the entire effect curve, the TATE, and the LTE. We evaluate these models 

in a simulation study to examine the operating characteristics of the resulting estimators and apply 

them to two real datasets.
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1 ∣ INTRODUCTION

Cluster randomized trials (CRTs) involve randomizing groups of individuals to a treatment 

or control condition, and are often conducted when individual randomization is impractical. 

Cluster randomized designs are often adopted to evaluate the impact of health care system 

level interventions through modification of the systematic processes used to treat patients. 

One type of CRT design is the stepped wedge, which has seen increased usage in recent 
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years.1 In a stepped wedge CRT, all clusters begin in the control state and eventually switch 

over to the treatment state in a staggered manner, with a random assignment of clusters to 

crossover times, or “sequences”. Data are typically collected from all clusters at each time 

point, often through a series of cross-sectional surveys. Some unique aspects of this design 

include the partial confounding of the treatment effect with time and the fact that all clusters 

are observed in both the control state and the treatment state. The strengths and limitations 

of the stepped wedge design have been extensively discussed in recent years.2,3,4,5,6,7,8 In 

particular, the stepped wedge design is useful for situations in which it is not possible to 

implement the treatment simultaneously to all participants for logistical, financial, or other 

reasons.9

Standard statistical models for analyzing data from stepped wedge CRTs typically include a 

treatment indicator variable, indexed by cluster and time, that equals zero when the cluster 

is in the control state and one when the cluster is in the treatment state.10 The coefficient 

of this indicator variable can then interpreted as the treatment effect. This modeling choice 

implicitly assumes that the full effect of the treatment is reached immediately (i.e. within a 

single time step) and does not increase or decrease thereafter; for this reason, we refer to 

such models as immediate treatment effect (IT) models. Thus, the IT model assumes that 

the shape of the effect curve – the level of the treatment effect as a function of time since 

the start of the treatment – is fully known; this shape is depicted in Figure 1a. However, 

with the stepped wedge design, once each cluster crosses over to the treatment condition 

it will experience multiple time periods under the treatment condition with the possibility 

that the magnitude of treatment effect will change with increasing treatment experience. 

Such effect modification with increasing time is often referred to as the “learning curve” 

and is well-documented in areas such as surgery.11 As such, the assumption of an immediate 

treatment effect may be violated in some settings.

We follow Nickless et al.12 and use the term “exposure time” to refer to the amount of time 

that has passed since the start of the treatment for a given cluster, where the start of the 

treatment corresponds to exposure time 0. This is contrasted with “study time”, which is the 

amount of time that has passed since the start of the study. There are several ways in which 

a treatment effect can vary with exposure time. The effect might not be realized until the 

second or third time point following the treatment, but then reaches its full effect almost 

immediately; we refer to this as a “delayed effect” (Figure 1b). Alternatively, the magnitude 

of the effect might vary as a function of exposure time (Figure 1c,d). It is also possible for 

the treatment effect to vary as a function of study time (e.g. if an external event affects the 

intervention across the entire study population at once), but we do not consider this case in 

this paper.

In some scenarios, the assumption of an immediate treatment effect seems justifiable. For 

example, it is reasonable to think that the effect of the implementation of a surgical safety 

checklist on patient outcomes would be immediate.13 However, this assumption feels less 

plausible in many other scenarios. For example, the effect of education and counseling 

programs on exclusive breastfeeding rates may take months or years to achieve, since 

behavior change can be a slow process.14 As another example, community health programs 
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often involve a series of training modules for health workers that occur over a period of 

months, each of which is designed to have a separate effect on under-five mortality.15

The problem of a time-varying treatment effect in the context of stepped wedge CRTs was 

first considered by Granston et al.16, who demonstrated that modeling the treatment effect 

using an indicator function can lead to biased estimates and invalid inference when the 

true effect curve is time-varying. They introduced a parametric model to account for the 

time-varying effect which assumes that the effect curve falls in a two-parameter family of 

concave functions. However, this model involves a complex two-stage estimation process 

and leads to incorrect inference when the true effect curve does not fall within this family, 

and fails to converge when the true effect curve is at least partially convex, as in Figure 1d 

(see supplementary material).

Hughes et al.1 further considered the problem of a time-varying treatment effect and noted 

that in certain cases, this issue can be prevented by careful study design, such as increasing 

the length of time between steps, switching from an outcome endpoint that may take years to 

change to a process endpoint that will change more rapidly, or including a “washout period” 

immediately after implementation during which no data are collected. They also suggested 

the approach of changing the indicator variable representing the presence of the treatment 

such that this variable can take on fixed values between zero and one. However, this assumes 

that the shape of the effect curve is fully known.

Hemming et al.17 described a model that includes fixed effects corresponding to study time 

by treatment interaction terms (as opposed to exposure time by treatment interactions), with 

study time treated as a categorical variable. They concluded that the confidence intervals for 

each interaction term coefficient were too wide for the model to be useful; however, they did 

not consider combining the interaction term coefficients into a single estimator.

As part of a simulation study, Nickless et al.12 tested several models that account for 

time-varying treatment effects. They consider four types of interaction terms between time 

and treatment, which differ in terms of how time is modeled. Time can be either study time 

or exposure time, and can be modeled as continuous or categorical. The model that includes 

an interaction between treatment and categorical study time is equivalent to the Hemming et 

al.17 model.

Although several authors have touched on the issue of time-varying treatment effects, we 

see several major gaps in the literature. First, no one has characterized the behavior of the 

standard treatment effect estimator when the assumption of an immediate treatment effect 

is violated. Second, there is ambiguity and lack of precise terminology around estimands 

of interest. Third, different models that account for time-varying treatment effects have not 

been studied in a unified manner.

This paper is organized as follows. In section 2, we analytically examine the behavior of the 

class of models that assume an immediate treatment effect and show that they may exhibit 

counterintuitive behavior in the presence of time-varying treatment effects. In section 3, 

we define several potential estimands of interest, introduce several models that account for 

time-varying treatment effects, and discuss how these models can be used for estimation and 
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hypothesis testing in the context of both confirmatory and exploratory analyses. In section 

4, we perform a simulation study to test the behavior of the models across a selection 

of data-generating mechanisms. In section 5, we illustrate the use of these models in real 

datasets. In section 6, we discuss these results and their implications for the analysis of 

stepped wedge trials.

2 ∣ BEHAVIOR OF THE IT MODEL UNDER A TIME-VARYING TREATMENT 

EFFECT

In this section, we analytically examine the behavior of the IT model treatment effect 

estimator when the true treatment effect varies as a function of exposure time. Throughout 

this paper, we assume that the data come from a “standard” stepped-wedge trial, meaning 

that there are J equally-spaced time steps, Q = J − 1 sequences, and an equal number of 

clusters per sequence, with cross-sectional measurements taken at each time point. Assume 

the outcome data are continuous, and let Yijk denote the observed outcome for individual k 
∈ {1, …, K} within cluster i ∈ {1, …, I} at time j ∈ {1, …, J}. Also let sequences be labeled 

such that in sequence q, the treatment is introduced at time point j = q + 1. For simplicity, 

we focus our analysis on the Hussey and Hughes model10, a special case of the IT model 

that is commonly used to analyze data from stepped wedge trials, although the behavior we 

observe holds more generally; we discuss this further at the end of this section. This model 

is specified in (1), where the βj terms represent the underlying time trend (with β1 = 0 for 

identifiability), α1, …, αI ∼iid N(0, τ2) is a set of random effects accounting for the dependence 

of observations within a cluster, and ϵ111, …, ϵIJK ∼iid N(0, σ2) are residual error terms.

Y ijk = μ + βj + δXij + αi + ϵijk

Xij = 1, cluster i is in the treatment state at time j
0, otherwise

(1)

Next, let sij represent the exposure time of cluster i at time j and let δ(s) represent the 

treatment effect at exposure time s, which we refer to as the “point treatment effect” (PTE) 

at s. Model (2) incorporates the time-varying treatment effect δ(sij), where Xij is defined as 

above:

Y ijk = μ + βj + δ(sij)Xij + αi + ϵijk (2)

Suppose that data are generated according to (2) but analyzed with the model specified 

in (1). We are interested in how the estimator δ  behaves in this scenario. Since sij takes 

on values between 1 and J − 1, it would not be unreasonable to expect the IT estimator 

to converge to a value close to the average treatment effect over the exposure period, 

lying between the smallest and largest of the time-specific treatment effects δ(1), …, δ(J 
− 1). However, this turns out to not necessarily be the case. This conclusion follows from 

Theorem 1, in which we provide closed-form expressions for the treatment effect estimator 

resulting from model (1) and its expectation.
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Theorem 1. Suppose we have a standard stepped wedge design with data generated 

according to (2), which may involve multiple clusters per sequence. If we fix ϕ ≡ τ2/(τ2 

+ σ2/K) and denote the mean outcome in sequence q ∈ {1, …, Q} at time point j by Ȳ qj, the 

treatment effect estimator δϕ obtained by fitting model (1) via weighted least squares can be 

expressed as:

δϕ = 12(1 + ϕQ)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2)

∑
q = 1

Q
∑
j = 1

J

QI{j > q} − j + 1 + ϕQ(2q − Q − 1)
2(1 + ϕQ) Ȳ qj

(3)

Furthermore, the expectation of the treatment effect estimator δϕ can be expressed as a 

weighted average of the time-specific treatment effects:

E[δϕ] = ∑
s = 1

J − 1
w(Q, ϕ, s)δ(s), (4)

where the weights are defined as follows:

w(Q, ϕ, s) ≡ 6(s − Q − 1)((1 + 2ϕQ)s − (1 + ϕ + ϕQ)Q)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2) (5)

Proof. See Appendix D.

The expectation E[δϕ] is thus a weighted sum of the individual time-specific treatment 

effects δ(1), …, δ(J − 1), and does not depend on the underlying study time trend. It is 

easily shown that ∑s = 1
J − 1w(Q, ϕ, s) = 1 for any pair (Q, ϕ), which is necessarily the case 

since otherwise δ  would be biased when the IT model is correct. However, surprisingly and 

unfortunately, some of the weights can be negative, depending on the values of ϕ and Q. 

Additionally, a simple calculation shows that w(Q, ϕ, J − 1), the weight corresponding to 

δ(J − 1), will always be negative (assuming ϕ > 0). Equation (5) is somewhat difficult to 

interpret in itself; the impact of this finding is perhaps best illustrated in Figure 2, which 

shows the expected effect curve estimated from model (1) – which is necessarily constant 

after the first exposure time point – plotted against the true curve for four possible effect 

curves.

Looking at panel (a) of Figure (2), we see that when the assumption of an immediate 

treatment effect is correct, we correctly estimate the effect curve; this is expected, as 

weighted least squares estimators in linear mixed models are unbiased in general. However, 

the results from panels (b), (c), and (d) show that when the immediate treatment effect 

assumption is violated, the estimated effect curve can be astonishingly misleading. In panels 

(b) and (d), the estimated effect curve lies entirely below the true effect curve. Furthermore, 

we observe that even if each time-specific treatment effect is positive (or zero), the estimated 

treatment effect can actually converge to a negative value! This in turn implies that, if we 
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are hoping to estimate the average treatment effect over the exposure period or the long-term 

effect, our estimator can converge to a value of the opposite sign as the true value.

The value ϕ = 0.5 used to compute the estimates in Figure (2) is not unreasonable for a 

stepped wedge design. As noted by Matthews and Forbes18, large numbers of individuals 

per cluster can lead to large values of ϕ, even if the intraclass correlation coefficient (ICC) 

ρ ≡ τ2/(τ2 + σ2) is small. For example, for an ICC of 0.05, n = 10 leads to ϕ = 0.34 and 

n = 50 leads to ϕ = 0.72. In Appendix A, we provide a figure showing how the weights 

vary as a function of ϕ for select values of Q, as implied by (5). Additionally, we note that 

ϕ is generally not known and must be estimated from the trial data, and so the estimator 

we actually use is δ ≡ δϕ. Since the model is misspecified when the treatment effect varies 

with time, the variance component estimators will not, in general, be consistent for the true 

values.

We also note that this counterintuitive behavior is not restricted to model (1). In Appendix 

A, we conduct a numerical analysis to compute the weights corresponding to a model that 

includes the addition of a random time effect (i.e. a random intercept corresponding to a 

cluster-by-time interaction term, as in the Hooper/Girling model19), such that the correlation 

matrix has a nested exchangeable structure. 20 We also perform the same analysis for a 

model involving a random treatment effect. For both alternative correlation structures, the 

resulting weights are qualitatively similar to those resulting from model (1), in the sense that 

the largest weight is on δ(1) and some weights are negative. This analysis shows that the 

counterintuitive behavior of the IT model treatment effect estimator occurs across a wide 

range of models that are commonly used for analyzing stepped wedge trials.

Furthermore, this issue will also apply to models fit using generalized estimating equations 

(GEE). If a researcher fits a GEE model using the fixed effects structure of (1) and a 

working exchangeable correlation structure, the results of Theorem 1 will still apply; that 

is, the resulting treatment effect estimator will still converge to a counterintuitive value. 

If instead, a working independence correlation structure is used, then the treatment effect 

estimator may converge to a counterintuitive value as well, but a different counterintuitive 

value. Specifically, instead of result (4), we will have E[δ] = ∑s = 1
J − 1w(Q, 0, s)δ(s). This is not 

as bad in the sense that w(Q, 0, s) ≥ 0 for all Q, s, but it still leads to a poorly-defined 

estimand.

3 ∣ METHODS

As demonstrated in section (2), a model that assumes an immediate treatment effect can 

lead to severely misleading inference if the treatment effect varies with exposure time. This 

necessitates the development of models that explicitly account for time-varying treatment 

effects. However, in the absence of an immediate and constant treatment effect, the estimand 

of interest is less well-defined. Therefore, before presenting these models, we define our 

estimands of interest more formally.
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3.1 ∣ Estimands of interest

In this section, we formally introduce a model for the data-generating mechanism for the 

purpose of defining estimands of interest. Consider a standard stepped wedge design, as 

defined in section 2. Let Yijk(q) denote the potential outcome for individual k ∈ {1, …, K} 

within cluster i ∈ {1, …, I} at time j ∈ {1, …, J}, had this cluster been assigned to sequence 

q ∈ {1, …, J − 1}, where sequences are labeled such that in sequence q, the treatment is 

introduced at time point j = q + 1. Also let μijk(q) denote the expectation of Yijk(q). We 

assume the following structural model for μijk(q), an adaptation of the generic structural 

mixed model of Li et al.20:

g μijk(q) = Γj

time trend
+ Δijq

treatment effect
+ Cijkq

heterogeneity
(6)

Above, g(·) is a link function, and the outcome is assumed to fall within a parametric family 

with mean μijk(q). Γj, represents the underlying study time trend and Δijq represents the 

treatment effect. The Cijkq term accounts for the correlation structure of the data, and will 

often take the form of one or more mean-zero random effect terms to capture cluster-level or 

temporal deviations from the fixed effects.

Let the random variable Yijk denote the observed outcome. The observed design matrix after 

randomization is X ≡ {Xij : i ∈ {1, …, I}, j ∈ {1, …, J}}, where Xij = 1 if cluster i is 

is assigned to be in the treatment state at time j. If we assume that clusters are assigned 

to sequences randomly (exchangeability) and that Yijk(q) = Yijk if cluster i is randomly 

assigned to sequence q (consistency), then the potential outcome expectation μijk(q) is 

identified by μijk ≡ E[Yijk∣Xij], and structural model (6) implies:

g μijk = Γj + ΔijXij + Cijk (7)

In the setting of randomized trials, these assumptions will typically hold. In equation (7), the 

q subscripts have been removed since they are determined by i and j given Xij. Other works 

have focused on choices for the time trend Γj
12,17,20 and for the heterogeneity component 

Cijk.20,21,22,19,23 In this paper, we restrict attention to modeling choices related to the 

treatment effect Δij. Furthermore, we assume that the treatment effect may vary as a function 

of exposure time, but not as a function of study time. If sij again represents the exposure time 

of cluster i at time j, and δ is a fixed function, then this assumption allows us to simplify 

model (7) as follows:

g μijk = Γj + δ(sij)Xij + Cijk (8)

This model makes no assumptions about the form of the time trend or the heterogeneity, and 

is thus general enough to apply in a number of settings, such as when there are random time 

effects or random treatment effects.
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In this context, referring to a single parameter as the “treatment effect” is ambiguous, since 

the treatment effect varies as a function of exposure time. Therefore, we must state more 

precisely what we are interested in estimating. First, we define the effect curve as the 

function s ↦ δ(s), where we think of time as continuous even though the analysis of stepped 

wedge data typically involves assigning observations to one of a discrete set of time points 

{1, …, J}. This function is an appealing estimand since it contains a wealth of information 

that can be used to guide program design and evaluation. However, in many applications 

it will be desirable to focus on a single parameter that summarizes this curve. The first 

summary estimand we consider is the time-averaged treatment effect (TATE) from exposure 

time s1 to exposure time s2, which is the average value of the effect curve over the interval 

(s1, s2]. We denote this estimand by Ψ(s1,s2] and formally define it as follows:

Ψ(s1, s2] ≡ 1
s2 − s1 ∫

s1

s2

δ(s)ds (9)

For a given study that involves J discrete time points, one choice of the interval (s1, s2] will 

be (0, J − 1], the entire exposure period. Alternatively, a researcher may choose to increase 

the lower endpoint if he or she is interested in the TATE after a washout period immediately 

following implementation of the treatment. Care should be taken when comparing TATE 

estimates from two different studies, even if they both examine the same intervention and 

use the same outcome measure, since the TATE is defined relative to a time interval, and 

these time intervals may differ between studies.

The second summary estimand we consider is the point treatment effect (PTE) at exposure 

time s0, which is simply defined as the value Ψs0 ≡ δ(s0). A common choice for s0 might 

be J − 1, the maximum treatment period. If we additionally assume that the effect curve 

“flattens out” by the end of the study (that is, we have that δ(s) = δ(J − 1) whenever s ≥ J − 

1), ΨJ − 1 can be interpreted as the long-term treatment effect (LTE).

When the true effect curve has no delay or change over time (i.e. δ(s) is constant), we 

have that Ψ(s1,s2] = Ψs0 for all s0, s1, s2. However, in the presence of a time-varying effect, 

these estimands do not in general coincide, and so in the context of a confirmatory trial, the 

researcher must specify one in advance as the primary endpoint. Others can be examined 

within secondary or exploratory analyses, if applicable. We expect that researchers will most 

often be interested in a TATE or the LTE as the target for confirmatory trials, whereas 

estimation of the effect curve s ↦ δ(s) will usually be done as an exploratory analysis. Since 

different researchers will be interested in different estimands, we will consider estimation of 

all three in this paper.

3.2 ∣ Analysis models

Model (8) was written generically so that the estimands are well-defined in a variety of 

settings. The analysis models we present in this section can be seen as special cases 

of (8) that make assumptions about the treatment effect term δ(s)Xij. Implementation of 

these models in specific settings will involve making context-appropriate choices for the 
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Γj and Cijk terms. For example, we may choose to take Γj = μ + βj and Cijk = αi with 

α1, …, αI ∼iid N(0, τ2) to yield a class of models containing the Hussey and Hughes model.10 

All models in this section can be used for the purposes of estimation and hypothesis testing 

related to both the TATE and the PTE/LTE.

Immediate treatment effect (IT) model—First, we consider the immediate treatment 
effect (IT) model, a generalization of the model we studied in section 2. This model assumes 

that full effect is reached within a single time step and does not change thereafter, as in 

Figure 1a; we provide a specification of this model in equation (10), where δ is a scalar 

parameter. Most mixed models that have previously been used to analyze data from stepped 

wedge trials, such as the Hussey and Hughes model10 and the Hooper/Girling model19, are 

special cases of the IT model.

g μijk = Γj + δXij + Cijk

Xij = 1, cluster i is in the treatment state at time j
0, otherwise

(10)

As noted, when the IT model is correct (i.e. there is no variation in the treatment effect over 

time), the TATE (for any (s1, s2]) and PTE (for any s0) coincide, and so we can estimate both 

by fitting this model and using δ  as our estimator. When the IT model is correct, we will 

show that δ  is a more efficient estimator of the TATE or PTE than the other estimators we 

will consider. However, when the IT model is incorrect, δ  can give highly misleading results, 

as described in section 2.

Exposure time indicator (ETI) model—Next, we consider a model that makes no 

assumptions about the shape of the effect curve, which we refer to as the exposure time 
indicator (ETI) model. This is generalization of models considered in Granston et al.16 and 

Nickless et al.12 and is specified by equation (11), where, with a slight abuse of notation, we 

use the subscript s as shorthand for sij, the exposure time of cluster i at time j.

g μijk = Γj + δsXij + Cijk (11)

Model (11) is saturated with respect to exposure time; as such, it is the most flexible model 

we consider. After fitting this model and obtaining parameter estimates δ1, …, δJ − 1, we 

can base estimation and inference on the following estimators, where we assume that s0, s1, 

and s2 are all integers in the set {0, …, J − 1} with s1 < s2.

Ψ(s1, s2] ≡ 1
s2 − s1

∑
r = 1

s2 − s1
δ s1 + r

Ψs0 ≡ δ s0

(12)

The estimator Ψ(s1, s2] can be viewed as a right-hand Riemann sum that approximates the 

integral Ψ(s1,s2]. Alternatively, a researcher can use an estimator based on a trapezoidal 
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Riemann sum; this is discussed in Appendix C. The estimator ΨJ − 1 can be used to estimate 

the LTE if it is assumed to exist, although, as we will see, the variance of this estimator will 

typically be quite high. Given this, another possibility is to assume that the long-term effect 

is reached by some time point J − m (with m > 1) before the end of the study and estimate 

the LTE using the TATE estimator Ψ(J − m, J − 1] to gain precision.

A key assumption of this model is that the shape and height of the effect curve do not vary 

between clusters; this is a fairly strong assumption that we will later relax when we discuss 

random treatment effects in section 3.3. We also note that the IT model is a submodel of the 

ETI model, and so (likely in the context of an exploratory analysis), a researcher can conduct 

a likelihood ratio test to determine whether the IT model is an appropriate simplification of 

the ETI model for a given dataset.

Since Ψ(s1, s2] is a linear combination of the parameter estimates δ1, …, δJ − 1, variance 

estimation is straightforward. Assuming the (J − 1) × 1 matrix δ ≡ (δ1, …, δJ − 1)T  is 

approximately multivariate Normal with estimated covariance matrix V , we find the 1 × (J − 

1) matrix M such that Ψ(s1, s2] = Mδ . Our estimated variance is then Var(Ψ(s1, s2]) ≡ MV M′, 

where M′ represents the transpose of M. For example, if we are estimating Ψ(0, J − 1], we 

have that M = 1
J − 1 , …, 1

J − 1  and MV M′ = 1
(J − 1)2

∑i = 1
J − 1 ∑j = 1

J − 1V ij.

Natural cubic spline (NCS) model—If we are willing to assume some degree of 

smoothness of the effect curve, we may be able to construct more precise estimates. This 

suggests replacing the δ(s)Xij term in (8) with some sort of smoothing term. In this paper, 

we consider the use of natural cubic splines, although other approaches are possible. For 

an overview of spline-based methods, see Friedman et al.24 Briefly, given a set of real 

numbers k1 < … < kd called “knots”, a cubic spline is a function that is equivalent to a 

cubic polynomial over any interval [kr, kr+1] for r ∈ {1, …, d − 1}. A natural cubic spline 

is further constrained such that it is continuous, twice continuously differentiable, and linear 

to the left of the first knot and to the right of the last knot. Through the construction of 

a so-called spline basis – a set of functions b1, …, bd that are applied to the variable of 

interest – natural cubic splines can be embedded within the linear mixed model framework. 

Typically, a natural cubic spline with d knots can be represented with d basis functions. In 

our context, we enforce the additional constraint that the spline must pass through the origin. 

This leads us to consider the following model, in which the terms b1(s), …, bd(s) represent a 

natural cubic spline basis with d degrees of freedom.

g μijk = Γj + ω1b1(s) + … + ωdbd(s) Xij + Cijk (13)

Note that the construction of the spline basis requires the user to specify the number and 

placement of the knots. A model that uses a basis with J − 1 degrees of freedom will yield 

identical estimation and inference to the ETI model, and so if this model is used, it should be 

the case that d < J − 1. Given that fitting this model yields an estimate of the entire function 

s ↦ δ(s), we could in theory estimate the TATE via integration. However, for simplicity 
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and to achieve consistency with the other models we consider, we again use a right-hand 

Riemann sum approximation. This allows us to conduct estimation and inference based on 

the estimates ω1, …, ωd of ω1, …, ωd and the associated covariance matrix estimate. This 

yields the following estimators, which are analogs of (12):

Ψ(s1, s2] ≡ 1
s2 − s1

∑
r = 1

s2 − s1
∑

k = 1

d
ωkbk(s1 + r)

Ψs0 ≡ ∑
k = 1

d
ωkbk(s0)

(14)

The spline basis and the estimators above are easily calculable with existing software, and 

variance estimation proceeds as before, since these estimators are also linear combinations 

of the parameter estimates.

Monotone effect curve (MEC) model—It will often be reasonable to assume that the 

effect curve is monotone; for example, more cardiovascular exercise sustained over a longer 

period of time will generally lead to more weight loss. When this assumption is plausible, 

it is natural to wonder whether we can leverage this knowledge to obtain more precise 

estimates. Constructing models that enforce monotonicity can be done in a number of ways; 

we introduce one possible model here.

g μijk = Γj + δ ∑
t = 0

s
αt Xij + Cijk (15)

Above, we let α0 ≡ 0 and constrain (α1, …, αJ−1) as a simplex such that αt ≥ 0 for t ∈ 

{1, …, J − 1} and ∑t = 1
J − 1αt = 1. This model parameterizes the effect curve as a monotonic 

step function, but allows for the step function to be either nondecreasing or nonincreasing. 

This is a constrained nonlinear model, and so more advanced techniques are needed to fit it 

and estimate the parameters (δ, α1, …, αJ−1). We choose to fit it as a hierarchical Bayesian 

model using the following prior specification, where (c1, …, cJ−1) are fixed constants and (δ, 

ω, α1, …, αJ−1) are parameters:

δ ∼ Normal(0, 104)
ω ∼ Uniform(0.01, 100)

(α1, …, αJ − 1) ∼ Dirichlet(c1ω, …, cJ − 1ω)
(16)

Choosing some values of the constants (c1, …, cJ−1) to be larger than the others can be 

seen as encoding the prior belief that the biggest “jump” in the effect curve will occur in a 

certain region of the effect curve, or equivalently that the curve will remain relatively flat 

over a certain region. For example, choosing c1 = … = c(J−1)/2 = 5 and c(J−1)/2+1 = … = 

cJ−1 = 1 encodes the prior belief that the biggest jump in the effect curve occurs in the first 

half of the effect curve (assuming (J − 1)/2 is an integer); this is the prior we use in this 
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paper in the simulations and the real data analyses. Choosing c1 = … = cJ−1 = 1 leads to a 

symmetric Dirichlet prior, which can be seen as minimally informative in the sense that it 

doesn’t presume in advance that the jump happens at any particular time point.

It is important to note that monotone-constrained function estimators tend to be biased at 

the endpoints25; in our case, the endpoint of the effect curve is precisely the LTE, if it is 

assumed to exist. The prior described above has the effect of counteracting this bias to an 

extent by stabilizing the tail of the effect curve. Thus, the results we obtain when using this 

model are influenced not just by the monotonicity constraint, but also by the informative 

prior. As we will see in both simulated and real data, different choices of prior may lead to 

very different estimates, and so we recommend that this model only be used in the context of 

an exploratory analysis.

In this model, the LTE estimator is simply the posterior mean δ . For the TATE, we again 

use an estimator based on a right-hand Riemann sum. This can be done by first computing 

the posterior means δ , α1, …, αJ − 1, then calculating δ1, …, δJ − 1 using the formula 

δs ≡ δ ∑t = 1
s αt, and finally using these to compute the estimators in (12) or (C3). Variance 

estimation can be done using standard methods for Bayesian inference.

3.3 ∣ Incorporating random effects

In the analysis of stepped wedge trials using an immediate treatment effect model, it is 

common to include mean-zero random effect terms to capture cluster-level or temporal 

deviations from the fixed effects. For example, we may include random intercepts to model 

cluster-level deviations, and we may include random effects at the level of the cluster-by-

time interaction (a type of “random time effect”) to allow the underlying time trend to 

differ by cluster. These random effects can be incorporated into models that allow for a 

time-varying treatment effect in the same way they would be added to a model that assumes 

an immediate treatment effect. However, more thought is required in terms of incorporating 

“random treatment effects”, which allow for the effect of the treatment to vary between 

clusters. When the treatment effect does not vary with time, this takes the form of a 

random coefficient on the treatment indicator variable, indexed by cluster. When the effect 

of treatment varies by exposure time, there are multiple ways in which random effects could 

be used to allow the effect curve to differ across clusters. For simplicity, we focus on the 

case in which the only heterogeneity component other than the random treatment effect is 

a cluster-level random intercept. The specification given in (17) allows for the “height” of 

the effect curve to vary between clusters and involves two additional parameters. Essentially, 

each of the parameters (δ1 …, δJ−1) represents the value of the effect curve at a particular 

exposure time averaged across clusters, and each of the parameters (η1, …, ηI) represents 

the amount by which the entire effect curve is vertically shifted for a given cluster. Other 

random effects structures that allow for both the “height” and the “shape” of the effect curve 

to vary between clusters are possible but may be difficult to fit due to their complexity.

Kenny et al. Page 12

Stat Med. Author manuscript; available in PMC 2023 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



g μijk = Γj + (δs + ηi)Xij + αi

α1
η1

, …,
αI
ηI

∼iid N 0
0 , τ2 ρτν

ρτν ν2

(17)

The NCS and MEC models can be adapted to include random treatment effects in an 

analogous manner.

3.4 ∣ Implications for study design and power calculation

In stepped wedge studies, data collection typically stops after all clusters have reached the 

treatment state, since additional data collection provides little additional information on the 

treatment effect when an immediate treatment effect model with a saturated study time effect 

is used for analysis. However, when a model is used that allows for time-varying treatment 

effects, additional data collection may lead to gains in precision, depending on the estimand 

of interest. We can gain intuition for why this is the case by considering estimation of the 

LTE. With a typical stepped wedge design, only one sequence is observed at exposure time 

J − 1 (at study time J), and so if the ETI model is used, all the information about the change 

in the effect curve between times J − 2 and J − 1 must come from this sequence alone. 

However, if we collect additional data at study time step J + 1, there are now two sequences 

that have been observed at exposure time J − 1, and so we should be able to estimate the 

LTE more precisely, assuming we still think that the long-term effect is reached by exposure 

time J − 1. In addition, we could combine the information collected at exposure times J − 1 

and J to improve precision further. Similar logic applies to estimation of the TATE, although 

we would not expect the gains in precision to be as large. For either estimand, the magnitude 

of this potential gain in precision can be roughly quantified via simulation (or analytically).

An essential part of stepped wedge trial planning is power (or sample size) calculation, and 

in the context of time-varying treatment effects, the existing guidance requires modification. 

While this is not the focus of this paper, we briefly discus two potential approaches to 

power calculation. The first method is to adapt the existing stepped wedge power formulas, 

which are based on Wald-type tests. With the IT model, this test involves estimating Var(δ ), 

which is extracted from the estimated covariance matrix of the fixed effects. If the estimand 

of interest is the PTE or LTE and the ETI model is used, the Wald test will similarly be 

based on a single model parameter and the test can be constructed in an analogous manner. 

If the TATE is the estimand of interest and the ETI model is used, the estimate will be 

a linear combination of the fixed effects, and a variance estimate can be constructed from 

the assumed covariance matrix, as described in Section 3.2. If a model other than the ETI 

model is to be used for analysis, the ETI model can still be used for the sake of power 

calculation, but this may lead to power being underestimated. Note that the variance of the 

TATE depends only on the study design and the variance components, just as is the case 

when computing power using the IT model. Furthermore, for a given true TATE value, the 

variance of the TATE estimate will not depend on the underlying effect curve. Therefore, 

for the sake of power calculation, one only needs to choose a value for the TATE under the 
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alternative hypothesis and does not need to make additional assumptions about the shape of 

the effect curve.

The second method is simulation-based power calculation. With this method, the researcher 

repeatedly simulates the entire experiment and estimates power as the proportion of 

experiments in which the null hypothesis is rejected. Simulating the experiment will 

typically involve generating a dataset that mimics the real-world data you expect to collect 

and running the same analysis you plan on using for the actual trial. Randomness is 

introduced into the data-generating mechanism by sampling from probability distributions 

(Normal, Binomial, etc.) or sampling from a fixed population list or sampling frame. While 

this process requires programming knowledge and can be computationally intensive, it is 

extremely flexible in that any study design, outcome type, sampling strategy, or analysis 

technique can be used.

4 ∣ SIMULATION STUDY

We conducted a simulation study designed to assess the performance of the models 

described in Section 3.2 in a variety of settings. Unless otherwise specified, data were 

generated according to the following model, a special case of (8):

Y ijk = μ + βj + δℎ(s)Xij + αi + ϵijk
(α1, …, αI) ∼iid N(0, τ2)

(ϵ111, …, ϵIJK) ∼iid N(0, σ2)
(18)

The function s ↦ h(s) represents the effect curve, constrained to start at (0, 0) and achieve 

a maximum value of 1 on the interval [0, J − 1]. For all simulations, we generated data 

according to four different effect curves, defined as step function approximations to the 

effect curves a-d in Figure 1. This was done so that when we are comparing TATE estimates 

to the true values, we eliminate the component of the error due to the step function being an 

approximation to a smooth curve.

Simulations involved I = 24 clusters, J = 7 time points, and K = 20 individuals per cluster. 

Parameters were fixed at μ = 1, δ = 0.5, σ = 2, and τ = 0.5. This results in an ICC of ρ = 

0.059 and a value of ϕ (as defined in Theorem 1) of ϕ = 0.56. The study design was balanced 

and complete, in the sense that there were an equal number of clusters in each sequence and 

one sequence crossed over at each time point. Data were generated with a linear time trend 

with βj = − 0.5 j − 1
J − 1 , although the analysis models treat time as categorical.

For the MEC model, we use a Dirichlet(5ω, 5ω, 5ω, ω, ω, ω) prior. As discussed in Section 

3.2, this can be seen as encoding the prior belief that the biggest “jump” in the effect curve 

will occur in the first three exposure time points, or equivalently that it will remain relatively 

flat after the last three exposure time points.

In all simulations, we considered estimation of Ψ(0,J−1], the TATE between exposure times 0 

and J − 1, as well as the LTE ΨJ−1, the value of the effect curve at time J − 1. Performance 
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was assessed by estimating bias, 95% confidence interval coverage, and mean squared error 

(MSE). We also assessed estimation of the entire effect curve by calculating the average 

pointwise MSE, defined as 1
J − 1 ∑s = 1

J − 1 (Ψs − Ψs)2, and estimated the power of Wald-type 

hypothesis tests. Each individual statistic was calculated using 1,000 simulation replicates. 

All simulations were conducted using the R programming language and structured using the 

SimEngine simulation framework.26

4.1 ∣ Performance of the IT, ETI, NCS, and MEC models

First, we compare the performance of several of the models described above that are 

designed to account for a time-varying treatment effect, in addition to the IT model for 

comparison. Results are given in Figure 3. As expected, the IT model performs well when 

it is correct; simulation results confirm that the TATE/LTE estimate is unbiased and that 

nominal 95% coverage is achieved. However when the IT model is not correct, estimates 

are severely biased and confidence interval coverage is unacceptable. The ETI model will 

always be correct in the sense that it makes no assumptions about the form of the effect 

curve. For this reason, it will also typically be the least efficient. We indeed observe that 

the ETI model leads to unbiased estimates of both the TATE and the LTE; the tiny amount 

of bias observed is due to Monte Carlo error. The NCS model performs similarly to the 

ETI model in terms of coverage and MSE, but appears to do slightly worse in terms of 

bias. The similar performance is not surprising in this case, as there are only six exposure 

time points in this simulation setup, and so the NCS model involves just two fewer degrees 

of freedom than the ETI model. The MEC model consistently yields better MSE than the 

ETI and NCS models for LTE estimation. However, it also leads to highly biased estimates 

in certain scenarios, and additional simulations (see Appendix B) show that the model is 

quite sensitive to the choice of prior, in the sense that a minimally-informative prior leads 

to higher bias and greater undercoverage. Given these drawbacks, we recommend that the 

MEC model should not be used for confirmatory analyses. Note that “coverage” refers to 

credible interval coverage in the case of the MEC model.

Figure 4 shows the results of estimating the entire effect curve, assessed via average 

pointwise MSE, as described above. Overall, the ETI and NCS models perform similarly. 

The MEC model performs the best for three out of the four effect curves.

Next, using the same set of models as above, we conduct a set of Wald-type hypothesis tests 

related to the TATE (H0 : Ψ(0,J−1] = 0 vs. H1 : Ψ(0,J−1] ≠ 0) and to the LTE (H0 : ΨJ−1 

= 0 vs. H1 : ΨJ−1 ≠ 0). Results are given in Figure (5). As expected, tests based on the 

IT model parameter estimates are the most powerful when the model is correct. When it is 

incorrect, the power of the IT model suffers dramatically for the lagged (b) and partially 

convex (d) effect curves. Importantly, this implies that if the IT model is used in the presence 

of a time-varying effect, there is a serious risk that hypothesis tests will suffer from high 

type II error rates even if a strong effect is present. The MEC model appears to have the best 

overall performance, and the ETI and NCS models both perform reasonably well across all 

scenarios. All tests maintain proper type I error rates when there is no true effect.
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In Appendix B, we compare the ETI model to an analogous model that additionally includes 

a random treatment effect term corresponding to the specification given in (17). We show 

that the use of a random treatment effect in the analysis model is beneficial in the sense 

that performance does not suffer when no random treatment effect is present in the data, 

whereas if it is present in the data, performance improves considerably; this is consistent 

with previous findings. 20

4.2 ∣ Effect of adding extra time points

As discussed in section 3.4, when using models that allow for time-varying treatment effects, 

it may be possible to gain precision by collecting additional data after all clusters have 

reached the treatment state. Figure 6 shows the results of a set of simulations in which we 

added either zero, one, or two additional post-treatment time points and analyzed data using 

the ETI model. The effect curves used to generate the data are the same ones used in all 

previous simulations, but with ΨJ−1 = ΨJ = ΨJ+1; that is, the true effect curves remain 

flat after exposure time J − 1. We continue to define the LTE as ΨJ−1. We observe that 

adding extra time points enables considerable MSE gains in terms of estimating the LTE, but 

provides little benefit in terms of estimating the TATE.

5 ∣ DATA ANALYSIS

To illustrate the use of the models described in Section 3.2, we conducted secondary 

analyses of data from two different stepped wedge trials.

5.1 ∣ Australia weekend services disinvestment trial

The first data analysis is of a stepped wedge trial examining the impact of the disinvestment 

(removal) of weekend health services from twelve hospital wards in Australia, previously 

analyzed by Haines et al. (Trial 1).27 Although the original investigators considered several 

outcomes, we focus on the the (log) length of hospital stay in days, treated as a continuous 

variable. This study involved a population of 14,834 individuals, 12 clusters, 6 sequences, 

and 7 time points.

In our analysis, we fit four different models: immediate treatment effect (IT), exposure time 

indicator (ETI), natural cubic spline with four degrees of freedom (NCS-4), and monotone 

effect curve (MEC). The treatment of exposure time differs based on which model is used 

(as described in Section 3.2), whereas study time is modeled as categorical. In this trial, 

“study time” (the amount of time that has passed since the start of the study) can actually 

be seen as distinct from “calendar time” due to the complex nature of the study design. For 

simplicity, and since this distinction is uncommon, we only adjust for study time. The MEC 

model uses the same prior that was used in simulations. Estimates of the TATE over the 

entire study (Ψ(0,6]) and the LTE (Ψ6) are given in Figure 7, and estimates of the entire 

effect curve, along with pointwise confidence bands, are given in Figure 8.

Estimates of the TATE and LTE from the IT model are both much smaller than the 

corresponding estimates from the three other models. Additionally, the single effect estimate 

from the IT model is less than each of the point treatment effects estimated from the 

ETI model. This is an example of the phenomenon described in section 2. The effect 
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curves estimated from the three models that account for a time-varying treatment effect are 

all qualitatively similar, which is reassuring. The confidence intervals resulting from the 

ETI model are the widest, which is as expected since this model makes no assumptions 

about the shape of the effect curve. The NCS model performs almost identically to the 

ETI model, which is not surprising for reasons discussed in section 4.1. The MEC model 

performs somewhat similarly to the ETI model, but with narrower confidence intervals. As a 

sensitivity analysis, we also ran the MEC model with a (minimally informative) symmetric 

Dirichlet prior (i.e. c1 = … = cj−1 = 1). This resulted in a similar TATE estimate of 

0.18 (95% CI: 0.09–0.28) but a much higher LTE estimate of 0.30 (95%CI: 0.15–0.45), 

reinforcing the knowledge that the MEC model can be quite sensitive to prior selection.

5.2 ∣ Washington State expedited partner treatment trial

Next, we conducted a secondary analysis of data from the Washington State Community-

Level Expedited Partner Treatment (EPT) Randomized Trial.28 This trial sought to test 

the effect of EPT, an intervention in which the sex partners of individuals with sexually 

transmitted infections are treated without medical evaluation, on rates of chlamydia 

and gonorrhea. This study involved a population of 390,675 individuals, 22 clusters, 4 

sequences, and 4 time points, although measurements were taken more frequently (at 15 

time points). In our analysis, we applied the same set of models used for the first data 

analysis, but using a binomial GLM with a logit link and random intercepts for both cluster 

and site. Again, time was modeled as categorical. Estimates of the TATE over the entire 

study (Ψ(0,14]) and the LTE (Ψ14) are given in Figure 9, and estimates of the entire effect 

curve, along with pointwise confidence bands, are given in Figure 10.

In this analysis, we again observe that the effect estimated from the IT model is less than 

each of the point treatment effects estimated from the ETI model. Furthermore, the trend is 

estimated in the opposite direction (odds ratio < 1) in the IT model relative to the models 

that account for a time-varying treatment effect (each odds ratio > 1). The IT estimate of the 

TATE is less than one, suggesting that the intervention has a small (nonsignificant) benefit, 

but the TATE estimates from the other models are all greater than one. However, all of the 

confidence intervals are quite wide and contain one (the null value), and so none of the 

associated Wald-type tests reject the null hypothesis of no effect, for both the TATE and the 

LTE.

In this analysis, we see the smoothing behavior of the NCS model in action when comparing 

its estimated effect curve to that of the ETI model. As described earlier, this is expected, 

since with 14 time points there is a much greater difference in terms of the degrees of 

freedom between the ETI and NCS models. While one might expect the MEC model to 

yield an estimated effect curve similar to that of the NCS model, we do not observe this 

here; this is due to the effects of the prior. When we instead fit the MEC model with a 

symmetric Dirichlet prior (as we did as a sensitivity analysis for the previous dataset), we 

obtain a TATE estimate of 1.17 (95% CI: 098–1.41) and an LTE estimate of 1.36 (95%CI: 

0.97–1.91), both of which are quite different than the results in Figure 9. These TATE and 

LTE estimates, as well as the estimate of the entire effect curve, are similar to those of the 

NCS model. Again, this demonstrates the sensitivity of the MEC model to the priors.
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6 ∣ DISCUSSION

In this paper, we characterize the risks of not accounting for a time-varying treatment effect 

in the context of a stepped wedge design, introduce terminology for describing estimands 

of interest, introduce several models that can be used for estimation and hypothesis testing, 

evaluate the operating characteristics of these models via simulation, and demonstrate their 

use on two real datasets.

6.1 ∣ The immediate treatment effect model and estimands of interest

With the immediate treatment effect model, the researcher must assume that the full effect of 

the treatment is reached immediately, as if the effect can be instantly turned on by flipping 

a light switch. However, if a time-varying treatment effect is present and the IT model is 

used, estimates of both the TATE and the LTE can be severely biased, confidence interval 

coverage can be unacceptably low, and MSE can be very high. As noted in section 2, the 

expectation of the IT treatment effect estimator can be represented as a weighted sum of the 

individual point treatment effects δ(1), …, δ(J − 1), but with some negative weights. This 

implies that under certain effect curves, TATE and LTE estimates resulting from the use of 

the IT model can converge to a value of the opposite sign as the true parameters. This result 

is quite surprising, and although similar phenomena have been examined in the context of 

two-way fixed effects designs29,30, this has never previously been discussed in the stepped 

wedge literature. Because the impact of this form of model misspecification on estimation 

and inference is so severe, we recommend that the IT model should not be used moving 

forward for confirmatory analyses unless the assumption of an immediate treatment effect 

is justifiable based on contextual knowledge of the intervention. Even when the assumption 

is justifiable, a sensitivity analysis should be conducted using a model that allows for a 

time-varying treatment effect. Furthermore, it may be worth reanalyzing data from past 

stepped wedge trials in which the immediate treatment effect assumption is questionable.

It is natural to wonder why the counterintuitive behavior of the IT model occurs. To gain 

some intuition, we note that in a stepped wedge trial with Q sequences, all Q will be 

observed at exposure time 1, but only Q − 1 will be observed at exposure time 2, only 

Q − 2 will be observed at exposure time 3, and so on. This means that as exposure time 

increases, the amount of information available in the data decreases, and intuitively this 

is why the weights given in equation (5) are decreasing in s, as well as why the weight 

corresponding to exposure time 1 is always the largest. This is consistent with previous 

work that has identified that observations with exposure time 1 contribute the most to 

estimation of the treatment effect in IT models.31,32 The reason why some weights can be 

negative is less intuitive, but insight can be gained by drawing parallels to results around 

optimal linear combinations of correlated unbiased estimators. When estimating a parameter 

μ using an estimator of the form μ ≡ αμ1 + (1 − α)μ2, where μ1 and μ2 are both unbiased 

for μ, Samuel-Cahn showed that the optimal value of α can be expressed in terms of the 

correlation Cor(μ1,μ2) and the ratio Var(μ1)/Var(μ2), and that the optimal choice of α (in 

terms of minimizing Var(μ)) may be greater than one or less than zero.33 For example, 

when estimating the location parameter of a Uniform(0,1) distribution using the sample 

mean μ1 and the sample median μ2, the optimal combination is 1.5μ1 − 0.5μ2. If we use 
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the ETI model to analyze a simple stepped wedge design involving two sequences and three 

time periods, the optimal choice of α for using an estimator of the form αδ1 + (1 − α)δ2 to 

estimate the true treatment effect δ (assuming the IT model is correct), as calculated from 

the Samuel-Cahn result, turns out to be identical to the weight w(2, ϕ, 1) obtained from 

equation (5). This suggests that the IT model is implicitly leveraging the assumption of an 

immediate and constant treatment effect to obtain an optimal estimator.

In the case of an immediate treatment effect, the effect curve is constant over time, and so 

the phrase “treatment effect” is well-defined. However, when the effect curve changes over 

time, this phrase is ambiguous and researchers must take care to specify precisely what they 

are estimating. We defined the time-averaged treatment effect (TATE), the point treatment 

effect (PTE), and the long-term treatment effect (LTE) to distinguish between the different 

estimands a researcher may be interested in. We expect that the LTE will be of interest in 

settings in which it is assumed to exist, as many interventions seek to cause long-lasting 

change. However, when the assumption that a long-term effect exists (and is reached by the 

end of the study) cannot be made, the TATE and the PTE are appealing estimands. We view 

the PTE as relevant if there is a specific time point of scientific interest, whereas the TATE is 

relevant if this is not the case. Additionally, the TATE is an appropriate estimand if interest 

lies in the average effect after a prespecified washout or transition period has taken place. 

The TATE also likely reflects what researchers previously thought they were estimating 

when using an IT model in a scenario with a time-varying treatment effect. Furthermore, for 

a given study design and effect size, it will generally be the case that the power to reject 

the null hypothesis related to the TATE (over the exposure period or after a short washout 

period) will be greater than the corresponding test related to a particular PTE or the LTE, 

and so constraints related to funding or logistics may dictate what is testable and what is not. 

However, as discussed in section 3.2, if a researcher is willing to assume that the long-term 

effect is reached by some time point J − m (with m > 1) before the end of the study, the 

TATE estimator Ψ(J − m, J − 1] can be used to estimate the LTE ΨJ−1 to gain precision.

When considering the TATE, an alternative definition we considered instead of (9) was 

(s2 − s1)−1∑s = s1 + 1
s2 δ(s), the average of the true point treatment effects at the study 

measurement times. We chose to not use this definition for two main reasons. First, doing 

so would imply that the estimand of interest is entangled with the study design, in the sense 

that the quantity and meaning of the δ(s) terms directly depends on the number of time 

steps in the study and the spacing between the steps. Second, since time is continuous in 

reality, we believe that an integral-based average is conceptually closer to what researchers 

will typically be interested in. However, the estimands may depend on the study design in 

practice, in the sense that possible choices for (s1, s2] in Ψ(s1,s2] or s0 in Ψs0 are limited by 

the number and length of time steps in the study design. Similarly, the effect curve flattening 

assumption necessary for the LTE to be well-defined requires the study to be of a sufficient 

length to achieve flattening.
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6.2 ∣ Features unique to the setting of time-varying treatment effects

For the models that account for a time-varying treatment effect, it will generally be the case 

that the variance of the PTE increases with exposure time, since the available information 

decreases as exposure time increases, as described above. We also note that some of the 

existing guidance for the design of stepped wedge trials requires modification when there 

is a time-varying treatment effect. Normally, data collection stops after all clusters are 

observed in the treatment state. However, in our simulations, we explored the potential for 

collecting data at additional time points and showed that this can lead to increased precision, 

particularly if the LTE is of interest. Additionally, care should be taken when considering 

designs involving different time step lengths. For example, consider a design in which all 

clusters are measured at baseline, at three months, and at eight months (in terms of study 

time). In this case, the first three measurements for sequence 1 will occur at exposure times 

0, 3, and 8, whereas the first three measurements for sequence 2 will occur at exposure 

times 0, 0, and 5. This is not an issue for the IT model, but an ETI model will require 

more exposure time parameters (i.e. the δS terms), since each of these parameters represents 

the treatment effect at a specific exposure time. The NCS model is very appealing in this 

scenario, since it allows the researcher to explicitly limit the number of model parameters; 

that is, the number of spline basis functions can remain constant even with a growing 

number of unique exposure time values.

6.3 ∣ Which model to choose

The ETI model is saturated with respect to exposure time, and thus makes no assumptions 

about the shape of the effect curve (assuming measurements are taken at regular intervals); 

in this sense, it is the most robust model that we consider. If the study time trend is correctly 

specified and a linear link function is used, the ETI model will always yield unbiased 

estimates of the PTE and the LTE, as well as (aside from the error due to the use of a 

Riemann sum in approximating the effect curve) the TATE for any time interval. If instead 

a nonlinear link function is used, estimates will be unbiased if the heterogeneity model 

component is also correctly specified. This is true regardless of the properties of the design 

(number of clusters, number of time points, etc.). Additionally, if interest lies in estimation 

of the TATE after a washout or transition period, the ETI model is preferable to using a 

model that assumes a washout period followed by an immediate treatment effect, as such a 

model will suffer from issues similar to those discussed in section 2, if the assumptions are 

incorrect. However, the ETI model will also lead to estimators with the greatest variance. It 

will sometimes be impractical to estimate the LTE using this model, since the information 

about the change in the effect curve between the second-to-last and last time points comes 

from just a single sequence. This is a problem not only in terms of variance, but also 

in terms of generalizability, especially if there are only a few clusters per sequence. This 

being said, we see that the LTE estimate in the Australia disinvestment trial is statistically 

significant for the ETI model (as well as for the other models considered). Overall, we 

anticipate that the ETI model will be a practical choice in many applications.

With the NCS model, although we observe the smoothing effect in the WA State data 

analysis, we don’t see evidence of improved estimation or inference in our simulation study. 

However, we still view this model as useful, particularly when the entire effect curve is of 
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interest. Further research is needed to determine optimal knot number and placement. Also, 

as mentioned above, the NCS model is well-suited to trials in which the lengths of the time 

steps differ, since otherwise the number of exposure time parameters (i.e. the δs terms) could 

be very high, yielding TATE estimators with high variance.

We showed that the use of a random treatment effect is beneficial in the ETI model, but the 

same conclusion applies to the NCS and MEC models. There is little penalty for including 

a random treatment effect if it is feasible to do so, since performance does not suffer when 

no random treatment effect is present in the data, but if it is present in the data we see a 

considerable performance improvement, particularly in terms of coverage.

Next, we discuss the MEC model. While this model performs well in certain simulation 

scenarios, it is highly sensitive to the choice of prior, as we demonstrated in both simulations 

and real data. As mentioned in section 3.2, estimates obtained by this model are influenced 

not just by the monotonicity constraint, but also by the informative prior. In general, since 

this model can lead to high bias and since the choice of prior has a considerable influence on 

the resulting estimates, we recommend that this model is only used for exploratory analyses.

In summary, if the TATE is the estimand of interest, then the ETI model is a good all-

purpose choice, as its properties are well-understood and it minimizes the need to make 

assumptions about the shape of the effect curve. The NCS model is a good alternative if 

there is a large number of time points or unevenly-spaced steps in the design. If the LTE 

is the estimand of interest, the ETI and NCS models are again both good choices, but the 

researcher should carefully consider whether a large enough sample size is possible and 

should also consider collecting additional post-treatment data to gain precision. For both 

estimands, the IT model should only be used if the researcher is highly confident that the 

treatment effect does not vary with time, and if it is used, the ETI model should be fit as a 

sensitivity analysis.

6.4 ∣ Assumptions and limitations

A critical assumption made throughout this work is that the treatment effect varies as a 

function of exposure time, but not as a function of study time. While this assumption will 

hold in many scientific settings, researchers should carefully consider whether it holds in 

each particular study. A notable example of when this assumption would fail is when there 

is a major external shock (e.g. a natural disaster) that occurs in the middle of the study 

period that affects implementation of the intervention. Also, while all of the analysis models 

we consider use random effects to account for the correlation structure of the data, other 

approaches are possible.34,35,36,37 Most of these alternative approaches, such as GEE, differ 

mainly in terms of how the dependence between observations is handled. Thus, by making 

analogous modifications to the fixed effects structures, these approaches can be adapted 

to settings in which there is a time-varying treatment effect. However, we did not study 

these approaches in depth. Another limitation of this work is that the set of simulation 

scenarios we considered was limited, and represents a small fraction of the set of possible 

data-generating mechanisms, in terms of true effect curves, ICC values, outcome variable 

types, covariance structures, etc.
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6.5 ∣ Future research directions

We see a number of open questions that could be explored through future methodological 

work. First, as mentioned in section 3.4, the use of a time-varying treatment effect model 

will impact statistical power, and more research is needed to properly characterize this 

impact. Second, the setting of a time-varying treatment effect may lead to additional 

implications on study design other than the possibility of adding additional time points. 

These implications will likely differ depending on the estimand of interest. The topic of 

model misspecification is also worthy of further exploration. In section 2, we explored 

the behavior of the IT model under a time-varying treatment effect but focused on the 

Hussey and Hughes model; it would be informative to perform similar analyses for other 

other models, correlation structures, and sampling schemes (e.g. cohort sampling instead 

of cross-sectional sampling). It would similarly be useful to examine how the models we 

study here perform when the treatment effect varies as a function of study time rather than 

exposure time, as well as to construct models that handle this scenario. Finally, it would be 

worth doing further research into alternative ways to estimate the time trend in the context 

of a time-varying treatment effect. Since moving from the IT model to the ETI model results 

in estimators with higher variance, imposing a more restrictive model for the time trend 

could potentially help to gain back some precision. For example, it would be straightforward 

to use a natural cubic spline (or other smoothing estimator) to estimate the time trend. 

Other approaches that have been considered include the use of linear17 and quadratic12 

time trends, or the exclusion of time trends entirely for short trials.38 It would be useful to 

understand what precision gains are possible, as well as the costs associated with time trend 

misspecification.

7 ∣ CONCLUSIONS

If a stepped wedge trial is testing a treatment that varies as a function of exposure 

time, the use of a model that assumes an immediate treatment effect can lead to serious 

errors in both estimation and inference. We introduced several models that account for 

time-varying treatment effects and evaluated their operating characteristics via simulation. 

We recommend that a model that accounts for time-varying treatment effects is always used 

in stepped wedge trials moving forward unless the researcher has compelling evidence that 

the treatment effect is immediate.
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APPENDIX

A BEHAVIOR OF THE IT MODEL UNDER ALTERNATIVE CORRELATION 

STRUCTURES

In section 2, we investigated the behavior of the treatment effect estimator resulting from the 

IT model (specifically the Hussey and Hughes model), and showed that the expectation of 

this estimator can be expressed as a weighted sum of the individual point treatment effects 

{δ(1), …, δ(J − 1)}. In this section, we provide additional results illustrating the behavior 

of these weights for several correlation structures. This analysis shows that the behavior of 

the IT model treatment effect estimator observed in section 2 is not restricted to the model in 

which heterogeneity is modeled as a single cluster-level random intercept.

A.1 Exchangeable correlation structure

First, we use equation (5) to show how the weights vary as a function of ϕ for select values 

of Q under the assumption of an exchangeable correlation matrix, the structure implied by 

model (1). Results are given in Figure A1.

FIGURE A1. 
Weights w(Q, ϕ, s) plotted as a function of ϕ for Q ∈ {3, 5, 8}.

We observe that the weight w(Q, ϕ, 1), which corresponds to the point treatment effect after 

a single time step, receives the most weight, regardless of the value of Q or ϕ. Additionally, 

in the Q = 8 case, we see that half of the weights are negative as ϕ → 1. This implies 

that, under certain true effect curves, the expected value of the IT model treatment effect 

estimator may be of the opposite sign as the true TATE or LTE. As noted in section 2, the 

value of ϕ can be quite large if the number of individuals per cluster is large, even if ρ is 

small, and so we expect a broad range of ϕ values to be encountered in real trials.
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A.2 Correlation structure implied by a random time effect

Next, we produce analogs of Figure A1 for several alternative correlation structures. Rather 

than deriving analytical results, we use Mathematica39 software to calculate treatment 

effects estimates as a function of {δ(1), …, δ(J − 1)} by computing the weighted least 

squares estimator. We consider a design involving three sequences with one cluster each and 

four time points.

We start with the correlation structure implied by a random time effect. This model is the 

same as the Hussey and Hughes model, but with the addition of a Normal random effect 

indexed by both cluster and time representing a unique cluster-by-time interaction. The 

resulting correlation matrix involves two parameters; ρw represents the correlation between 

two observations within a cluster measured at the same time point and ρb represents the 

correlation between two observations within a cluster measured at different time points. This 

structure is depicted in (A1), adapted from Li et al.20, for a trial involving three time points 

and two individuals per time point.

1 ρw
ρw 1

ρb ρb
ρb ρb

ρb ρb
ρb ρb

ρb ρb
ρb ρb

1 ρw
ρw 1

ρb ρb
ρb ρb

ρb ρb
ρb ρb

ρb ρb
ρb ρb

1 ρw
ρw 1

(A1)

The resulting weights are depicting in Figure A2 for a design involving two individuals per 

cluster, for select values of ρw and ρb.

FIGURE A2. 
Weights plotted for select values of ρw and ρb for Q = 3.

A.3 Correlation structure implied by a random treatment effect

Next, we computed the weights for the correlation structure implied by a random treatment 

effect (we discussed random treatment effects in section 3.3). The resulting correlation 

matrix involves three parameters; ρ0 represents the correlation between two observations in 

the control state, ρ1 represents the correlation between two observations in the treatment 
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state, and ρ10 represents the correlation between two observations, one of which is in the 

control state and one of which is in the treatment state. The resulting weights are depicting 

in Figure A3 for select values of ρ0, ρ1, and ρ10.

FIGURE A3. 
Weights plotted for select values of ρ0, ρ1, and ρ10 for Q = 3.

We see that a similar pattern of weights holds for all three correlation structures considered. 

This indicates that the problem of IT model misspecification discussed in section 2 is not 

restricted to the Hussey and Hughes model, but is a general problem with models that 

assume an immediate treatment effect.

B ADDITIONAL SIMULATION RESULTS

B.1 Performance of models in the presence of random treatment effects

In the set of simulations summarized in Figure B4, data were generated according to the 

same model used for the simulations in section 4.1, except additionally with a cluster-level 

random treatment effect generated according to (17) with ν = 1 and ρ = −0.2. Data were 

analyzed using an ETI model that does not account for random treatment effects, and a 

second ETI model that implements the random treatment effect structure given in (17); the 

latter is abbreviated as “ETI-RTE”. The results are consistent with findings from previous 

studies on variance structures in the context of stepped wedge designs.40,41 When a random 

treatment effect is present in the data but we fail to account for it, we suffer considerably in 

terms of coverage and MSE.
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FIGURE B4. 
Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of the 

TATE (Ψ(0,J−1]) and LTE (ΨJ−1) when data are generated with random treatment effects, 

using the exposure time indicator model (ETI) and the exposure time indicator model with a 

random treatment effect (ETI-RTE)

We also performed an analogous set of simulations in which data were instead generated 

without a random treatment effect (i.e. with ν = 0). In these simulations, the ETI and 

ETI-RTE models performed similarly across all three metrics; results are shown in Figure 

B5.

Together, these results suggest that random treatment effect terms should be used whenever 

possible, since very little is lost in terms of inferential performance when no random 

treatment effect is present in the data, whereas if it is present in the data we achieve much 

better performance.

B.2 Use of a symmetric Dirichlet prior for the MEC model

As noted in the discussion, if we use a symmetric Dirichlet prior (i.e. Dirichlet(ω, ω, ω, 

ω, ω, ω)) in simulations instead of a Dirichlet(5ω, 5ω, 5ω, ω, ω, ω) prior, we see much 

different behavior of the MEC model. Estimates are more biased and undercoverage is 

generally worse. We also don’t see gains in MSE that are as dramatic, and in some cases, 

MSE is worse in the MEC model than it is in the ETI model. Results are given in Figure B6.
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FIGURE B5. 
Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of the 

TATE (Ψ(0,J−1]) and LTE (ΨJ−1) when data are generated without random treatment effects, 

using the exposure time indicator model (ETI) and the exposure time indicator model with a 

random treatment effect (ETI-RTE)

FIGURE B6. 
Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of the 

TATE (Ψ(0,J−1]) and LTE (ΨJ−1) using the following four models: exposure time indicator 

(ETI), natural cubic spline with 4 degrees of freedom (NCS-4), monotone effect curve with a 

symmetric Dirichlet prior (MEC)

C USE OF TRAPEZOIDAL TATE ESTIMATORS

As noted in section 3.2, the time-averaged treatment effect (TATE) is an integral which 

must be approximated using measurements taken in discrete time. Throughout the paper, we 

chose to use TATE estimators based on right-hand Riemann sums, due to their simplicity 

and to facilitate more natural performance comparisons between different effect curves. 
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However, it is also worth considering estimators based on trapezoidal Riemann sums. For 

the ETI model, the right-hand Riemann sum estimator was given by the following:

Ψ(s1, s2] ≡ 1
s2 − s1

∑
r = 1

s2 − s1
δ s1 + r (C2)

The corresponding estimator based on a trapezoidal Riemann sum is given in (C3) below, 

where for notational convenience we set δ0 ≡ 0:

Ψ(s1, s2]
∗ ≡ 1

s2 − s1
∑

r = 1

s2 − s1 δ s1 + r − 1 + δ s1 + r

2 (C3)

It is informative to compare the variances of these two estimators for the case in which s1 = 

0. We can write the following:

Var Ψ[0, s2] = 1
s2

2Var ∑
r = 1

s2 − 1
δ r + δ s2 = 1

s2
2

Var ∑
r = 1

s2 − 1
δ r + Var δ s2 + 2 Cov ∑

r = 1

s2 − 1
δ r, δ s2

Var Ψ[0, s2]
∗ = 1

s2
2Var ∑

r = 1

s2 − 1
δ r + 1

2δ s2 = 1
s2

2

Var ∑
r = 1

s2 − 1
δ r + 1

4Var δ s2 + Cov ∑
r = 1

s2 − 1
δ r, δ s2

(C4)

Simulation results suggest that the covariance term in (C4) is often positive, and so it is 

reasonable to expect the variance of the trapezoidal estimator to be greater than the variance 

of the right-hand Riemann estimator. This intuitively makes sense, since the two differ only 

by a factor of 1
2δs2, and δs2 will have higher variance than any other δ t term for t < s2. 

Therefore, it is worth considering use of the trapezoidal estimators if it is reasonable to 

expect the effect curve to be somewhat smooth. Although we focused here on the ETI 

model, similar trapezoidal estimators can be formed for the other models we considered in 

this paper.

D PROOFS

Suppose we have a standard stepped wedge design with Q sequences and J = Q + 1 time 

points. Consider the mixed model specified in (10) with Γj = μ + βj and Cijk = αi, where 

α1, …, αI ∼iid N(0, τ2). Also assume that, conditional on random effects, individual outcomes 

are independent and normally distributed with variance σ2. For now, assume that σ and τ 
are known, and define ϕ ≡ τ2/(τ2 + σ2/K). From standard results in mixed model theory, we 
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know that the weighted least squares estimator of the fixed effects (μ, β2, …, βJ, δ) is given 

by the following, where Xq is the design matrix for an individual assigned to sequence q, V 
is the covariance matrix for a single cluster, and Ȳ q ≡ (Ȳ q1, …, Ȳ qJ)′, with Ȳ qj representing 

the mean responses among individuals in sequence q at time j:

(μ, β2, …, βJ, δ)′ = ∑
q = 1

Q
Xq′ V −1Xq

−1
∑

q = 1

Q
Xq′ V −1Ȳ q

Using the form of the covariance matrix V ≡ σ2((1 − ϕ)IJ + ϕ1J) implied by the chosen 

mixed model, where IJ represents a J × J identity matrix and 1J represents a J × J matrix 

of all ones, calculations done in Matthews and Forbes18 show that the treatment effect 

estimator δ  can be expressed as follows:

δ =
Q∑q = 1

Q D1q′ V −1Yq − C1′ V −1Ȳ C
Q∑q = 1

Q D1q′ V −1D1q − C1′ V −1C1

Above, Ȳ C ≡ (∑q = 1
Q Ȳ q1, …, ∑q = 1

Q Ȳ qJ)′, D1q is the treatment allocation vector for sequence 

q, and C1 is the vector (0, 1, …, Q)′.

We proceed by analyzing each of the four terms 

∑q = 1
Q D1q′ V −1Y q, C1′V −1Ȳ C, ∑q = 1

Q D1q′ V −1D1q, and C1′V −1C1 separately.

We start with the first equality and note the following, where we use the fact that 

V −1 = 1
1 − ϕIJ − ϕ

(1 − ϕ)(1 + Jϕ − ϕ)1J and where (0, …, 0, 1, …, 1) represents a vector of 

q zeros followed by J − q ones:

D1q′ V −1Ȳ q = 1
1 − ϕ(0, …, 0, 1, …, 1) − ϕ(Q − q + 1)

(1 − ϕ)(1 + Jϕ − ϕ)(1, …, 1, 1, …, 1) (Ȳ q1, …, Ȳ qJ)′

= 1
1 − ϕ ∑

j = 1

J
I{j > q} − ϕ(Q − q + 1)

1 + ϕQ Ȳ qj

Above (and throughout), we use the simple fact that Q + 1 = J. The equation above allows us 

to write the following:

∑
q = 1

Q
D1q′ V −1Ȳ q = 1

1 − ϕ ∑
q = 1

Q
∑

j = 1

J
I{j > q} − ϕ(Q − q + 1)

1 + ϕQ Ȳ qj

Next, we consider the second term:
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C1′ V −1Ȳ C = (0, 1, …, Q) 1
1 − ϕIJ − ϕ

(1 − ϕ)(1 + Jϕ − ϕ)1J Ȳ C

= 1
1 − ϕ(0, 1, …, Q) − ϕQ(Q + 1)

2(1 − ϕ)(1 + Jϕ − ϕ)(1, …, 1) Ȳ C

= 1
1 − ϕ 0 − ϕQ(Q + 1)

2(1 + Qϕ) , 1 − ϕQ(Q + 1)
2(1 + Qϕ) , …, Q − ϕQ(Q + 1)

2(1 + Qϕ) ∑
q = 1

Q
Ȳ q1, …, ∑

q = 1

Q
Ȳ qJ

′

= 1
1 − ϕ ∑

q = 1

Q
∑

j = 1

J
j − 1 − ϕQ(Q + 1)

2(1 + Qϕ) Ȳ qj

We proceed with the third equality and note the following:

D1qV −1D1q = 1
1 − ϕ(0, …, 0, 1, …, 1) − ϕ(Q − q + 1)

(1 − ϕ)(1 + Jϕ − ϕ)(1, …, 1, 1, …, 1) (0, …, 0, 1, …, 1)′

= J − q
1 − ϕ 1 − ϕ(Q − q + 1)

1 + Jϕ − ϕ
= (Q − q + 1)(1 + qϕ − ϕ)

(1 − ϕ)(1 + Qϕ)

This allows us to express the sum as follows, where we use the identities ∑i = 1
n i = n(n + 1)

2

and ∑i = 1
n i2 = n(n + 1)(2n + 1)

6 :

∑
q = 1

Q
D1qV −1D1q = 1

(1 − ϕ)(1 + Qϕ) ∑
q = 1

Q
(Q − q + 1)(1 + qϕ − ϕ)

= 1
(1 − ϕ)(1 + Qϕ) ∑

q = 1

Q
(1 − ϕ(1 + Q) + Q) + ((Q + 2)ϕ − 1) ∑

q = 1

Q
q − ϕ ∑

q = 1

Q
q2

= 1
(1 − ϕ)(1 + Qϕ) Q(1 − ϕ(1 + Q) + Q) + ((Q + 2)ϕ − 1)Q(Q + 1)

2 − ϕQ(Q + 1)(2Q + 1)
6

= Q(Q + 1)
(1 − ϕ)(1 + Qϕ)

1
2 + ϕ(Q − 1)

6

Finally, the fourth term can be expressed as follows, where we again use the summation 

identities that we used to analyze the third term:

C1′ V −1C1 = 1
1 − ϕ 0 − ϕQ(Q + 1)

2(1 + Qϕ) , 1 − ϕQ(Q + 1)
2(1 + Qϕ) , …, Q − ϕQ(Q + 1)

2(1 + Qϕ) (0, 1, …, Q)′

= 1
1 − ϕ ∑

q = 0

Q
q q − ϕQ(Q + 1)

2(1 + Qϕ)

= 1
1 − ϕ ∑

q = 0

Q
q2 − ϕQ(Q + 1)

2(1 + Qϕ) ∑
q = 0

Q
q

= Q(Q + 1)
1 − ϕ

ϕQ(Q − 1) + 4Q + 2
12(1 + Qϕ)

Putting these four equalities together, we have the following result:
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δ = 12(1 + ϕQ)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2)

∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) Ȳ qj

This is the first result of our theorem. To prove the second result, we start by writing the 

following:

E δ = 12(1 + ϕQ)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2)

∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) E Ȳ qj

Plugging in E Ȳ qj = μ + βj + I{j > q}δj − q (with β1 ≡ 0) and setting 

M ≡ 12(1 + ϕQ)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2)

, the above is equal to:

M ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) (μ + βj + I{j > q}δj − q)

= Mμ ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) +

M ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) βj +

M ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) I{j > q}δj − q

Next, we show that each of the first two terms is equal to zero. We start with the first term 

and write:

Mμ ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ)

= Mμ ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − ∑

q = 1

Q
∑

j = 1

J
j + QJ + ∑

q = 1

Q
∑

j = 1

J ϕQ(2q − Q − 1)
2(1 + ϕQ)

= Mμ Q2(Q + 1)
2 − Q(Q + 1)(Q + 2)

2 + Q(Q + 1) + ϕQ(Q + 1)
2(1 + ϕQ) (0)

= 0

Next, we show that the second term equals zero:
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M ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) βj

= M Q ∑
q = 1

Q
(I{2 > q}β2 + … + I{J > q}βJ) + Q(β2 + … + βJ) − Q ∑

j = 1

J
jβj

= M Q ∑
q = 1

Q
(I{2 > q}β2 + … + I{J > q}βJ) + Q(β2 + … + βJ) − Q ∑

j = 1

J
jβj

= MQ (1β2 + 2β3 + … + QβJ) + (β2 + … + βJ) − (2β2 + … + JβJ)

= 0

Thus, the first two terms each equal zero, and so we can write:

E δ = M ∑
q = 1

Q
∑

j = 1

J
QI{j > q} − j + 1 + ϕQ(2q − Q − 1)

2(1 + ϕQ) I{j > q}δj − q

= M ∑
q = 1

Q
∑

j = 1

J
Q + 1 − ϕQ(Q + 1)

2(1 + ϕQ) − j + ϕqQ
1 + ϕQ I{j > q}δj − q

= M (2 + ϕQ)(Q + 1)
2(1 + ϕQ) ∑

q = 1

Q
∑

j = 1

J
I{j > q}δj − q − ∑

q = 1

Q
∑

j = 1

J
jI{j > q}δj − q + ϕQ

1 + ϕQ ∑
q = 1

Q
∑

j = 1

J
qI{j > q

}δj − q

Next, we simplify the three sums in the equation above as follows:

∑
q = 1

Q
∑

j = 1

J
I{j > q}δj − q = ∑

j = 1

Q
(Q − j + 1)δj

∑
q = 1

Q
∑

j = 1

J
jI{j > q}δj − q = ∑

j = 1

Q (Q + 1)(Q + 2) − j(j + 1)
2 δj

∑
q = 1

Q
∑

j = 1

J
qI{j > q}δj − q = ∑

j = 1

Q (Q − j + 1)(Q − j + 2)
2 δj

Plugging these identities into the equation above, we obtain:

E δ = M (2 + ϕQ)(Q + 1)
2(1 + ϕQ) ∑

j = 1

Q
(Q − j + 1)δj − ∑

j = 1

Q (Q + 1)(Q + 2) − j(j + 1)
2 δj

+ ϕQ
1 + ϕQ ∑

j = 1

Q (Q − j + 1)(Q − j + 2)
2 δj

= M
2(1 + ϕQ) ∑

j = 1

Q
[(j − Q − 1)(j + 2ϕQj − Q(1 + ϕ + ϕQ))]δj

= ∑
j = 1

Q 6(j − Q − 1)((1 + 2ϕQ)j − (1 + ϕ + ϕQ)Q)
Q(Q + 1)(ϕQ2 + 2Q − ϕQ − 2)

δj

This completes the proof.

Kenny et al. Page 32

Stat Med. Author manuscript; available in PMC 2023 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E TABULAR RESULTS

Below, we have included the results from Figures 3 and 4 in tabular form, as well as Monte 

Carlo errors corresponding to Figure 3.

TABLE E1

Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of 

the TATE (Ψ(0,J−1]) and LTE (ΨJ−1) using the following four models: immediate treatment 

effect (IT), exposure time indicator (ETI), natural cubic spline with 4 degrees of freedom 

(NCS-4), monotone effect curve (MEC). See Figure 3 for results in graphical form.

(a) Instantaneous (b) Lagged (c) Curved (d) Partially convex

TATE LTE TATE LTE TATE LTE TATE LTE

Bias (%)

IT −0.8 −0.8 −112.1 −108.1 −36.2 −46.2 −99.0 −99.3

ETI 0.1 0.1 0.0 −0.1 −0.5 −1.7 1.2 1.4

NCS-4 −4.2 −9.7 −11.1 −12.5 −0.7 −1.5 −3.4 −8.9

MEC 9.1 18.4 21.0 21.3 −6.6 3.3 3.2 −3.1

Coverage (%)

IT 94.7 94.7 0.0 0.0 27.3 2.3 0.0 0.0

ETI 94.1 95.2 94.9 94.6 95.0 94.8 95.7 94.6

NCS-4 94.5 93.8 93.6 92.9 94.1 93.8 94.6 93.6

MEC 92.6 93.5 91.1 93.5 93.3 95.3 93.9 91.4

MSE

IT 0.3 0.3 14.3 29.6 2.7 5.7 10.7 25.0

ETI 0.8 3.1 0.8 3.3 0.8 3.1 0.8 3.2

NCS-4 0.8 3.3 0.9 3.3 0.8 3.2 0.8 3.1

MEC 0.7 1.6 0.8 1.8 0.7 1.1 0.7 1.7

TABLE E2

Simulation results: average pointwise mean squared error for the estimation of the entire 

effect curve using the following four models: immediate treatment effect (IT), exposure time 

indicator (ETI), natural cubic spline with 4 degrees of freedom (NCS-4), monotone effect 

curve (MEC). See Figure 4 for results in graphical form.

(a) Instantaneous (b) Lagged (c) Curved (d) Partially convex

IT 0.003 0.199 0.035 0.143

ETI 0.013 0.014 0.013 0.014

NCS-4 0.014 0.017 0.013 0.013

MEC 0.008 0.010 0.009 0.013
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TABLE E3

Monte Carlo standard errors corresponding to estimates in Table E1

(a) Instantaneous (b) Lagged (c) Curved (d) Partially convex

TATE LTE TATE LTE TATE LTE TATE LTE

Bias (%)

IT 0.37 0.37 0.59 0.39 0.45 0.38 0.58 0.38

ETI 0.56 1.12 0.85 1.14 0.67 1.10 0.86 1.13

NCS-4 0.56 1.10 0.84 1.08 0.69 1.13 0.85 1.08

MEC 0.43 0.53 0.52 0.52 0.59 0.64 0.79 0.82

Coverage (%)

IT 0.71 0.71 0.00 0.00 1.41 0.47 0.00 0.00

ETI 0.75 0.68 0.70 0.71 0.69 0.70 0.64 0.71

NCS-4 0.72 0.76 0.77 0.81 0.75 0.76 0.71 0.77

MEC 0.83 0.78 0.90 0.78 0.79 0.67 0.76 0.89

MSE

IT 0.0001 0.0001 0.0004 0.0015 0.0006 0.0009 0.0012 0.0019

ETI 0.0004 0.0014 0.0004 0.0015 0.0004 0.0013 0.0004 0.0014

NCS-4 0.0004 0.0014 0.0004 0.0015 0.0003 0.0005 0.0004 0.0014

MEC 0.0003 0.0007 0.0003 0.0007 0.0003 0.0005 0.0003 0.0008

Abbreviations:

0

CRT cluster randomized trial
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FIGURE 1. 
Several possible effect curves: treatment effect as a function of exposure time
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FIGURE 2. 
Four possible true effect curves plotted against the expected effect curves estimated from an 

IT model, for a design with Q = 6 sequences and ϕ = 0.5
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FIGURE 3. 
Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of 

the TATE (Ψ(0,J−1]) and LTE (ΨJ−1) using the following four models: immediate treatment 

effect (IT), exposure time indicator (ETI), natural cubic spline with 4 degrees of freedom 

(NCS-4), monotone effect curve (MEC). Numeric values displayed over graph bars represent 

the height of the bars that are cut off because of the scale of the axes; see Table E1 for results 

in tabular form.
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FIGURE 4. 
Simulation results: average pointwise mean squared error for the estimation of the entire 

effect curve using the following four models: immediate treatment effect (IT), exposure time 

indicator (ETI), natural cubic spline with 4 degrees of freedom (NCS-4), monotone effect 

curve (MEC). Numeric values displayed over graph bars represent the height of the bars that 

are cut off because of the scale of the axes; see Table E2 for results in tabular form.
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FIGURE 5. 
Simulation results: power of Wald-type hypothesis tests for testing null hypotheses related to 

the TATE (Ψ(0,J−1] = 0) and the LTE (ΨJ−1 = 0) using the following four models: immediate 

treatment effect (IT), exposure time indicator (ETI), natural cubic spline with 4 degrees of 

freedom (NCS-4), monotone effect curve (MEC)
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FIGURE 6. 
Simulation results: bias, coverage, and mean squared error (MSE) for the estimation of the 

TATE (Ψ(0,j−1]) and LTE (Ψj−1) using the exposure time indicator (ETI) model with 0, 1, or 

2 extra time points added to the end of the study
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FIGURE 7. 
Forest plot of TATE and LTE estimates from the Australia disinvestment trial using the 

following four models: immediate treatment effect (IT), exposure time indicator (ETI), 

natural cubic spline with 4 degrees of freedom (NCS-4), monotone effect curve (MEC)
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FIGURE 8. 
Estimation of the effect curve from the Australia disinvestment trial using the following four 

models: immediate treatment effect (IT), exposure time indicator (ETI), natural cubic spline 

with 4 degrees of freedom (NCS-4), monotone effect curve (MEC)
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FIGURE 9. 
Forest plot of TATE and LTE estimates from the WA State EPT Trial (odds ratios) using 

the following four models: immediate treatment effect (IT), exposure time indicator (ETI), 

natural cubic spline with 4 degrees of freedom (NCS-4), monotone effect curve (MEC)
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FIGURE 10. 
Estimation of the effect curve from the WA State EPT Trial using the following four models: 

immediate treatment effect (IT), exposure time indicator (ETI), natural cubic spline with 4 

degrees of freedom (NCS-4), monotone effect curve (MEC)
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