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THE BIGGER PICTURE Universities play an increasingly central role in research innovations and commer-
cialization that drive technological development and economic growth. However, in-depth data science
analysis of university technology transfer is underexplored in literature because the relevant data is often
unavailable. To address this gap, we collaborated with the Stanford University Office of Technology
Licensing (OTL) to curate a comprehensive dataset of all 4,512 inventions marketed by the OTL between
1970 to 2020. We have detailed information about each invention together with its generated revenue
and cost, which critically captures outcomesmissing in previous works. Examples of technologies licensed
from Stanford include PageRank, recombinant DNA, and music synthesizers. Our study opens up a new
perspective for analyzing the translation of research into practice and commercialization using large-scale
computational and linguistics analysis.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
This article systematically investigates the technology licensing by Stanford University. We analyzed all the
inventions marketed by Stanford’s Office of Technology Licensing (OTL) between 1970 to 2020, with 4,512
inventions from 6,557 inventors. We quantified how the innovation landscape at Stanford changed over
time and examined factors that correlate with commercial success. We found that the most profitable inven-
tions are predominantly licensed by inventors’ own startups, inventions have involved larger teams over time,
and the proportion of female inventors has tripled over the past 25 years.We also identified linguistic features
in how the inventors and OTL describe the inventions that significantly correlate with the invention’s future
revenue. Interestingly, inventions with more adjectives in their abstracts have worse net income. Our study
opens up a new perspective for analyzing the translation of research into practice and commercialization us-
ing large-scale computational and linguistics analysis.
INTRODUCTION

The role of American research universities has evolved and

expanded in recent decades.1While the traditionalmission of uni-

versities has long been to educate young people and to discover

and transmit new disciplinary knowledge,2 today, many univer-

sities have added technological invention and commercialization

as part of their core mission.3 This is manifested by changes in
This is an open access article under the CC BY-N
some universities’ mission statements, the proliferation and

enlargement of offices of technology licensing (OTLs),4 the in-

crease in the number of invention disclosures, patents, and li-

censes, and changes in tenure and promotion criteria to

encourage the commercialization of university-generated knowl-

edge.5 As universities are playing an increasingly central role in

technological inventions that drive economic growth,6many tech-

nology-reliant companies have reduced their budgets for internal
Patterns 3, 100584, September 9, 2022 ª 2022 The Author(s). 1
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research and development, opting to leanmore heavily on collab-

orations with universities.3,7–10

With the increased emphasis on university technology trans-

fer, many universities in the US have established OTLs.4 An

OTL serves as a mediator between the suppliers of innovations

(university scientists) and those who can potentially commer-

cialize them, i.e., industry,11,12 centralizing university inventions

and facilitating their commercialization through licensing to ex-

isting firms or startup companies of inventors. As examples,

technologies that Stanford University’s OTL has commercialized

include the recombinant DNA technology that helped to jump

start the biotechnology industry, internet search engines (e.g.,

Google PageRank), functional antibodies, and music synthe-

sizers. The activities of OTLs have important economic and

policy implications since licensing agreements and university-

based startups can result in additional revenue for the university,

employment opportunities, and local economic and technolog-

ical spillovers through the stimulation of additional research

and development (R&D) investment and job creation.13–15 To

incentivize university scientists, universities typically share

licensing income with the inventors and the inventor’s depart-

ment.16 For example, Stanford’s royalty-sharing policy is to

divide a third of the net income to the inventor, a third to the in-

ventors’ departments, and a third to the inventors’ schools.

We focus our analysis on Stanford OTL because it is one of the

most active and impactful technology transfer centers. Stanford

OTL has long been regarded as a canonical approach for many

universities in both the US and abroad.17,18 Established in 1970,

Stanford’s OTL is one of the older OTLs.4,19,20 Stanford has one

of the most successful technology transfer programs, which has

contributed to substantial commercial activity. According to the

2020 annual survey of the Association of University Technology

Managers (AUTM),4 Stanford ranks among the top five univer-

sities in the US across each of the key technology transfer perfor-

mancemetrics, including license income received, invention dis-

closures, US patents issued, and startup companies formed.

Despite the increasing importance of technology licensing,

systematic data science analysis of university technology trans-

fer is not common. Much of the previous research focuses on a

few particular inventions at specific universities.17,19,21,22 For

example, Colyvas et al. investigated the early formation and

the institutionalization process of Stanford’s OTL.17,19,22 Another

line of research focuses on the determinants of licensing. Shane

et al. analyzed early MIT inventions issued during the 1980–1996

period and found that university inventions are more likely to be

licensed when patents are effective.23 Using the same data, De-

chenaux et al. explored the effect of appropriability on commer-

cialization of inventions,24 and Shane et al. found that new

ventures with founders having direct and indirect relationships

with venture investors are most likely to receive venture fund-

ing.25 Huang et al. performed a systematic analysis of life sci-

ences patents in MIT from 1983 to 2017. They include a number

of outcomemeasurements that are unique to the biopharmaceu-

tical industry, such as Orange Book citations, drug candidates

discovered, and US drug approvals.21 Other works focused on

faculties’ decisions on invention disclosure,9,26–31 showing that

faculty decisions to disclose are shaped by their perceptions

of the benefits of patent protection9 and the historical structure

and mission of the university.27
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Several works performed cross-university studies at a coarser

granularity to measure the efficiency of university technology

transfer.32,33 For example, Thursby et al. found that the rise in

university technology transfer is the result of a greater willingness

of university researchers to patent their inventions and an in-

crease in outsourcing of R&D by firms via licensing.31,33 Subse-

quent work showed that higher percentages of royalty shares for

faculty members,26,34 and age of OTLs,35,36 are associated with

greater licensing income. Beyond the US, studies on the effi-

ciency of university technology transfer have also been conduct-

ed in other countries including theUK,37 Spain,38 and Italy.39,40 In

sum, this line of research suggested that the key impediments to

better university technology transfer performance tend to be

organizational,41 which includes incentives, relating both to

pecuniary and non-pecuniary rewards, such as credit toward

tenure and promotion, the staffing and compensation practices

of the OTLs, university culture, milieu of entrepreneurism, and

group norms.13,42,43

More broadly, previous research has investigated factors that

drive scientific innovation. Although scientific innovation is

widely accepted to be highly uncertain and unpredictable, previ-

ous research found that scientific projects that posit unexpected

relationships between domains receive greater attention and are

more richly rewarded than projects that explore more common-

place connections.44–47 Although external factors such as the

overall funding landscape and economic conditions could also

affect scientific innovation, research teams are the engines of

modern science.48 The growth of prevalence and size of teams

has been one of the most universal trends across all areas of sci-

entific and scholarly investigation.49 Prior experimental and

observational studies reveal that demographic diversity benefits

innovation.50–52 Smaller teams have tended to disrupt science

and technology with new ideas and opportunities, whereas

larger teams have tended to develop existing ones.53,54 Another

line of research investigated patent-to-paper citations to assess

the route from public research to economic and social impact,

which highlights the importance of basic research and public

research.55–59

Large-scale computational analysis of university technology

transfer by OTLs has been limited in the literature. This gap mo-

tivates our comprehensive computational analysis leveraging

the unprecedented data of 4,512 marketed inventions from

6,557 inventors at Stanford since the founding of its OTL in

1970. These are the inventions that Stanford’s OTL prioritized

for marketing over the 13,485 disclosed inventions during that

period of time.

In our analysis, we focus on (1) quantifying how the innovation

landscape at Stanford evolved over 50 years and (2) examining

the factors that correlate with commercial success. We organize

our analysis by first quantifying the holistic trends of invention at

Stanford over time. We then analyze the inventors driving the in-

novations—their demographics, team composition, and the

effects of licensing by inventor startups. Finally, a particularly

interesting aspect of inventions is how they are publicly mar-

keted, which is also a key role of the OTL. Therefore, we further

analyze linguistic features in how an invention is presented in its

title and abstract, as these semantic footprints enable us to gain

insights into what the OTL believes are important to highlight.

Our study opens up a new perspective for analyzing the



Figure 1. Overview of the Stanford inventions data

(A) Number of inventions by year that Stanford’s Office of Technology Licensingmarketed. The color of the stacked bar chart indicates whether the cumulative net

income (until June 31, 2021) is positive.

(B) Categories with the highest average net income across years. The numbers in parentheses indicate the average net income. Cell colors indicate the root

category (teal: electronics, blue: biology, green: chemistry).

(C and D) Overrepresented keywords of (C) above-median income inventions (net income above the median for the same year) and (D) below-median income

inventions. We identified words with the greatest log likelihood ratio of appearing in above-median invention keywords versus below-income invention keywords.

The size of each term in the word cloud corresponds to its log likelihood ratio.

(E) Visualization of the sub-categories and the collaborative relationship among them. Each node represents a sub-category, and the edge is defined as the

percentage of overlapping inventions that the two sub-categories share. Node color indicates the root category. Intra-category edges are colored using the color

of the root category. Inter-category edges are colored gray.
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translation of research into practice and commercialization by

using fine-grained, large-scale computational and linguistic

analysis.

RESULTS

Overview of the Stanford inventions data
Our study leverages unprecedented data access to 4,512 mar-

keted inventions, corresponding to 6,557 inventors from Stan-

ford between 1970 and 2020, provided to us by the Stanford

OTL for analysis. The number of marketed inventions increased

rapidly from 1980 (4 inventions per year) to 2010 (250 inventions

per year) and plateaued in the 2010s (Figure 1A). The rise of the

internet greatly facilitated marketing, contributing to the large in-

crease. Following the convention of the OTL, we use net income,

which is defined as the total licensing income minus the cumula-

tive expense (e.g., patent application and litigation costs) as a

measure of the outcome of an invention. The total net income
of the inventions for all years considered is $581 M, and the

average net income is $0.13 M. Overall, most inventions have

a negative net income, and only 20%of inventions in this dataset

have produced positive net income (Figure 1A).

Each invention is assigned to one or more categories (e.g.,

‘‘biophysics’’) and keywords (e.g., ‘‘Alzheimer disease’’) by the

OTL. The categories with the highest average net income

changed across the years (Figure 1B). Before 2000, the top net

income categories were all in electronics, and after 2000, the

top net income categories were in biology and chemistry. Since

the net income is cumulative across time, recent inventions have

a lower net income comparedwith older inventions because they

had less time to accumulate income. We also identified the key-

words that had the greatest log likelihood ratio of appearing in

above-median inventions (net income above the median for the

same year) versus below-median inventions (Figure 1C), and

vice versa (Figure 1D). Words enriched in above-median income

inventions tend to be life sciences terms, such as therapeutic
Patterns 3, 100584, September 9, 2022 3



Figure 2. Inventor demographics analysis

(A) The percentage of female Stanford faculty and

invention authors over the past 25 years.

(B) The number of authors per invention across

different categories over time.
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and genomics. In contrast, words enriched in low-income inven-

tions tend to be associated with physical sciences, such as

optical and photonics.

One invention can be assigned to multiple categories if it is

relevant to different domains. For example, 17 medical imaging

inventions disclosed in 2020 are assigned to both the radiology

subcategory (under the biology category) and the computer vision

subcategory (under the engineering category). Categories that

co-occur in many inventions suggest that there is fruitful interdis-

ciplinary research between them. We visualize the interaction

relationship among different categories as a network (Figure 1E).

There are substantial interactions between subcategories of

biology and chemistry and between subcategories of engineering

and electronics. Subcategories of materials science have diverse

interactions with biology, chemistry, and engineering.

In all of the following analyses, to control for net income

change over time, we use the net income rank, i.e., the normal-

ized rank of the net income among the inventions with the

same disclosure year. We also control the categorical difference

by adding the categories as control variables in all linear regres-

sion analyses.

Inventor demographics analysis
The proportion of female inventors has tripled from 6.5% in 1995

to 19.7% in 2020 (Figure 2A). The increase remains significant af-

ter controlling for categories (p = 7.9E�07; Table S5). However,

despite such a rapid increase, overall, females are still underrep-

resented: the percentage of female inventors is consistently

lower than the percentage of female faculty at Stanford by a large

margin. For example, in 2019, the percentage of female faculty at

Stanford was 30%, while only 20% of the inventors were female.

A caveat here is that certain disciplines (e.g., medicine, engineer-

ing) can be more likely to file inventions than other disciplines.16

Beyond involving more females, inventions also involved

larger teams over time. For example, the average number of in-

ventors per invention under the biology category increased from

2.47 in 1980–2000 to 3.29 in 2015–2020 (Figure 2B). Such an in-

crease is consistent across different categories (p = 1.7E�30;

Table S6), indicating that the invention environment at Stanford

is increasingly collaborative. In addition, we found that the inven-

tions from teams of only first-time inventors have a higher net

income than other inventions (p = 3.1E�02; Table S7). This high-

lights the importance of being open to first-time inventors.

Self-licensing
Stanford’s entrepreneurial culture is also reflected in our data.

Around 20% of the inventions were licensed by the inventor’s

own startups, which we refer to as ‘‘self-licensing.’’ Overall, the
4 Patterns 3, 100584, September 9, 2022
self-licensing rate increases over time

(p = 4.0E�02; Figure 3A; Table S8). The

interesting peak of the self-licensing rate
in 1995–1999 might be related to the dot-com bubble. We also

found that inventions with high net income are predominantly

self-licensing inventions (Figure 3B). For example, all inventions

that have generated more than $10 M net income are self-

licensed, and the self-licensing rate for the inventions with $1–

$10 M net income is 59%. In contrast, the self-licensing rate

for inventions with less than $10 K net income is 16%. After con-

trolling for categories and years, self-licensing is still strongly

associated with higher net income (p = 4.1E�08; Table S9).

This finding is consistent with previous research showing that

startups with direct connections to the university tend to be

more successful than otherwise similar startups.60 In addition,

the self-licensing rate is higher in the biology category (p =

3.0E�05) and lower in the electronics category (p = 6.4E�04).

Linguistic analysis on OTL marketing
An important role of the Stanford OTL is to market the re-

searchers’ inventions to potentially interested companies. Mar-

keting is typically initiated through a marketing abstract created

by the OTL that describes the invention to the public. Therefore,

to gain insights into OTL marketing, we analyze two main ques-

tions. (1) How havemarketing abstracts changed over the years?

(2) Which linguistic features in the marketing abstracts are asso-

ciated with the commercial outcome of the invention? Similar

text analysis techniques have been applied to scientific innova-

tion studies in the literature.50

The marketing abstracts have changed substantially over

the years. The average length of the marketing abstracts has

nearly doubled: from 144 words in 1980–1990 to 241 words

in 2015–2020 (Figure 4A). The increase remains statistically

significant after controlling for categories (p = 7.7E�42;

Tables S1 and S2). Interestingly, the titles of the marketing ab-

stracts are also getting longer (p = 6.3E�19; Table S1) and

have 103 more adjectives (p = 2.4E�52; Figure 4B;

Table S3) from 1980–1990 (1%) to 2015–2020 (12%). This

might suggest that inventions are becoming increasingly

specialized, which would require longer text and more adjec-

tives to describe them.

Beyond the temporal changes, we also identified linguistic fea-

tures in how the OTL describes the inventions that significantly

correlate with the invention’s future revenue.We found that inven-

tions with longer marketing abstracts (p = 2.2E�04) or more ad-

jectives in the marketing abstracts (p = 1.4E�05) are associated

with worse net income (Table S4). Interestingly, we found that

words like ‘‘novel’’ (p = 3.57e�08), ‘‘significant’’ (p = 2.00e�03),

and ‘‘effective’’ (p = 8.51e�03) correlate negativelywith the net in-

come, even after controlling for categories. These adjectives

remain statistically significant after adjusting for multiple



Figure 3. Self-licensing (inventions licensed

by the inventor’s own startups)

(A) The fraction of inventions licensed by inventor

startups over time.

(B) The fraction of inventions in each net income

group that the inventors license. The sample sizes

for each net income category are: <$10 K: 3,776

inventions; $10–$100 K: 465 inventions; $100 K–$1

M: 212 inventions; $1–$10 M: 56 inventions; R$10

M: 5 inventions.
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hypothesis testing with a false discovery rate of 0.05. In contrast,

only a few adjectives correlate positively with net income.

Analyses of inventors’ abstracts show similar results: The

length of inventors’ abstracts has also substantially increased

over time (p = 6.3E�19) after controlling for categories

(Table S1). In addition, both the length of the inventors’ abstracts

(p = 1.3E�02) and the fraction of adjectives (p = 2.7E�05) corre-

late negatively with net income (Table S4). We further investi-

gated the correlation between net income and the usage of

each adjective in the inventors’ abstracts (Figure S1A). Similarly,

we found that in inventor’s abstracts, adjectives like ‘‘significant’’

(p = 4.04e�04), ‘‘novel’’ (p = 2.38e�02), and ‘‘effective’’

(p = 3.27e�03) also correlate negatively with the net income,

even after controlling for categories. These adjectives also

remain statistically significant after adjusting for multiple hypoth-

esis testing with a false discovery rate of 0.05. One possible

explanation is that for more incremental inventions, inventors

tend to write longer abstracts and use more adjectives to high-

light their novelties and advantages over existing technologies,

and the writing of marketing abstracts by OTLs might be influ-

enced by the inventors’ abstracts.

Finally, to quantify the distinction between the marketing

abstract of above-median income inventions and those of low-

income inventions, we trained machine-learning classifiers to

predict whether the net income rank is above 0.5, i.e., whether

the net income is above the median for the same disclosure

year (Figure 4D). A classifier using term frequency-inverse docu-

ment frequency (TF-IDF) features achieves a 0.71 area under the

receiver operating characteristic (AUROC) on the hold-out test

set. The BERT classifier, which utilizes deep learning to provide

contextual features for each word, is highly accurate, with a 0.76

AUROC score. In contrast, the baseline classifier that takes cate-

gory annotations as input only achieves a low 0.57 AUROC

score, suggesting that the linguistic patterns we identify here

are not driven by different styles of presenting different cate-

gories of inventions. Experiments on inventors’ abstracts show

similar results (Figure S1B). This suggests that the abstracts of

above-median income inventions have clearly distinguishing

textual features beyond categorical differences.

DISCUSSION

This paper provides a systematic and quantitative characteriza-

tion of the technology licensing pipeline at Stanford between
1970 and 2020, with 4,512 inventions

from 6,557 inventors. Our analysis charac-

terizes how the innovation landscape at
Stanford changed over time: the top-income invention cate-

gories shifted from electronics to life sciences after 2000. The in-

ventions might also be increasingly specialized, as indicated by

the substantial increase in the length of both the titles and the ab-

stracts for describing them.

Our demographic analysis suggests that inventions involved

larger teams over time across all categories. The proportion of

female inventors has tripled over the past 25 years, though

they are still underrepresented. This finding is consistent with

previous research findings on the gender gap in patenting.61 Pro-

active efforts can be taken to support diverse faculties in trans-

lating their research to industry. Our analysis also highlights

the important role of inventors in commercializing research: the

most profitable inventions are predominantly licensed by inven-

tors’ own startups, and such self-licensing practices are also

becoming increasingly popular over time. This finding is consis-

tent with previous research showing that startups with direct

connections to the university tend to be more successful than

otherwise similar startups.60 Several other papers have also

shown evidence for a positive relationship between faculty

involvement and commercialization outcomes.23,25,62 Overall,

the self-licensing rate increases over time, and there is an inter-

esting peak of the self-licensing rate in 1995–1999 that might be

related to the dot-com bubble.

An important role of the Stanford OTL is to market the re-

searchers’ inventions to potentially interested companies. A

primary way of this marketing is through the OTL providing a

marketing abstract that describes the invention to the public.

Our linguistic analysis identified linguistic features in how the

OTL describes the inventions that significantly correlate with

the invention’s future revenue. Interestingly, inventions

with more adjectives in the marketing abstracts are associated

with worse net income. Adjectives like ‘‘novel,’’ ‘‘effective,’’

and ‘‘significant’’ in the marketing abstracts correlate negatively

with the net income, even after controlling for categories and

year. One possible explanation is that for more incremental in-

ventions, inventors tend to write longer abstracts and use

more adjectives to highlight their novelties and advantages

over existing technologies, and the writing of marketing ab-

stracts by OTL might be influenced by the inventors’ abstracts.

Furthermore, the strong predictive performance at discrimi-

nating both the author and marketing abstracts of inventions

with above-median versus below-median income, after control-

ling for categories, exemplifies their substantial linguistic
Patterns 3, 100584, September 9, 2022 5



Figure 4. Linguistic analysis on OTL market-

ing

(A) The average length of OTL marketing abstracts

and inventors’ abstracts over time.

(B) The average fraction of adjectives in titles over

time.

(C) The correlation between the occurrence of each

adjective in the marketing abstract and net income

rank. Shown here are adjectives with p <0.05. Font

size indicates the frequency of the word. Text color

indicates the correlation coefficient with net income

rank after controlling for categories: red indicates

negative correlation, and blue indicates positive

correlation.

(D) Machine-learning classifiers with the marketing

abstracts as inputs to predict whether the net in-

come of an invention will be above the median net

income of the inventions of the same disclosure

year. TF-IDF, the classifier using term frequency-

inverse document frequency features; BERT, the

state-of-the-art text classifier that utilizes deep

learning to provide contextual features for each

word. Category baseline: only using category tags

of each invention as inputs. Shown are receiver

operating characteristic (ROC) curves on the hold-

out test set. A classifier using TF-IDF features ach-

ieves a 0.71 area under the receiver operating

characteristic (AUROC) on the hold-out test set.
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difference and opens up new possibilities for further linguistic

analysis. Future works include incorporating further semantic

analysis on the abstracts to measure the scientific novelty of

the inventions.50

The findings of this study have to be considered in light of

some limitations. First, the invention licensing via OTLs repre-

sents only one facet of the transfer of technology from university

to industry, though it is an important facet.63 Second, we primar-

ily focus on net income as the outcome metric because it is

straightforward to quantify and is a key metric of OTL’s own

assessment. However, it is important to note that licensing in-

come does not completely capture impact, and pursuing

licensing income is not the ultimate goal of the Stanford OTL.

The third limitation concerns the observational nature of our

study. Although we have been careful in controlling for con-

founders like category and year in our statistical models, the re-

sults should not be interpreted as causal but rather as statistical

associations. Finally, while our data focus on a single university,

Stanford University, this is an important case study because

Stanford is a leading center of innovation. Our findings also pro-

vide insights into the academic-industry partnership of Silicon

Valley since many technologies and startups from Stanford are

commercialized there. More work is needed to study the tech-

nology licensing at other universities with different entrepre-

neurial environments.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for code and data should be directed to and

will be fulfilled by the lead contact, James Zou (jamesz@stanford.edu).

Materials availability

This study did not generate any physical materials.
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Data and code availability

Aggregated data reported in this paper will be shared by the lead contact upon

request. All original code has been deposited at Zenodo under https://doi.org/

10.5281/zenodo.6959366 and is publicly available as of the date of publica-

tion. Any additional information required to reanalyze the data reported in

this paper is available from the lead contact upon request.

Materials and methods

Stanford inventions data

Metadata for the subset of 4,512 inventions that were prioritized for marketing,

corresponding to 6,557 inventors from Stanford between 1980 and 2020, were

provided to us by the Stanford OTL for analysis. Many of the inventions were

webmarketed, which partly explains the rapid increase in the number of inven-

tions in the 1990s. The OTL receives invention disclosures from Stanford

faculty, staff, and students. Generally, faculty notify the OTL of their invention

discoveries and delegate to the university all rights to negotiate licenses on

their behalf.64 After receiving the invention disclosures, the OTL evaluates

the commercial potential of the invention and, if it is a patentable subject mat-

ter, decides whether to file a patent.42 Our dataset contains inventions pro-

tected by both patents and copyright. For each invention, we have data on

the title, name of inventors, the abstract, keywords, category tags, and disclo-

sure date. We also have access to the cumulative revenue and the cumulative

expense, from which we can derive the cumulative net income of each inven-

tion, which provides ameasure of the impact of each invention. The net income

in our dataset is calculated before sharing it with inventors and inventors’ de-

partments and schools. Given that we aimed to focus on the impact of each

invention, we considered each invention (i.e., docket) as our unit of analysis.

For more information about the Stanford OTL, we refer interested readers to

https://otl.stanford.edu/. For examples of Stanford inventions, we refer inter-

ested readers to http://techfinder.stanford.edu/

Categorization for inventions

The original Stanford invention dataset contains the category tags only for a

subset of 1,700 inventions, annotated by a third-party marketing platform.

Therefore, we trained a machine-learning model to propagate category anno-

tations for all inventions. The input of the categorization model is the keywords

and the title of each invention. For each category tag, we trained a binary clas-

sifier by fine-tuning a BERT deep neural language model 65 to predict whether

an invention belongs to this category or not. Using a held-out test set, we found

mailto:jamesz@stanford.edu
https://doi.org/10.5281/zenodo.6959366
https://doi.org/10.5281/zenodo.6959366
https://otl.stanford.edu/
http://techfinder.stanford.edu/
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that our categorization models achieve high classification performance: for

most of the category tags, the categorization model has an AUC larger than

0.8. The AUC score is larger than 0.7 for all category tags. The categorization

model is implemented using PyTorch 1.4.0. Since the categorization model we

trained was highly accurate (AUC > 0.8), we used the full samples (4,512 inven-

tions) along with the predicted category tags for our analyses.

Statistical analysis and multiple hypothesis testing

Data processing, statistical testing, and visualization were performed using

Python v.3.7. We conducted a series of statistical tests using a Python-pack-

age statsmodel (https://www.statsmodels.org/stable/index.html). We supply

p values as a tool for interpretation; we maintain the convention of 0.05 as

the threshold for statistical significance. We performed the Benjamini-

Hochberg procedure for multiple hypothesis testing with a false discovery

rate of alpha = 0.05 using the statsmodel package. Our plots were generated

using the matplotlib Python package.

Linguistic analysis: Predicting net income from both the author and

marketing abstracts

We hypothesized that there are linguistic differences in how the inventors and

OTLs describe the inventions. We performed linguistic analysis on inventors’

abstracts (the abstracts of the invention disclosures written by university sci-

entists), marketing abstracts (the abstracts rewritten by the Stanford OTL’s

marketing team for the audience of business and legal professionals), and

the final invention titles edited by the Stanford OTL’s marketing team. We split

the author and marketing abstracts under consideration (inventions between

1980 and 2020) in an 80%/20% ratio as the train/test splits. We used the

sklearn python package and trained a TF-IDF featurizer on the training data

and then featurized both training and test data. Finally, we trained a logistic

regression model based on the features. The AUC-ROC curve was evaluated

on the test set. Furthermore, we also experimented with the BERT deep neural

language model, implemented using PyTorch 1.4.0.

Linguistic analysis: Adjectives

Part of speech tagging provides the functionality of marking a word in the text

to a particular part of speech (e.g., adjectives, nouns, pronouns, verbs) based

on both its context and definition.We used the Python Package Spacy (https://

spacy.io/), an industrial-strength natural language processing toolkit, to

perform part of speech tagging and identify adjectives.

Demographic analysis: Stanford faculty gender data

We used the official number of the percentage of female faculty at Stanford

over the years from the Faculty Demographics reports authored by the Stan-

ford Office of Faculty Development, Diversity, and Engagement, which is pub-

licly available at https://facultydevelopment.stanford.edu/data-reports/

faculty-demographics

We follow the method used by previous research66,67 for gender identifica-

tion from names. This method has recently been validated on a dataset

of scientist names extracted from the WoS database68. The gender of each

reviewer and reviewing editor is inferred from their names using a Python-

package gender-guesser (https://pypi.python.org/pypi/gender-guesser/).

Previous research shows that the gender-guesser package achieves the

lowest misclassification rate and minimizes bias68. The validation performed

by Santamarı́a andMihaljevi�c (2019)68 limitedmisclassification to 1.5% for Eu-

ropean names, 3.6% for African names, and 6.4% for Asian names.
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