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Abstract

FOXO1, a member of the family of winged-helix motif Forkhead box (FOX) transcription 

factors, is the most abundantly expressed FOXO member in mature B-cells. Sequencing of 

diffuse large B-cell lymphoma (DLBCL) tumors and cell lines identified specific mutations in 

the forkhead domain linked to loss of function. Differential scanning calorimetry and thermal 

shift assays were used to characterize how eight of these mutations affect the stability of 

the FOX domain. Mutations L183P and L183R were found to be particularly destabilizing. 

Electrophoresis mobility shift assays show these same mutations also disrupt FOXO1 binding 

to their canonical DNA sequences, suggesting the loss of function is due to destabilization of 

the folded structure. Computational modeling of the effects of mutations on FOXO1 folding was 

performed using alchemical free energy perturbation (FEP), and a Markov model of the entire 

folding reaction was constructed from massively parallel molecular simulations, which predicts 

folding pathways involving the late folding of helix α3. Although FEP is able to qualitatively 

predict the destabilization from L183 mutations, we find that a simple hydrophobic transfer 

model, combined with estimates of unfolded-state solvent accessible surface areas from molecular 

simulation, is able to more accurately predict changes in folding free energies due to mutations. 

These results suggest that atomic detail provided from simulation is important for accurate 

prediction of mutational effects on folding stability. Corresponding disease-associated mutations in 

other FOX family members support further experimental and computational studies of the folding 

mechanism of FOX domains.

Introduction

Forkhead box (FOX) transcription factors are a family of DNA-binding proteins containing 

a winged-helix motif, a variation of the helix-turn-helix (HTH) motif.1 FOX proteins are 
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conserved from Drosophila to humans with multiple roles in development and regulation, 

and mutations in these genes are associated with multiple pathologies including cancer.2,3 

FOXO1 is a key factor in both insulin signaling and B-cell development, balancing apoptotic 

and survival signals that vary across tissues and in response to metabolic conditions.4

FOXO1 has an N-terminal region, a FOX DNA-binding domain, a nuclear localization 

signal (NLS), several phosphorylation sites, a nuclear export sequence (NES) and a C-

terminal transactivation domain (TAD) (Figure 1A). Nuclear FOXO1 binds to regulatory 

sites and induces gene expression. Export to the cytoplasm, stimulated by AKT (Ser/Thr 

protein kinase) phosphorylation leads to ubiquitination and degradation.5 The DNA-binding 

domain has a compact three-helix fold, with the third helix (α3) sitting in the major groove 

of B-form DNA, and C-terminal β strands projecting along the axis of the DNA to contact 

one or both of the adjacent minor grooves.6

FOXO1 is the most abundantly expressed FOXO member in mature B-cells, where it targets 

genes in apoptosis, cell cycle and growth arrest.7 Tonic B-cell receptor (BCR) signaling 

stimulates the PI3K/AKT pathway via phosphorylated kinase BTK (pBTK) and helps 

release this brake by cytoplasmic localization of FOXO1. Diffuse large B-cell lymphoma 

(DLBCL), the most common non-Hodgkin lymphoma among adults,8 is fatal if untreated, 

with ~40% of patients either unresponsive or relapsing after front-line chemotherapy 

treatment.9 FOXO1 is frequently mutated in DLBCL, and oncogenic driver mutations are 

associated with cases refractory to, or relapsing after, treatment.10–12

Sequencing of DLBCL tumors identified two mutation hotspots in FOXO1, the N-terminus 

and the FKH domain.10 N-terminal mutations in FOXO1 prevent AKT phosphorylation 

leading to nuclear retention, and are also prevalent and oncogenic in GC-derived tumors 

such as Burkitt’s Lymphoma.13,14 The effects of mutations in the FOX domain, however, 

have not been investigated. These mutations are spread throughout the folded domain and 

do not involve residues directly involved in DNA-binding, but mutations at T182 or L183 

are adjacent to α3 and the major groove (Fig. 1B).6,10 We therefore sought to investigate 

whether these mutations have a global effect on FKH folding that would disrupt DNA-

binding.

To address this question, we performed a joint experimental and computational study of 

eight oncogenic mutations identified in the FOX domain. Through differential scanning 

calorimetry and thermal shift assays, we show these mutations destabilize the FOX domain, 

and in turn disrupt FOXO1 binding to the insulin response element (IRE). Then, as test 

of state-of-the-art methods to computationally predict the effects of mutations on folding, 

we compare two simulation-based approaches: (1) an alchemical free energy perturbation 

(FEP) approach, and (2) Markov state models (MSMs) constructed from massively parallel 

ab initio folding simulations to characterize the folding mechanism of FOXO1. While 

both approaches reasonably rank-order the effects of destabilizing mutations, we find that 

changes in per-residue solvent accessible surface area (SASA) extracted from the MSMs, 

combined with a simple empirical hydrophobicity-based model of protein stability, makes 

superior quantitative predictions of the ΔΔG of mutation. These results suggest that detailed 
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information about folding intermediates and unfolded-state structure provided by atomistic 

simulations is important for accurate prediction of mutational effects on folding stability.

Results

Oncogenic mutations affect the stability of the FKH domain

We considered eight FKH mutations identified in DLBCL patients by Trinh et al. (2013),10 

and two mutations identified in DLBCL cell lines (Figure 1B, Table 1). None of these 

mutations correspond to residues that directly coordinate DNA bases in canonical DNA 

recognition sequences such as the insulin response element IRE (Figure 1B, top) or DAF-16 

binding elements DBE1 and DBE2.6 We therefore hypothesized these mutations may disrupt 

DNA binding by destabilizing the FKH domain.

To test this idea, we performed a thermal shift assay (TSA) for FKH mutants,15 using three 

independent protein batches, three technical replicates per batch (Table 1). According to 

these assays, the wild-type (wt) FKH domain had melting temperature Tm = 50.5 ± 0.8 °C. 

FKH mutants S152R, S153R, K171E, S205N, and S205T had ΔTm ≤ 2 °C compared to wt, 

implying no significant effect on FKH structure. However, significant alterations in Tm were 

observed for A166G, A166V, T182M, L183P, and L183R.

In the case of A166, the site of multiple mutations in DLBCL patients, replacement of 

alanine with the more flexible glycine reduced the melting temperature to 46.4 ± 0.5 

°C (ΔTm = −4.2 °C) whereas substitution with less flexible valine increases the melting 

temperature to 56.3 ± 0.5 °C (ΔTm = 5.8 °C). However, the most significant mutations were 

at positions T182 and L183. These residues lie at the N-terminus of helix 2 (α2) in the 

FKH domain. These residues stabilize the overall fold by initiating the first turn of α2, and 

packing against helix 3 (α3) which sits in the major groove of bound DNA. When bound to 

DNA, these residues make water-mediated contacts to the phosphate backbone along with 

residues 234–235 (Figure 1B).

The mutation T182M—identified in DLBCL cell line OCI Ly8—reduced the melting 

temperature to 46.4±0.1 °C (ΔTm = −4.2 °C) equivalent to A166G. L183P was more 

destabilizing, reducing the melting temperature to 40.0 ± 0.1 °C (ΔTm = −10.5 °C). A 

second mutation at the same position L183R – identified in DLBCL cell line WSU-NHL – 

reduced the melting temperature to 33.6 ± 1.1 °C (ΔTm = −16.9 °C).

TSA is an indirect measure of protein folding as detection depends on dye binding, which 

may itself influence the melting temperature Also, the thermal shift assay does not capture 

the full folding transition as fluorescence above the melting temperature is affected by 

other non-folding artifacts. Hence we validated our results with an independent measure of 

protein stability, differential scanning calorimetry (DSC). Two batches of FKH wt and single 

batches of 8 of the 10 mutants were analyzed using a non two-state folding model to derive 

melting temperature, the calorimetric and the van’t Hoff enthalpy of unfolding (Table 1).

Melting temperatures determined by DSC were systematically higher by 7 ± 1 °C compared 

to the thermal shift assay. However, ΔTm from DSC closely matched that of the thermal 
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shift assay, with a mean unsigned error (MUE) of 1.3 °C and maximum difference of 2.2 °C 

(Figure S1). The change in enthalpy (ΔH) associated with unfolding were similar between 

FKH wt and mutants. The wild-type calorimetric enthalpy of unfolding was ΔHcal (wt) = 

47 ± 1 kcal mol−1, while the average value for mutants was ΔHcal (mutants) = 47 ± 8 kcal 

mol−1. Similarly, the van’t Hoff enthalpies of unfolding were ΔHvH (wt) = 54 ± 1 kcal mol−1 

vs. ΔHvH (mutants) = 57 ± 8 kcal mol−1. In general, the van’t Hoff change in enthalpy 

was higher than the calorimetric enthalpy change by 10 ± 10 kcal mol−1, suggesting that 

reductions in melting temperature of FKH mutants result from perturbations to the folded or 

unfolded states, but not a gross change in the folding landscape of the FKH domain.

Mutations that reduce FKH stability also reduce DNA binding

We expected that FKH mutations identified in DLBCL cell lines and patient specimens 

which significantly destabilize the FKH domain should also reduce binding to canonical 

DNA binding sequences such as the insulin response element (IRE) and Daf-16 binding 

element (DBE). We therefore performed electrophoresis mobility shift assay (EMSA) 

experiments to measure the binding of FKH wt, L183P and L183R to IRE and DBE2 

oligonucleotides (Table 2). Experiments were performed using three independent protein 

batches, and bands quantified by ImageLab (BioRad). The results were fit to a two-state 

binding model to estimate the dissociation constant KD.

Representative EMSA images clearly illustrate that L183P and L183R show progressively 

lower affinity for dsDNA (Figure 2). The affinity of FKH wt for IRE from three independent 

experiments was KD = 200 ± 70 nM, ~2-fold weaker than previously reported.6 The affinity 

of FKH L183P for IRE was 2.5-fold weaker, KD = 460 ± 100 nM. The affinity for L183R 

for IRE was significantly weaker, the dissociation constant was not measurable for the 

concentration tested, KD > 1 μM.

The EMSA assay was repeated for dsDBE2 with single batches of FKH wt and FKH 

L183P. The affinity of FKH wt for DBE2 was KD = 90 nM, 10-fold weaker than previously 

reported, but again the affinity of FKH L183P was 2.5-fold weaker, KD = 230 nM. These 

results support the conclusion that FKH mutations which disrupt folding also disrupt binding 

to canonical target DNA sequences.

FEP calculations partially explain how FKH mutations disrupt folding

We next sought to more fully characterize structural mechanisms by which mutations 

destabilize the FOXO1 FKH domain, using alchemical free energy perturbation (FEP, see 

Materials and Methods). This method relies on atomistic molecular dynamics simulation to 

calculate the free energy cost of transforming a wild-type amino acid residue to a mutant 

one.16 The difference between this free energy cost for the folded state (calculated using 

the folded FKH domain), and the free energy cost for the unfolded state (calculated using a 

tripeptide model of the unfolded state), yields a prediction of the change in the folding free 

energy upon mutation, ΔΔGfold (Figure 3A). The accuracy of this state-of-the-art method is 

expected to be 1.1–1.6 kcal mol−1 (MUE) based on a number of recent benchmarks.17–19

The trends seen in both FEP results and experimental ΔTm measurements agree (Pearson 

correlation coefficient of r = −0.85 for both TSA and DSC measurements, Figure 3B). 
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Most importantly, FEP predicts the most destabilizing mutations to be L183P and L183R, 

in agreement with experiments, but for mutations that change the melting temperature by 

less than ±5 °C, FEP often fails to predict over- vs. under-stabilization, particularly for FKH 

T182M and S205T.

To quantitatively evaluate the accuracy of the FEP predictions, we used the the DSC 

Tm values for each for each FKH variant to estimate experimental ΔΔGfold using a 

method adapted from Robertson, Murphy, and Rees (see Materials and Methods).20–22 This 

comparison reveals that poor quantitative agreement between FEP estimates of ΔΔGfold and 

experiment, especially for mutations that significantly decrease stability of the FOXO1 FKH 

domain (see Figure 7C), with a MUE of 2.11 kcal mol−1 (RMSE 3.5 kcal mol−1). Aside 

from protein force field issues (which have been found to be generally robust for relative 

FEP18), there are several reasons why this may be. One possibility is that the unfolded 

state is poorly approximated by the tripeptide simulation; by comparison, realistic protein 

unfolded states may be significantly more compact, with specific residual structure.23–25 

Another reason may stem from the well-known challenges associated with charge-changing 

and proline transformations.18,26

Massively parallel simulations and Markov models elucidate the folding mechanism of 
FOXO1 at atomic resolution

To better understand the folding of FOXO1 FKH domain at higher-resolution, and how 

oncogenic mutations might perturb this process, we next sought to construct a Markov 

model of the folding mechanism,27–31 from nearly ten thousand independent molecular 

simulation trajectories simulated on the Folding@home distributed computing platform.32,33 

Unlike previous ab initio folding studies, which have focused on well-studied mini-

proteins,34,35 the folding of FOXO1 has not yet been experimentally characterized.

Simulation trajectories were started from twenty different folded and unfolded 

conformations generated from high-temperature simulations (Figure S2, see Materials and 

Methods), with production runs performed at 375 K, which we expected to be close to the 

simulation melting temperature of FOXO1 FKH based on the results of simulation studies 

on ubiquitin36 and other small two-state folders.35 Simulating near the simulation melting 

temperature was employed to increase the likelihood of sampling folding and unfolding 

transitions. An aggregate ~6.8 ms of simulation data was collected from 9927 trajectories 

(average length 682 ns) generated using GPU-accelerated OpenMM37 with the AMBER 

ff14SB force field38 and TIP3P water.39

Time-lagged independent component analysis (TICA) was used to project the trajectory data 

to components that best capture the slowest motions in the folding reaction.40,41 Trajectories 

were featurized using pairwise distances between every other backbone Cα, and the time-

lagged correlation matrix of these features was computed using lag time of 2.5 ns. Projection 

of the trajectory data onto the first two time-independent coordinates tIC1 and tIC2 shows a 

well-sampled funnel-shaped landscape, with the slowest motions along tIC1 corresponding 

to global folding/unfolding (Figure 4A).
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Trajectory data projected to the four largest TICA components were clustered into 1000 

states using a k-centers algorithm. The number of TICA components was chosen based 

on analysis of VAMP2 scores (see Materials and Methods). This enabled the construction 

of a Bayesian MSM, a method which reduces the statistical error of model estimation.42 

The first relaxation eigenmode of this model shows population flowing from folded (+) to 

unfolded (−) conformations along tIC1, indicating that the protein is moderately unstable 

at the simulation temperature of 375 K. Although unfolding events are observed more 

frequently than folding events, many folding and refolding events are also observed (Figure 

S3 and Figure S4). Using PCCA+43,44 we clustered the individual microstates into three 

coarse-grained macrostates identified as unfolded (U), intermediate (I), and folded (N) 

(Figure 5). Mean passage times between macrostates are on the 5–20 μs timescale (Table 

S1), with the mean first passage time of folding estimated to be 20.7 μs.

To elucidate the main structural events in the folding pathway, the DSSP algorithm45 was 

used to assign per-residue secondary structure to each macrostate and the populations 

of native secondary structure elements were calculated (Figure 5A). FOXO1 has three 

α-helices (α1, α2, α3), an α-turn (αT), and two β-sheets (β4, β5). In the unfolded state 

(U), the probability p of any of these structures to be correctly folded is less than 0.5. In 

the intermediate state (I), we find that there is a high probability (p > 0.8) that secondary 

structures are formed except for α3 (0.2 ≤ p ≤ 0.3). Only after the other structural elements 

are in place does α3 form in the native state (N). An analysis of interresidue contact 

frequencies for each macrostate reaches similar conclusions (Figure 5B).46 Native contacts 

have low populations in U, but are mostly formed in I except for contacts with α3. In 

N all native contacts are formed. This is consistent with sequence-based predictions from 

PSIPRED of poor helix propensities for α3 (Figure S2), suggesting tertiary context is 

important for its formation.47 This context-dependence may explain why none of the highly 

destabilizing mutations are located in α3, except S205, which is far from the major groove 

when bound to DNA.6

While the crystal structure of DNA-bound FOXO1 contains a Ca2+ ion that helps stabilize 

α3, the context-dependent folding of α3 is likely a general feature of FOXO domain 

structure and dynamics. NMR structural studies of four different FOXO domains in the 

absence of Ca2+ show differences in solution-state structure at αT and α3, but highly similar 

crystal structures when bound to DNA.48

A hydrophobic transfer model accurately predicts thermostability changes of mutations 
from simulated changes in SASA

Simulations predict a compact denatured state for FOXO1 with populations of residual 

structure. We hypothesized that the structural detail and extensive statistical sampling 

provided by simulations could help us evaluate whether the tripeptide model used in the 

FEP studies is a sufficiently accurate approximation of the unfolded state.

The Shrake-Rupley algorithm49 was used to calculate how the average solvent-accessible 

surface area (SASA) of residues S152, S153, A166, T182, L183, and S205 changes for each 

macrostate along the folding reaction (Figure 6). Interestingly, predicted changes in SASA 

were highly non-trivial. In many cases, the SASA of the native state (N) was comparable 
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(S152 and S153) or greater (S205) than the unfolded state (U). More importantly, for all 

residues, the average SASA in the tripeptide model of the unfolded state used for FEP was 

at least 2.8 times larger than in our simulations, suggesting that a more realistic model 

of SASA in the unfolded state might lead to more accurate predictions of how mutations 

change FOXO1 stability.

To test this idea, we constructed a model of how the free energy of folding ΔG (U→N) 

depends on changes in the local hydrophobic environment, based on the empirical 

hydrophobic transfer model of Eisenberg et al.50–53 The change in the free energy of folding 

ΔΔGfold due to a mutation at residue position i, from amino acid residue ri to si, is computed 

as

ΔΔGfold = H si − H ri ΔAi/A0 ri ,

where H(si) and H(ri) are the hydrophobicities of the mutant residue si and wild type residue 

ri, respectively, ΔAi is the predicted change in SASA of (the wild type) residue i upon 

folding (U→N), and A0(ri) is the maximum solvent exposure of the amino acid residue at 

position i. Importantly, the only free parameter in this model is the input value ΔAi, which 

we compute directly from the molecular simulations (see Materials and Methods). All other 

parameters come directly from previously published work: the hydrophobicities H come 

from the consensus hydrophobicity scale of Eisenberg et al (1982),51 and the normalized 

maximum solvent exposures of amino acids A0
i are taken from Tien et al.53

For comparison, we also calculated ΔΔGfold estimates using the popular FoldX algorithm, 

a native structure-based empirical predictor of protein stability trained on a large corpus 

experimental data.54

Figure 7 shows a side-by-side comparison of three different computational predictions of 

ΔΔGfold: from the hydrophobic transfer model (Figure 7A), from FoldX (Figure 7B), and 

from FEP calculations (Figure 7C). Of these, the hydrophobic transfer model agrees most 

accurately with the DSC results, with a RMSE of 0.25 kcal mol−1, and a linear fit of slope 

0.98. The FoldX predictions generally agree with results from DSC, but overestimate the 

magnitude of destabilizing mutations (RMSE = 0.87 kcal mol−1). The FEP predictions are 

least accurate, severely overestimating the magnitude of destabilizing mutations with RMSE 

= 3.1 kcal mol−1 and a linear fit slope of 5.09.

Interestingly, all three methods predict T182M to be stabilizing, despite the experimental 

finding that it is destabilizing (ΔΔGfold = +0.42 kcal mol−1). This may be due the the 

context-dependent importance of threonine at that position in the native structure, where 

it serves both as a strand-pairing residue in a preferred beta-sheet conformation, and as a 

N-terminal capping group, whose side chain makes a backbone hydrogen bond to stabilize 

α2.
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FEP calculations along the folding coordinate show a continuum of disruption to local 
folding

To further explore the mechanism by which mutations perturb the folding reaction, six 

representative structures of folding intermediates were taken along the folding coordinate 

tIC1, and used as fixed-backbone structural templates for FEP calculations of the free energy 

of mutation (Figure 8A). For most of these structures, helices α1 and α2 are folded or 

partially folded.

Figure 8B shows a plot of the predicted ΔΔG = ΔGi − ΔGU from FEP, where ΔGi is 

calculated using one of the structures along the folding coordinate tIC1, and ΔGU is taken 

from the tripeptide model of the unfolded-state. When ΔGi = ΔGN, ΔΔG recapitulates 

the FEP predictions of ΔΔGfold, but for intermediate ΔGi, the value of ΔΔG reports 

on the magnitude of the perturbation along the folding reaction. The results suggest 

that destabilizing mutations L183P and L183R may exert their effects differently along 

the folding reaction: L183P perturbations gradually increase as FOXO1 acquires native 

structure, while L183R appears to particularly destabilize the N state in the last step of 

folding.

Discussion

To the best of our knowledge, this work represents the first detailed investigation of 

FOX domain folding mechanism. The Markov model we have constructed makes testable 

predictions about the folding pathways and rates of this ‘winged helix’ motif that can be 

tested experimentally. Previous studies of Engrailed homeodomain (EnHD) and its homolog 

Pit1 demonstrate the malleable stability of the HTH motif, i.e. α2-α3 of the FOX domain, 

resulting in a continuum of folding mechanisms from ultrafast three-state framework to 

apparent two-state nucleation-condensation model.55 We speculate that similar malleability 

might be seen across the family of FOX domains, an intriguing area to explore in the future 

within the context of disease-related mutations.

A key result of this study is that two oncogenic point mutations at L183 dramatically 

destabilize the FOX domain, resulting in a FKH domain that is largely unfolded at 

physiological temperatures, and loss of function (DNA-binding).

Point mutations that destabilize the FOX domain have been previously reported. Mutation 

of paired residues within the β-turn ‘wing1’ of FOXO1 homolog FOXD3 to glycine 

and proline reduced the Tm by 3 °C and 5 °C, respectively.56 A naturally occurring 

mutation in FOXD3, N173H associated with developmental ocular conditions, corresponds 

to FOXO1 K192; this occurs on the protein surface and is not expected to affect folding 

or DNA binding.57 Two mutations in FOXC1, L130F and W152G also associated with 

developmental ocular conditions, correspond to conserved residues FOXO1 L217 and 

W237.58,59 FOXO1 L217 lies on helix α3 and W237 on the second β-strand of ‘wing1’, 

both within 4 Å of L183. Assays of both FOXC1 mutations in cell culture indicated reduced 

DNA-binding and formation of protein aggregates in the cytoplasm;58,59 cytoplasmic 

localization of FOXO1 is also observed in DLBCL specimens.60,61 Thermal analysis of six 

disease-causing mutants of FOXG1 all showed dramatic reductions in Tm, with ΔTm ranging 
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from −8 to −15 °C relative to wild-type. These included FOXG1 R230, corresponding to 

conserved FOXO1 R214 that—like L217—lies on helix α3 within 4 Å of L183.62 Taken 

together, there are three different residues with 4 Å of FOXO1 L183 with either in vivo and 

or vitro evidence of disrupted folding, suggesting a common conserved hydrophobic core 

involving the packing of helices α2 and α3. The loci of native-state contacts with these 

residues supports this idea (Table 4).

The destabilization of the FOXO1 fold by L183P and L183R has important translational 

significance. The loss of stability abrogates DNA-binding, implying loss-of-function (LOF) 

and oncogenicity due to the negation of canonical tumor suppressor function of FOXO1 in 

mature B cells. We note that: (i) although FOXO1 is one of the more commonly mutated 

genes in DLBCL, L183 mutations are overall extremely rare, (ii) cancer mutations are 

heterozygous, there should be a second wild-type allele to maintain FOXO1 function, and 

(iii) most of the 10 FOXO1 mutations tested had little to no effect on folding of the FOX 

domain. There are many other ways mutations in the FOX domain could affect FOXO1 

function, and further cell-based assays are required. Nevertheless, we also note that FOXO1 

cytoplasmic relocalization is relatively common in DLBCL cases, just as BCL2/MYC 

overexpression is more common than genetic translocation.61 FOXO1 L183 mutation could 

be a genetic instance of a more general phenotype of unfolding/misfolding of FOX domains, 

and this could result not only in LOF phenotypes but toxic gain-of-function (GOF) such as 

off-target or nonspecific DNA-binding and gene transcription. These observations, together 

with corresponding disease-associated mutations such as in FOXC1 and FOXG1,63,64 

support further experimental and computational studies of the folding mechanism of FOX 

domains.

To better understand how disease-related mutations destabilize FOXO1, we performed both 

FEP calculations and massively parallel molecular simulations of the folding reaction. Were 

these calculations worth the expense? Yes, for several reasons. First, the destabilizing 

effect of L183P is not obvious from inspection of the native state alone; proline is not 

uncommon in the first turn of alpha helices, in fact L183 corresponds to the position of 

highest propensity (Ncap+1).65 However, the restricted range of dihedral angles for proline 

clearly disrupt the folding of the HTH motif. Similarly, the destabilizing effect of arginine 

is not obvious from examination of the native state; the FOX domain is already highly 

basic with 8 arginines and 12 lysines in 115 residues facilitating favorable electrostatic 

interaction with the DNA backbone. However, the introduction of a bulky charged residue 

into the hydrophobic core of the HTH motif clearly destabilizes the HTH motif and hence 

the folding of the FOX domain. These observations of L183, together with the milder effect 

of FOXO1 T182M and identification of corresponding destabilizing mutations in FOXC1 

and FOXG1, emphasize the value of modeling the folding landscape of FOXO1 in atomic 

detail.

Another reason to perform atomistic folding simulations is to accurately model the 

unfolded state. The AMBER14SB force field accurately predicts solution-state NMR 

observables,38,66 and can effectively model both folded and unfolded states.67 While we 

found FEP predictions of the destabilizing effects of mutations to be qualitatively instructive, 

the hydrophobic transfer model is able to infer accurate quantitative predictions from 
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simulated unfolded states. One likely reason for the inaccuracy of FEP is the use of an 

unrealistic tripeptide model, which, as we have shown, severely overestimates the extent 

of solvent exposure in the unfolded state. On the other hand, our FEP studies along the 

folding coordinate (Figure 8) show that even if we assume that the unfolded state of 

FOXO1 resembles a compact and partially folded intermediate, FEP still overestimates the 

magnitude of destabilization.

While FEP remains state-of-the-art in terms of molecular modeling, “exaggerated” 

predictions of the effects of mutations are not uncommon. Gapsys et. al. (2016) analyzed 

119 mutations in the enzyme barnase by alchemical FEP, and found the the range of 

calculated global ΔΔGfold to be −2.2–7.2 kcal mol−1.18 Kucukkal et al., studying the 

effects of 10 Rett Syndrome mutations in MeCP2 MBD, note that accurately predicting 

the effects of charge changing mutations via FEP is particularly difficult.68 Steinbrecher 

et al., in a large-scale validation of FEP+, provide additional evidence for this difficulty 

with charge changing mutations, as well as finding that FEP+ relative free energies tended 

to be more positive than experiment.17 They further elaborate on FEP+’s difficulty in 

accurately predicting the effects of Glu, Lys, and Arg mutations due to finite sampling error 

of sidechain electrostatic interactions in the unfolding reaction.

Another key result of our work is the success of a simple hydrophobic transfer model in 

predicting the effects of mutations on folding stability. Aside from the seminal work of 

Eisenberg et al. in characterizing hydrophobic moments of proteins, the key ingredient in 

this approach appears to be the use of simulated ensembles to accurately capture the solvent 

accessibility of unfolded protein states. Future work should explore the application of this 

method to a wider range of proteins, to better gauge its overall accuracy. Modification of the 

hydrophobic transfer model to include residue-wise secondary structure propensities might 

further improve its accuracy.

Conclusion

This work examined the destabilizing effects of ten oncogenic mutations found in the human 

FOXO1 FKH domain, as seen in DLBCL patients and cell lines. Mutations at L183 greatly 

reduce FKH stability, and also reduce binding to canonical DNA sequences IRE and DBE2, 

suggesting that the decrease in folding stability is responsible for the loss of function. To 

better understand the mechanism of FOXO1 FKH folding and how mutations perturb it, 

alchemical FEP calculations and massively parallel molecular simulations were performed, 

enabling the construction of a Markov model that predicts folding pathways, rates, and a 

mechanism in which the formation of helix α3 is the final step. While FEP overestimates the 

magnitude of destabilization, a simple hydrophobic transfer model, used in conjunction with 

simulation-based estimates of solvent-accessible surface area, was shown to quantitatively 

predict changes in folding free energies from mutations, with high accuracy. These results 

make a strong case that more realistic, atomistic modeling of unfolded states is highly 

useful for studying the destabilizing effects of mutations. These observations, together with 

corresponding disease-associated mutations such as in FOXC1 and FOXG1,63,64 support 

further experimental and computational studies of the folding mechanism of FOX domains.
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Materials and Methods

Sample Preparation

The FOXO1 Forkhead DNA-binding domain (FKH) was expressed and purified as 

previously described, with minor modifications.69 A codon-optimized fragment encoding 

NdeI-TEV-FKH (151–265)-XhoI was subcloned into pET28. The construct was transformed 

into E. coli BL21 (DE3), grown in 2xYT medium with 30 μg/ml kanamycin. Protein 

expression was induced by 0.5 mM IPTG at 21 °C for 8–16 h. Cells were resuspended in 

500 mM NaCl, 5 mM beta ME, 20 mM Imidazole, 10% glycerol, disrupted by sonication, 

clarified by centrifugation and applied to a HisTrap column (GE Healthcare). Protein was 

eluted with a 0–500 mM imidazole gradient.

His-tagged FKH was desalted into 200–300 mM NaCl, 20 mM HEPES pH 7.5, 0.5 mM 

EDTA, 1 mM DTT, 5–10% w/v glycerol, cut overnight with His-tagged TEV (1:40 w:w) 

at 10 °C, followed by passage over Ni-NTA (Qiagen) gravity column to remove TEV and 

uncut protein. Cleaved FKH protein was exchanged into 50–300 mM NaCl, 20 mM HEPES 

pH 7.5, 10% w/v glycerol and applied to a MonoS or Capto S column (GE Healthcare). 

Protein was eluted with a gradient to 1.0 M NaCl. For storage, FKH was concentrated, 

glycerol added to 25% w/v, flash-frozen in liquid N2 and stored at −80 °C.

Biotinylated 32bp DNA oligos were synthesized (Eurofins) containing canonical FKH 

binding motifs IRE, DBE1 and DBE2 (See Table 1). Complementary oligos were dissolved 

at 100 μM each in 10 mM Tris-HCI, pH 7.5,100 mM KCl and 1 mM EDTA and annealed in 

a PCR block with temperature gradient from 80°C to 20 °C over 60 min. Annealed dsDNA 

was purified by FPLC on a MonoQ 5/50 column (GE Healthcare) with 20 ml linear gradient 

0.1–1.1 M KCl. Purified dsDNA was dialyzed against 20 mM Tris-HCl pH 8.0, 50 mM KCl, 

5% w/v glycerol, 2 mM DTT, 0.2 mM EDTA, 2 mM MgCl2.

Thermal Shift Assay (TSA)

FKH protein was exchanged into 20 mM Tris-HCl pH 8.0, 50 mM KCl, 5% w/v glycerol, 

2 mM DTT, 0.2 mM EDTA, 2 mM MgCl2, at 5 μM concentration and 2X Sypro Orange 

(Thermo Fisher). Aliquots of 50 μl were loaded into PCR strips and analyzed on a StepOne 

Plus™ qPCR instrument (Thermofisher) with temperature gradient 25–95 °C ramp, 1 °C 

increment, 1 min hold/increment. Data from the ROX channel was baseline corrected and fit 

to a 2-state model in Matlab.

Differential Scanning Calorimetry (DSC)

FKH protein was prepared in Tris-EDTA at 1 mg/ml (~7.5 μM). Samples were analyzed in 

a PEAQ-DSC instrument (Malvern) with temperature gradient 25–90 °C. Baseline corrected, 

buffer-subtracted data were analyzed by a non two-state model.

Electrophoretic Mobility Shift Assay (EMSA)

FKH at 5–1000 nM in 10 mM Tris-HCl pH 7.5, 50 mM KCl, 5% w/v glycerol, 1 mM DTT, 

0.2 mM EDTA, 1 mM MgCl2 was incubated with 1 nM biotinylated dsDNA in presence of 

1 ng/μl poly-dI/dC for 30 min at room temperature. Samples were separated on 6% 0.5X 
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TBE polyacrylamide gels and analyzed using LightShift® Chemiluminescent EMSA Kit 

(ThermoFisher).

Free Energy Perturbation (FEP) Calculations

To model unfolded-state conformations, eight FKH tripeptides were prepared using UCSF 

Chimera 1.13.1. Alchemical topologies for wild type (wt, A state) and mutant (B state) 

were prepared using pmx.19,70 The tripeptide sequences originating from the FOXO1 FKH 

domain are T(L183R)S, K(S152R)S, S(S153R)S Y(A166G)D, Y(A166V)D, L(T182M)L, 

N(S205T)S, and T(L183P)S. Each tripeptide was solvated with TIP3P water in cubic 

periodic boxes ranging in volume from (3.15 nm)3 to (3.54 nm)3. Neutralizing K+ and 

Cl− counterions were added at 50 mM, consistent with concentrations used in the TSA and 

EMSA assays. For charge-changing mutations, (L183R and S153R), a potassium ion was 

chosen to have charge +1 in the A state, and neutral charge in the B state.

The folded-state model of FOXO1 FKH(151–249)/Mg complex was adapted from PDB 

3COA.6 Protonation states at pH 7.5 were determined using H++71 and the AMBER 

ff14SB force field was used to build the topology.38 The calcium ion in 3COA was 

replaced with magnesium and the MCPB algorithm72 was used to build three coordination 

bonds with the carbonyl oxygens of Leu217, His220, and Phe223. Alchemical topologies 

were prepared using pmx,70 with the assistance of in-house code (https://github.com/leiqian-

temple/AlchemFEP_FOXO1). The final dual topology used the AMBER 14sbmut forcefield 

available in pmx. Each system was solvated in a cubic periodic boxes ranging in volume 

from (7.16 nm)3 to (7.25 nm)3, with TIP3P water and neutralizing K+ and Cl− counterions 

added at 50 mM. Charge-changing mutations were addressed using the same strategy 

as the unfolded-state calculations. In addition, six FOXO1 FKH(151–249) conformations 

corresponding to folding intermediates were taken from the MSM (see Markov Model 

Construction and Analysis below) and used to prepare alchemical FEP models using a 

similar process, but with the magnesium-related MCPB steps omitted.

Minimization, equilibration, and production molecular dynamics for the FEP calculations 

were performed on Temple University’s Owlsnest HPC cluster using the GROMACS 2016.3 

simulation package.73 Energy minimization was performed until all forces were less than 

1000 kJ mol−1 nm−1. For equilibration and production, stochastic (Langevin) integration 

was performed using explicit TIP3P water solvent, with a time step of 1 fs and friction 

coefficient 1 ps−1. PME electrostatics were used with fourier spacing 0.12 and PME order 

4. Long-range dispersion correction was used. A total of 30 alchemical intermediates were 

used to interpolate from the A topology to B topology, using potential energy function U = 

(1-λ)UA + λUB, where 0 ≤ λ ≤ 1 is the interpolation parameter. The λ values used were 

(0.000, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65,0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 0.975, 1.00). For 

each alchemical intermediate, equilibration at 300 K was performed in the NVT ensemble 

for 100 ps, and then in the NPT ensemble at 1 bar for 100 ps using the Parrinello-Rahman 

barostat with compressibility constant 4.5 × 10−5 and time constant 0.5 ps. Production runs 

of each model were performed for 8 ns in the NPT ensemble. For each simulation performed 

using a given value λi, the values of ∂U/∂λ and ΔUij = U(λj) − U(λi) were written to 
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file every 0.5 ps, for all intermediates j. Free energy estimation was performed with the 

Multistate Bennett Acceptance Ratio (MBAR) method,74 using the alchemical-analysis75 

and pymbar74 Python packages. Time-reversed convergence plots for ΔG estimates were 

used to identify and discard the non-equilibrated regions of the trajectories (Figure S6). 

These results show that most simulations meet conditions of equilibrium and convergence 

in the last 4 ns, with the possible exception of folded-state S152R. Therefore, we removed 

the first 4 ns of each 8-ns trajectory before analysis. The overlap matrix, whose elements 

Oij quantifies the overlap between the distributions of ΔUij,75 shows sufficient overlap for 

accurate free energy estimates (Figure S7).

Massively Parallel Folding Simulations

The model of FOXO1 was adapted from PDB 3CO6.6 Protonation states at pH 7.5 were 

determined using H++,71 and the AMBER14SB force field was used to build the topology.38 

The protein was placed in a cubic periodic box of volume (8.2698 nm)3 and solvated 

with TIP3P water,39 with Joung-Cheatham neutralizing Na+ and Cl− counterions added 

at 0.1 M,76,77 resulting in a system of ~64500 atoms. Molecular dynamics simulations 

were performed using the GPU-accelerated OpenMM (CUDA platform),37 using stochastic 

(Langevin) integration with a 2 fs time step, friction coefficient of 1 ps−1 and PME 

electrostatics78 with cutoff 1.0 nm and tolerance 0.005. To generate a range of folded and 

unfolded conformations, several 60-ns NPT simulations were performed at 300 K, 400 K, 

450 K, and 498 K, respectively. Conformational clustering was performed using a k-centers 

algorithm to identify representative conformations.79 Production runs were performed at 375 

K on the Folding@home distributed computing platform,32,33 with all coordinates saved 

every 0.5 ns. Five hundred trajectories each with randomized initial velocities were initiated 

from 20 different starting structures, resulting in 10,000 total independent simulations. An 

aggregate of ~6.8 ms of simulation data was collected.

Markov Model Construction and Analysis

Using PyEMMA 2.5.7,80,81 all 9927 obtained trajectories were featurized using the pairwise 

distance for every other Cα in residues 5 to 95 for a total of 1036 features. Previous 

work has shown that pairwise distance information can provide excellent featurization 

of reversible folding trajectory data for the purpose of constructing Markov models.82 

Dimensionality reduction was performed using time-lagged Independent Component 

Analysis (TICA) with a lag-time τTICA = 2.5 ns. A k-means algorithm was used 

to conformationally cluster in the low-dimensional TICA projections to define MSM 

microstates. The VAMP2 score was used to assess models constructed with different 

numbers of microstates (Figure S8) and different low-rank TICA projections. Based on 

this score, and a general desire for computational tractability, we selected an MSM 

with 1000 microstates, clustered after projecting to the four largest TICA components, 

which adequately capture the slowest conformational motions (Figure S9). MSM implied 

timescales were calculated as ti = −τ/ln μi, where μi are the largest nonstationary eigenvalues 

of the microstate transition matrix. The slowest timescale was stable after 5.0 ns. A Bayesian 

MSM with a lag time of τ = 5.0 ns was constructed using these microstate definitions.42 

The microstates were assigned to macrostates (U, I and N) using the PCCA+ algorithm.43,44 

This coarse-grained three-state model passed the Chapman-Kolmogorov test (Figure S10). 
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Mean first passage times from macrostates A to B were calculated using PyEMMA, as the 

self-consistent expectation value EA of the time TB to reach a state in B from a state in A, 

EA[TB] = Σa∈A (πa Ea[TB]/Σz∈A πz), where πa are the equilibrium populations of state a.

All trajectory analysis was performed through a series of in-house Python 3.7.6 scripts 

utilizing MDTraj83 1.9.5 and Numpy 1.18.1 libraries, unless otherwise stated. Visualization 

was performed using Matplotlib 3.3.4 and VMD 1.9.3. Per-residue secondary structure 

probabilities for each macrostate were calculated via the DSSP algorithm, by comparing the 

frequency of trajectory snapshot DSSP assignments to the DSSP assignments of the crystal 

structure. Secondary structural elements were defined by the following residue ranges: α1 

(165–175), α2 (183–193), αT (195–197), α3 (203–219), β4 (223–226), β5 (236–239).

The frequency of native contacts for each macrostate was calculated using the sigmoidal 

function (1+exp(β(dij − λd0))−1 to count contacts, where dij are the distances between 

atoms i and j, β = 50 nm−1, λ = 1.8, d0 = 0.45 nm, as described by Best et al. (2013).46 

We adapted this method to coarse-grain the contact description as residue-wise rather than 

atomic, such that if an atomic contact is present between two residues, those residues are 

considered in contact. The contact frequencies for each macrostate were calculated as a 

population-weighted average across all microstates assigned to the macrostate.

The Shrake-Rupley algorithm as implemented in MDTraj was used to calculate the solvent-

accessible surface area (SASA) for 20 trajectory samples chosen at random from each 

microstate.49 The average residue-wise SASA for each macrostate was then calculated as 

a population-weighted average across all microstates assigned to the macrostate, where the 

microstate populations come from the MSM.

A hydrophobic transfer model of ΔΔGfold

To make quantitative predictions about the about the effects of mutations on protein stability, 

we developed a transfer free energy model of ΔΔGfold based on the work of Eisenberg et 

al. on environmental hydrophobicity.50,51 In this model, the free energy of a protein is given 

in terms of residue hydrophobicities H(ri) for each residue ri at sequence position i, and the 

environmental hydrophobicity of each residue, Mi.

G = ΣiH ri Mi .

The hydrophobicities are per-residue free energies, representing the free energy of transfer 

from a hydrophobic to a hydrophilic phase (specifically, the “consensus hydrophobicities” 

compiled by Eisenberg et al.51). The environmental hydrophobicities are assumed to depend 

on solvent exposure, such that Mi = A(ri)/A0(ri) − ½, where A(ri) is the conformation-

dependent solvent exposure of residue ri, and A0(ri) is the maximum possible solvent 

exposure of residue ri. In this way, the values of Mi range from a fully aqueous environment 

of M = +½, to an environment of full burial in the interior of a protein, M = −½.

According to this model, the free energy of folding is
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ΔGfold = G( N) − G(U)

= ΣiH ri AN ri /A0 ri − 1 2 − ΣiH ri AU ri /A0 ri − 1 2

= ΣiH ri AN ri − AU ri /A0 ri
= ΣiH ri ΔAi/A0 ri .

Here, ΔAi denotes the change in the solvent exposure of residue i upon folding. For a 

single-point mutation at position i from residue ri (wild type) to si (mutant), the change in 

the free energy of folding, ΔΔGfold (U→N), depends only on residue i,

ΔΔGfold = ΔGfold(mutant) − ΔGfold(wt) = H si − H ri ΔAi/A0 ri .

Thus, the model posits that ΔΔGfold is the change in the hydrophobicity upon mutation ΔH(ri 

→ si), multiplied by the fractional change ΔAi/A0(ri) in the solvent exposure upon folding. 

In practice, we obtain values of A0(ri) from the normalized maximal accessible surface area 

scale of Tien et al.53 Consensus hydrophobicities and A0 parameters used in our model are 

listed in Table S2.

Estimation of folding free energies from ΔTm

To estimate the change in the folding free energy ΔΔGfold from the experimental values of 

ΔTm, we assume the standard model of protein stability temperature-dependence,20

ΔGfold = ΔHfold + ΔCp T − Tm − T ΔHfold/Tm + ΔCpln T /Tm .

We use the work of Robertson and Murphy21 to estimate ΔHfold and ΔCp from the number 

of residues N,

ΔHfold = N × −0.698 kcal mol−1

ΔCp = N × −0.0139 kcal mol−1 K−1

Using these values with N=100, we estimate ΔΔGfold as

ΔΔGfold(T) = ΔGfold(mut) − ΔGfold(wt)

= T ΔHfold Tm−1(wt) − Tm−1(mut) + ΔCpln Tm(mut)/Tm(wt) − ΔCp Tm(mut) − Tm(wt) .

Results in this manuscript are reported at T = 298.15 K.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) FOXO1 functional domains are shown with three AKT-mediated phosphorylation 

sites for inactivation. FKH is forkhead DNA-binding domain; NLS is nuclear localization 

sequence/signal; NES is nuclear export sequence/signal; TAD is transactivation domain. (B) 

The FKH domain (PDB 3COA) has three helices labeled α1 (pink), α2 (red) and α3 (cyan). 

The six residues where all eight mutations are found are labeled; none are located in helix 

α3, which makes contacts with binding sequence IRE. Residues T182, L183, S234 and S235 

make key hydrogen bonds with the DNA phosphate backbone, mediated by water molecules 

(red spheres).
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Figure 2. 
EMSA analysis of FKH binding to the insulin response element (IRE). Representative blots 

of FKH wt, FKH L183P and FKH L183R serial dilution from 1 μM (1000 nM) to 5 nM in 

complex with 1 nM dsIRE. Each blot is labeled with KD estimates in nM.
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Figure 3. 
(A) A thermodynamic cycle illustrates how FEP is used to calculate ΔΔGfold for eight 

FOXO1 FKH mutants, with the L183R mutant shown as an example. (B) Correlation of 

ΔΔGfold values calculated using FEP (ΔΔGFEP) with ΔTm from TSA (black) and DSC (red). 

Uncertainty estimates for ΔΔGFEP are smaller than the marker width.
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Figure 4. 
(A) FOXO1 folding free energy landscape at 375 K calculated from the MSM, projected to 

the two largest TICA components. MSM macrostates U, I, and N are labeled with orange 

ovals, connected by arrows whose widths represent transition frequencies, labeled with 

mean first passage times. Black dots represent MSM microstates. (B) An implied timescale 

plot shows the ten slowest timescales as a function of the MSM lag time. (C and D) The 

first and second relaxation eigenmodes from the MSM, colored by sign structure. The first 

eigenmode shows population flux from N to U at 375 K, while the second eigenmode shows 

flux into I from U and N.
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Figure 5. 
Simulations predict helix α3 formation to be the final step in folding. (A) Interresidue 

contact frequencies and representative structures of MSM macrostates U, I and N. Vertical 

lines on the contact maps denote mutant positions. (B) Per-residue populations of native 

secondary structure for each macrostate. Shaded bands mark native secondary structures α1, 

α2, αT, α3, β4 and β5, with vertical lines denoting mutant positions.
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Figure 6. 
Tripeptide models of the unfolded state consistently overestimate per-residue solvent-

accessible surface area (SASAs) compared to molecular simulations. For each mutant 

position (S152, S153, A166, T182, L183 and S205), bar graphs show average SASA 

calculated from tripeptide FEP simulations (patterned gray), versus average SASA of MSM 

macrostates U, I, and N (blue).
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Figure 7. 
Comparison of estimated experimental folding free energy changes upon mutation ΔΔGexp, 

and predicted estimates ΔΔGpred from three different computational methods: (A) a 

combined molecular simulation and hydrophobic transfer (HT) model, (B) predictions from 

the FoldX algorithm, and (C) alchemical FEP estimation. In each plot, the dotted line is the 

least-squares linear fit, and the root mean squared error (RMSE).
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Figure 8. 
(A) Six folding intermediates i along the tIC1 folding coordinate were chosen as templates 

for FEP estimation of ΔΔG = ΔGi − ΔGU, where the tripeptide model of the unfolded 

state U is used as a reference. (B) Estimates of ΔΔG along tIC1 suggest that perturbations 

from mutations are dependent on the folding reaction coordinate, particularly for L183R and 

L183P (solid lines).
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Table 1.

Melting temperatures and enthalpies of unfolding measured by TSA and DSC experiments.

TSA DSC
c

FKH construct Tm (°C) ΔTm Tm (°C) ΔTm ΔHcal (kcal/mol) ΔHvH (kcal/mol) ΔΔHvH-cal (kcal/mol)

WT 50.5±0.8 - 57.8 ± 0.3 - 47 ± 1 54 ± 1 7

S152R 51.1±0.1 0.6 57.0 ± 1.0 −0.8 51 ± 1 58 ± 1 7

S153R 51.8±0.1 1.2 58.6 ± 1.0 0.8 52 ± 1 60 ± 1 8

A166G 46.4±0.5 −4.2 55.1 ± 1.0 −2.7 44 ± 1 54 ± 1 10

A166V 56.3±0.9 5.8 61.9 ± 1.0 4.2 47 ± 1 68 ± 1 21

K171E 52.5±0.8 2.0 – - - -

T182M
a 46.4±0.1 −4.1 51.5 ± 1.0 −6.3 40 ± 1 62 ± 1 22

L183R
b 33.6±1.1 −16.9 41.7 ± 1.0 −16.1 50 ± 1 42 ± 1 −8

L183P 40.0±0.6 −10.5 48.2 ± 1.0 −9.6 31 ± 1 53 ± 1 22

S205N 52.4±1.1 1.9 - - - -

S205T 52.7±1.7 2.1 58.3 ± 1.0 0.5 58 ± 1 59 ± 1 1

a
Mutation in OCI-Ly8 cell line.

b
Mutation in WSU-NHL cell line.

c
Wild-type measurements were performed in triplicate (± 0.3 °C), while single measurements were made for mutants (± 1.0 °C)
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Table 2.

DNA oligonucleotide sequences used for FKH binding studies.

Oligo Sequences
a

IRE-F TAAGCTAGTGGTTTGTTTTGCTTGCTAGCAAT

IRE-R ATTGCTAGCAAGCAAAACAAACCACTAGCTTA

DBE1-F TAAGCTAGTGGTTTGTTTACCTTGCTAGCAAT

DBE1-R ATTGCTAGCAAGGTAAACAAACCACTAGCTTA

DBE2-F TAAGCTAGTCTTGTTTACATTTTGCTAGCAAT

DBE2-R ATTGCTAGCAAAATGTAAACAAGACTAGCTTA

a
All oligos 5’-biotinylated.
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Table 3.

Estimated ΔΔGfold values for FOXO1 from DSC melting temperatures, and predicted ΔΔGfold values 

from three different computational methods: a hydrophobic transfer model (ΔΔGHT), the FoldX algorithm 

(ΔΔGFoldX), and free energy perturbation (FEP, ΔΔGFEP). All values are reported in kcal/mol.

Mutation ΔΔGfold (DSC)
a ΔΔGHT ΔΔGFoldX ΔΔGFEP

S152R 0.04 ± 0.06 0.185 ± 0.01 −0.110 0.19 ± 0.15

S153R −0.04 ± 0.05 −0.004 ± 0.06 0.085 −1.27 ± 0.18

A166G 0.16 ± 0.07 0.044 ± 0.01 1.137 0.79 ± 0.02

A166V −0.17 ± 0.04 −0.143 ± 0.04 1.231 −0.67 ± 0.03

T182M 0.43 ± 0.09 −0.161 ± 0.03 −0.911 −0.33 ± 0.06

L183R 1.51 ± 0.14 1.679 ± 0.18 2.621 7.04 ± 0.13

L183P 0.73 ± 0.10 0.44 ± 0.05 0.597 7.07 ± 0.11

S205T −0.03 ± 0.05 0.009 ± 0.002 −0.231 1.79 ± 0.03

a
calculated from the theory of Robertson and Murphy, using Nres =100 (see Materials and Methods).
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Table 4.

The location of native-state contacts for residues with selected oncogenic mutations.

Residue Crystal Contacts

A166 T170, N216, H220, F223

T182 I186, N228, S234, S235, M236, W237

L183 T187, I213, R214, L217, S234, S235, W237

S205 D199, K200, G201, W209

Biochemistry. Author manuscript; available in PMC 2022 September 17.


	Abstract
	Introduction
	Results
	Oncogenic mutations affect the stability of the FKH domain
	Mutations that reduce FKH stability also reduce DNA binding
	FEP calculations partially explain how FKH mutations disrupt folding
	Massively parallel simulations and Markov models elucidate the folding mechanism of FOXO1 at atomic resolution
	A hydrophobic transfer model accurately predicts thermostability changes of mutations from simulated changes in SASA
	FEP calculations along the folding coordinate show a continuum of disruption to local folding

	Discussion
	Conclusion
	Materials and Methods
	Sample Preparation
	Thermal Shift Assay (TSA)
	Differential Scanning Calorimetry (DSC)
	Electrophoretic Mobility Shift Assay (EMSA)
	Free Energy Perturbation (FEP) Calculations
	Massively Parallel Folding Simulations
	Markov Model Construction and Analysis
	A hydrophobic transfer model of ΔΔGfold
	Estimation of folding free energies from ΔTm

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

