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Abstract
Key message  Transposon insertion polymorphisms can improve prediction of complex agronomic traits in rice com-
pared to using SNPs only, especially when accessions to be predicted are less related to the training set.
Abstract  Transposon insertion polymorphisms (TIPs) are significant sources of genetic variation. Previous work has shown 
that TIPs can improve detection of causative loci on agronomic traits in rice. Here, we quantify the fraction of variance 
explained by single nucleotide polymorphisms (SNPs) compared to TIPs, and we explore whether TIPs can improve predic-
tion of traits when compared to using only SNPs. We used eleven traits of agronomic relevance from by five different rice 
population groups (Aus, Indica, Aromatic, Japonica, and Admixed), 738 accessions in total. We assess prediction by applying 
data split validation in two scenarios. In the within-population scenario, we predicted performance of improved Indica varie-
ties using the rest of Indica accessions. In the across population scenario, we predicted all Aromatic and Admixed accessions 
using the rest of populations. In each scenario, Bayes C and a Bayesian reproducible kernel Hilbert space regression were 
compared. We find that TIPs can explain an important fraction of total genetic variance and that they also improve genomic 
prediction. In the across population prediction scenario, TIPs outperformed SNPs in nine out of the eleven traits analyzed. 
In some traits like leaf senescence or grain width, using TIPs increased predictive correlation by 30–50%. Our results evi-
dence, for the first time, that TIPs genotyping can improve prediction on complex agronomic traits in rice, especially when 
accessions to be predicted are less related to training accessions.

Introduction

More than half of the world population consumes rice 
(Oryza sativa) in their daily diet. To secure nutritional 
requirements of a growing human population, the improve-
ment of grain yield, both in quantity and in nutritional qual-
ity, is imperative. This is a significant challenge in the face 

of climate change and limited cultivable land. Current pace 
of rice genetic improvement may be too slow to meet these 
demands (Rosegrant and Cline 2003; Zhao et al. 2018). 
Genomic selection can be a useful tool to accelerate genetic 
progress (Meuwissen et al. 2001). Numerous studies in rice 
and in other plant species (Jighly et al. 2019; Tessema et al. 
2020; Xu et al. 2020; Krishnappa et al. 2021) have already 
shown that genomic prediction (GP) can increase breeding 
speed. GP is particularly effective when traits are controlled 
by numerous loci which are difficult to map individually, 
such as yield and other traits of agronomic interest. For a 
recent review in rice, see Xu et al. (2021).

Conceptually, genomic prediction (GP) is a “large p, 
small n” scenario where the number of variables p (molecu-
lar markers) is typically far larger than the number of obser-
vations n. In this setting, either variables must be selected or 
restrictions on the solutions must be imposed, or a combi-
nation of both. Methods such as LASSO (Tibshirani 2011) 
or Bayes C (Habier et al. 2011) are examples of the first 
choice, whereas ridge regression or GBLUP (VanRaden 
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2008) involve restrictions on the square of solutions (L2 
norm). Numerous metrics exist for measuring predictive 
ability. Among others, it can be measured as the correlation 
between predicted and observed phenotypes by splitting the 
data in training and test sets. Prediction accuracy is affected 
by different factors such as the size of the training data, her-
itability, similarity between training and testing populations, 
or choice of marker sets (Goddard and Hayes 2007; Robert-
sen et al. 2019; Xu et al. 2021).

In general, there is no consensus on which GP method 
is best. A recent review by Reinoso-Peláez et al. (2022) 
points at Reproducible Kernel Hilbert Space (RKHS) as the 
best overall method in plants. But there is variability. For 
instance, Tehseen et al. (2021) compared GBLUP, Ridge 
Regression (RR), LASSO, Elastic Net (EN), Bayesian Ridge 
Regression (BRR), Bayesian alphabet (A, B, C, …), RKHS 
for different traits, observing that no single method outper-
formed the rest for all traits. Kaler et al. (2022) conducted a 
comparative study among 11 different methods for two traits 
in soybean, rice, and maize, reporting better predictive abili-
ties using Bayes B. Xu et al. (2018) found that GBLUP and 
LASSO performed best in hybrid breeding. Other authors 
have suggested integrating genomic prediction with crop 
growth models to evaluate the efficiency of phenotypic strat-
egies and the impact of the different yield components on 
the prediction accuracy (Bustos-Korts et al. 2019; Cooper 
et al. 2016). Selecting SNPs based on genome-wide associa-
tion studies (GWAS) has also been proposed, e.g., Spindel 
et al. (2016).

Irrespective of the algorithm chosen, single nucleotide 
polymorphisms (SNPs) are the main class of markers used 
so far in GP due to their genome-wide abundance and geno-
typing automatization. SNPs are not, however, the only 
source of phenotypic variability in the genome. In the last 
few years, data have accumulated on the importance of pres-
ence–absence variation and structural variation as a source 
of phenotypic variability in plants, including in rice (e.g., 
Fuentes et al. 2019). Transposon insertion polymorphisms 
(TIPs) can account for a major fraction of intraspecific 
structural variation, as it has been recently found in maize 
(Haberer et al. 2020). In fact, transposable elements are con-
sidered as one of the main drivers for plant genome vari-
ability, impacting on genome coding capacity and regulation 
in numerous ways (Lisch 2013). However, until the recent 
development and evaluation of reliable methods for calling 
TIPs from short-read resequencing data (Vendrell-Mir et al. 
2019), it was not possible to use TIPs for GWAS approaches.

Importantly, recent studies in rice and in tomato have 
shown that the use of TIPs as genetic information can 
result in an increase of association signals as compared 
to SNPs in GWAS (Carpentier et al. 2019; Akakpo et al. 
2020; Domínguez et al. 2020; Castanera et al. 2021). These 
results prompt us to investigate whether transposons can also 

improve prediction accuracy. For this purpose, we used the 
TIP genotypes from Castanera et al. (2021) and the phe-
notype database hosted in IRRI (Jackson 1997; Mansueto 
et al. 2017). Note that a better model fit, as observed in 
GWAS, does not necessarily imply a more accurate predic-
tion and thus the question posed here is pertinent. Further, 
any improvement in prediction albeit small can translate into 
large genetic gains when accumulated through generations.

Materials and methods

Rice accessions and traits

The 738 accessions used in this study (Supplementary 
Table 1) are from the collection conserved at IRRI used for 
the 3000-rice genome project (Jackson 1997; Li et al. 2014) 
and were chosen because they were sequenced at least at 
15 × depth. The 738 accessions retained pertain to all main 
rice population groups: Aus/Boro (AUS, N = 75), Indica 
(IND, N = 451), Japonica (JAP, N = 166), Aromatic (ARO, 
N = 17). The accessions that cannot be assigned to a specific 
rice group are categorized as Admixed (ADM, N = 29). We 
used the SNP-based group assignment from Sun et al. (2017) 
to identify the different subsets of this study.

Out of the 56 traits originally available at IRRI SNP-
Seek database (https://​snp-​seek.​irri.​org/), we chose the 11 
traits for which data were available in the 738 accessions 
selected. Some discrete traits were binned to balance the 
number of observations per class and time to flowering was 
log-transformed. Supplementary Table 2 shows basic sta-
tistics and transformations applied. Principal component 
analysis (PCA) for the 11 phenotypes was obtained with the 
“prcomp” function available in R.4.1.0 (Team 2021) envi-
ronment. For plotting loading variables of PCA, package 
“factorextra” (Kassambara and Mundt 2020) and packages 
“ggrepel” (Slowikowski 2020) and “ggbiplot” (Vu 2011) for 
the biplot were used.

Markers

A binary ped file format with the Core SNP dataset for all 
chromosomes was downloaded from the SNP-Seek database. 
The original dataset consisted of 404,388 bi-allelic SNPs 
from 3,034 rice accessions, including the 738 accessions 
selected. Markers with minor allele frequency ≤ 0.01 and 
missing rate > 1% were filtered out using plink2 (Purcell 
et al. 2007; Chang et al. 2015). Missing genotypes were 
imputed using Beagle 5.2 with default parameters (Brown-
ing et al. 2018). The final dataset consisted of 228,871 SNPs, 
which were used for the analyses reported here. Of those, 
50,485 SNPs were in gene regions.

https://snp-seek.irri.org/
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Transposable elements (TEs) are divided in two main 
classes “copy and paste” (Class I TEs) or “cut and paste” 
Class II TEs. In rice, the most abundant Class I elements are 
RLX (LTR retrotransposons) and RIX (Non-LTR retrotrans-
posons), whereas DTX (DNA TEs with terminal inverted 
repeats) and MITEs (Miniature Inverted-repeat Transposable 
Elements) are the most prevalent (Mao et al. 2000). Here 
we used markers from both classes, accounting for 94% of 
the TIPs described in Castanera et al. (2021). Class I TIPs 
were represented by 21,571 RLX and RIX markers. Class 
II consisted of 52,120 MITE and DTX markers. In contrast 
to SNPs, TIPs can only be genotyped as presence/absence, 
recoded consequently as 0/1, and defined as genomic win-
dows with an average size of 1.2 kb. TIP windows were 
taken from Castanera et al. (2021) and are based on the inter-
section of the individual TE insertion regions predicted for 
each accession with genome-wide windows of a fixed size 
(1 kb, merging adjacent windows). These TIPs were further 
classified as genic or intergenic by intersecting the windows 
with MSU7 non-TE gene annotation (Kawahara et al. 2013). 
A TIP was considered genic if the window overlapped at 
least 1 bp with the gene feature. There were 17,034 genic 
MITE/DTX and 5,024 genic RLX/RIX TIPS. The remaining 
TIPs were considered intergenic.

MITEs amplify by bursts from individual elements creat-
ing highly homogeneous families, as previously reported in 
Arabidopsis (Santiago et al. 2002) and rice (Lu et al. 2017). 
Different bursts of amplification at different evolutionary 
times may have different prediction potential for particular 
phenotypes. In an attempt to study the potential predictive 
capacity of individual families, we created individual TIP 
genotype matrices for each of the 18 largest MITE fami-
lies described in Castanera et al. (2021) (Supplementary 
Table 3). Each of these matrices included only TIPs origi-
nated from a single transposon, in this case MITE, family.

Genetic variance inference

We fitted the following linear model in order to estimate 
genetic variance components explained by each marker set:

where μ is the general mean, y is the phenotype vector of 
size n, the number of accessions, Z is an identity incidence 
matrix, u1, u2, u3 are random effects representing each of the 
marker groups, and e is the residual. We assume u1 ~ N(0, 
KS �2

S
 ), u2 ~ N(0, KM �2

M
 ), and u3 ~ N(0, KR �2

R
 ), where KS, 

KM, KR are genomic relationship matrices obtained from 
SNPs, MITE/DTX, and RLX/RIX markers, respectively. 
These matrices were calculated using AGHMatrix (Amadeu 
et al. 2016). Model 1a was fitted with a Bayesian Reproduc-
ible Kernel Hilbert Space (RKHS, Herbrich et al. 1999) as 

(1a)y = � + Zu1 + Zu2 + Zu3 + e

implemented in BGLR package (Pérez and de Los Campos 
2014) using default priors to estimate �2

S
 , �2

M
 , and �2

R
.

Genomic prediction

Plant breeding is primarily based on trials of new crosses, 
which can be lengthy and costly. The speed of development 
for new improved varieties depends largely on accuracy of 
prediction for new genotypes. We evaluated two distinct val-
idation scenarios that cover two important issues: prediction 
of performance within population (rice group in this case) 
and prediction of individuals from different groups.

In the first scenario, we measured accuracy when predict-
ing performance of improved Indica varieties (N = 48) using 
the rest of accessions, including non-improved Indica acces-
sions. Accessions from IRRI core collection are classified as 
“improved,” “breeding and inbred lines,” and “traditional” 
varieties. We used this passport information to identify this 
subset of improved varieties. “Improved” Indica varieties 
correspond to most modern and commercial lines avail-
able at IRRI collection. In this scenario, performance to be 
predicted is from highly related accessions to those in the 
training set.

In the second scenario, we predicted performance of 
all Admixed (ADM, N = 29) and Aromatic (ARO, N = 17) 
accessions using the rest of groups. In this case, performance 
to be predicted is from accessions that may not be too related 
to accessions in the training set, and we expect prediction 
to be worse than in the former scenario. For instance, the 
ADM group is a small, highly heterogeneous collection of 
accessions.

The rationale for the first scenario is that new selected 
accessions can be crosses within the same population, and 
the breeder can be interested in designing new better per-
forming crosses out of traditional varieties. The second sce-
nario is more challenging, since we do not use any sample of 
the population to be predicted. These two scenarios, within 
and across populations, resemble main challenges faced in a 
breeding program. Note there are infinite designs for assess-
ing predictive accuracy. For instance, we did not study pre-
diction in Japonica because we preferred to focus on a larger 
number of traits, since genetic architecture is a main factor 
influencing predictive performance (Daetwyler et al. 2010).

Ample literature shows that no single method performs 
best for all traits and scenarios. Here, we compared two alter-
native modeling strategies: Bayesian RKHS as described 
above, and Bayes C. RKHS with the kernel employed here 
is equivalent to ridge regression and GBLUP, whereas Bayes 
C is a variable selection method. The two methods were 
applied to both predictive scenarios. For RKHS, we com-
pared predictive performance using all markers (model 1a 
above) with submodels
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and

i.e., when using only SNPs (model 1b), only MITE/
DTX (model 1c), or only RLX/RIX (model 1d) markers. 
For Bayes C, the complete model was:

where XS, XM, and XR are the standardized genotypic 
values of each marker class; β1, β2, and β3 are the cor-
responding vectors of effects for SNPs, MITE/DTX, and 
RLX/RIX markers, respectively. As with RKHS, three 
partial models were also evaluated:

and

In Bayes C, a probability π of presence/absence of a 
SNP in the model is sampled from π ∼ Beta(p0, π0). Fol-
lowing Pérez and de Los Campos (2014, see their Tables 1 
and S1), “the beta prior is parameterized in a way that the 
expected value by E(π) = π0; on the other hand, p0 can 

(1b)y = � + Zu1 + e,

(1c)y = � + Zu2 + e,

(1d)y = � + Zu3 + e,

(2a)y = � + XS�1 + XM�2 + XR�3 + e,

(2b)y = � + XS�1 + e,

(2c)y = � + XM�2 + e,

(2d)y = � + XR�3 + e.

be interpreted as the number of prior counts (prior ‘suc-
cesses’ plus prior ‘failures’).” Here we chose p0 = 5 and 
π0 = 0.01.

In a subset of cases, we evaluated whether using only 
genic SNPs improved prediction compared to using all avail-
able markers. Similarly, we conjectured that not all transpos-
able elements are equally likely to cause phenotypic changes. 
We analyzed predictive performance of models containing 
TIPs from each of the largest 18 MITE families present in 
the rice genome (Supplementary Table 3). To avoid repeti-
tive, lengthy results we make the additional analysis using 
two agronomic traits of high importance on rice breeding, 
time to flowering, and grain length. An earlier or later grow-
ing can determine seed production. Grain size-related traits 
such as grain length/width are important breeding targets 
since they affect the quality of the crop yield. These two 
traits may also represent alternative genetic architecture 
(Begum et al. 2015; Xu et al. 2015; Chen et al. 2021).

Using either RKHS or Bayes C, phenotypes to be pre-
dicted were removed from the dataset, the model fitted using 
the remaining phenotypes, and the correlation between pre-
dicted and observed phenotypes computed as a measure of 
predictive accuracy. From a practical point of view, it is 
important to assess whether predictions using TIPs or all 
markers are better than the state-of-the-art method, i.e., with 
SNPs only. To assess variability of results, we generated 
10,000 bootstrap sampling with replacement from the cor-
responding pairs of phenotypes observed and predicted with 
each method and marker set. We then computed the cor-
relation observed–predicted samples within each bootstrap 
sample and we counted how many times correlation using 
SNPs only was lower than with each alternative strategy. 

Table 1   Means of posterior 
distributions of genetic 
variances explained by each 
marker set

�2

S
 : genetic variance explained by SNPs

�2

M
 : genetic variance explained by DNA transposon markers (MITE/DTX)

�2

R
 : genetic variance explained by retrotransposons (RLX/RIX)

Traits are scaled such that phenotypic variances are 1
*Best strategy

Traits All accessions (N = 738) Indica accessions (N = 451)

�2

S
�2

M
�2

R
�2

S
�2

M
�2

R

Culm diameter 0.16 0.17* 0.16 0.13 0.17* 0.15
Culm strength 0.10 0.25* 0.16 0.11 0.19* 0.14
Flag leaf angle 0.22* 0.14 0.15 0.24* 0.14 0.14
Grain length 0.48* 0.11 0.11 0.41* 0.11 0.13
Grain width 0.49* 0.11 0.12 0.42* 0.11 0.14
Leaf length 0.26* 0.16 0.19 0.22* 0.16 0.19
Leaf senescence 0.12 0.25* 0.18 0.14 0.21* 0.16
Grain weight 0.40* 0.11 0.13 0.31* 0.12 0.13
Salt injury 0.10 0.11 0.12* 0.09 0.11* 0.11*
Time to flowering 0.45* 0.12 0.13 0.39* 0.13 0.13
Pan. threshability 0.11 0.13* 0.10 0.11 0.15* 0.11
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Phenotypic measurements and variables were centered and 
scaled to mean 0 and variance 1. BGLR was run for 100,000 
iterations using default priors for RKHS. This number of 
iterations seemed enough to attain convergence (Supplemen-
tary Fig. 1).

Results

Descriptive analysis

Figure 1a shows the loadings, i.e., the projections of vari-
ables into the lower-dimensional space, of each trait to the 
principal components. In the figure, the length of the arrow 
is proportional to trait contribution and the angle between 
arrows, to their correlation. An analysis in two principal 
components shows that the first component depends on 
grain width and grain weight, whereas culm diameter, time 
to flowering, and leaf length are the main contributors to 
the second component. The rest of traits contribute more 
modestly to total phenotypic variation. A sample projection 
(Fig. 1b) shows graphically how accessions differed in the 
traits studied. Supplementary Fig. 2 shows the differences in 
trait distributions across accessions. In general, populations 
differed for most traits although to varying extent. Figure 1b 
indicates, e.g., that Japonica accessions tend to have higher 
grain weights and widths, as they are projected in the lower 
part of the figure, and as shown in Supplementary Fig. 2.

Genetic variance estimates

The genetic variance explained by each marker set meas-
ures its relative importance in determining the observed 
phenotypes. Here we prefer not to use the classical term 

“heritability” because a proper interpretation assumes pan-
mixia, a condition not fulfilled here. Having these caution-
ary remarks in mind, Table 1 shows that transposons can 
explain a sizeable fraction of genetic variance, which was 
larger than that explained by SNPs in five out of 11 traits. 
In seven traits, �2

S
 was smaller than the sum of �2

M
 and �2

R
 . 

Results are presented when all accessions were analyzed 
together and when using only data from Indica, the largest 
group (N = 451). Note model (1a) assumes constant genetic 
variances across accessions, i.e., �2

S
 , �2

M
 , and �2

R
 are the same 

in all rice groups. This is not necessarily the case. Neverthe-
less, variances were similar within Indica and across popula-
tion groups.

Genomic prediction

We assess prediction in two validation scenarios that rep-
resent some of the main challenges in breeding, prediction 
within and across populations (see “Materials and meth-
ods”). In the first one, Indica improved varieties were pre-
dicted using the rest of accessions, including traditional 
Indica varieties. In this scenario, using TIPs increased pre-
diction accuracy compared to using SNPs in six traits: culm 
diameter, grain length, leaf length, leaf senescence, grain 
weight, and time to flowering (Fig. 2).

In the second scenario, phenotypes of all ADM and ARO 
accessions were predicted given the rest of the accessions. 
TIPs were especially beneficial in this case: TIPs improved 
prediction upon using only SNPs in nine out of the 11 traits 
analyzed (Fig. 3). In some traits, such as grain width or leaf 
senescence, improvement in correlation using TIPs was 
remarkable, over 30%. In other traits, such as time to flow-
ering, improvement was marginal. For some traits, notably 

Fig. 1   a PC loadings of each trait for the two first standardized principal components. b Plot showing the accessions projected. The first (x-axis) 
and second (y-axis) PCs explained 19% and 15.8% of variance, respectively
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grain weight and panicle threshability, prediction across 
populations was successful neither with SNPs nor with TIPs.

We computed the bootstrap probability that using TIPs, 
or all markers resulted in better predictions than using only 
SNPs (see “Materials and methods”). Results are given in 
Supplementary Tables 4 and 5 for the within and across 
population scenarios, respectively. Even if gains in accuracy 
shown in Figs. 2, 3 may seem small in some cases, results 
are consistent. For instance, increase in correlation for leaf 
length is ~ 15% when using MITE/DTX compared to SNPs 
in the within population scenario, a somewhat modest figure. 
But this result is confirmed in 80% of the bootstrap samples. 
In contrast, SNPs are far better than TIPs for culm strength 
and this is also confirmed in bootstrap samples (Supplemen-
tary Table 4, Fig. 2).

On average, prediction across populations was less accu-
rate than within Indica in seven out of 11 traits and irrespec-
tive of marker set used (Figs. 2, 3). Importantly, gain using 
TIPs was larger in this scenario than in the within popula-
tion scenario. Time to flowering and grain width were the 
traits for which prediction was most accurate. Nevertheless, 
prediction across populations for grain width was far less 
precise than within Indica. It is interesting to note that grain 
width and time to flowering are basically uncorrelated, but 

both contribute largely to total phenotypic variation (Fig. 1). 
This suggests that genomic prediction combined with trans-
posable elements can be an effective tool for overall rice 
genetic improvement as it would enhance genetic progress 
in important agronomic traits.

Note that using all markers is not necessarily the best 
option for predictive purposes: it only outperformed the 
rest of approaches in three out of the 44 (= 11 traits × 2 
methods × 2 predictive scenarios) analyses. This indi-
cates that adding additional markers may contribute to 
overfitting and reduce model performance in prediction. 
Overfitting is a well-known phenomenon in the machine 
learning literature when the model is not properly regular-
ized. This has been clearly observed with simulated data 
in a genomic prediction scenario (e.g., Pérez-Enciso et al. 
2015).

Next, we wished to study how the different genetic archi-
tectures influence the statistical behavior of the three sets 
of markers. Bayes C is a variable selection method and so 
we reasoned that the number of markers entering the model 
and their effects would differ between traits. Broadly, esti-
mates of marker effects were quite similar across traits (for 
the same type of marker) as can be seen in Supplementary 
Fig. 3. The only exception was grain width and grain length, 

Fig. 2   Correlation between observed and predicted phenotypes of 
Indica improved varieties. In each plot, the first four columns repre-
sent the correlation values using Bayes C, while the last four values 
correspond to RKHS method. Colors represent marker information 

utilized: green, SNPs; magenta, MITE/DTX; blue, RLX/RIX; brown, 
all markers. The asterisk shows the best option for each trait. (Color 
figure online)
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where we observed much larger estimated effects for MITE/
DTX and SNPs, respectively, in agreement with results in 
Fig. 3. In turn, there were larger differences between the 
probabilities (d) of entering the model for each marker type 
(Supplementary Fig. 4). This occurred despite setting equal 
priors for all types of markers (p = 0.01). This was not due 
only to the priors or different number of TIPs compared to 
SNPs, because the pattern differed between traits.

Using a subset of all markers available can improve 
prediction. For instance, the accuracy of a model which 
contains only the causative SNPs can approach one (Pérez-
Enciso et al. 2015). The problem, of course, is that causative 
mutations cannot be identified in most cases. Several indi-
rect approaches have been suggested instead. For instance, 
Spindel et al. (2016) proposed to perform prediction using 
the most associated markers, e.g., selected via a GWAS 

Fig. 3   Correlation between observed and predicted phenotypes across 
accessions. All ADM and ADM accessions were predicted using the 
rest of groups. In each plot, the first four columns represent the corre-
lation values using Bayes C, while the last four values correspond to 

RKHS method. Colors represent marker information utilized: green, 
SNPs; magenta, MITE/DTX; blue, RLX/RIX; brown, all markers. 
The asterisk shows the best option for each trait. (Color figure online)

Table 2   Predictive accuracy when using all or only gene-based markers

*Best strategy
a GL: grain length; TF: time to flowering

Prediction scenario Traita Markers Bayes C RKHS

SNPS MITE/DTX RLX/RIX ALL SNPS MITE/DTX RLX/RIX ALL

Across GL Genic 0.57 0.51 0.41 0.67* 0.47 0.54 0.26 0.48
All 0.65 0.42 0.42 0.66 0.45 0.50 0.35 0.48

TF Genic 0.71 0.58 0.50 0.68 0.71 0.65 0.69 0.75*
All 0.71 0.66 0.56 0.71 0.68 0.72 0.67 0.73

Within GL Genic 0.56 0.55 0.43 0.57 0.56 0.38 0.36 0.55
All 0.61 0.69* 0.43 0.63 0.59 0.50 0.45 0.59

TF Genic 0.59 0.55 0.51 0.62 0.57 0.61 0.56 0.57
All 0.59 0.63* 0.62 0.60 0.59 0.65 0.59 0.60
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P-values. We did not evaluate this strategy here, although 
we did consider two alternative approaches for preselect-
ing markers. In a first attempt, we examined whether using 
only gene-based markers improved prediction performance. 
To avoid multiplying analyses, we selected grain length and 
time to flowering. As can be seen in Table 2, gene-based 
markers outperform all markers in across population but 
minimally. The opposite was observed in the within popu-
lation scenario.

We also studied performance of TIPs pertaining to each 
of the 18 largest MITE families (Supplementary Table 3, 
see “Materials and methods”). Again, for brevity, we con-
sidered only prediction across accessions in grain length and 
time to flowering using RKHS (Fig. 4). The most relevant 
conclusion is that predictive performance can vary largely 
according to MITE family and that using SNPs on top of 
MITEs may not improve prediction. Prediction of time to 
flowering improved using MITE family MH63fam47_235 
(MITE-adh type B-like superfamily) TIPs compared to using 
the full MITE/DTX set (Figs. 3, 4). Although it is tempting 
to conclude that a specific MITE family is enriched in genes 
affecting a given trait, one should be careful as disequilib-
rium can extend over long genome regions (Mather et al. 
2007; Nachimuthu et al. 2015).

Discussion

We have shown, for the first time to our knowledge, that 
transposable element polymorphisms can improve predictive 
accuracy for important agronomic traits in rice. The impact 
of using TIPs varied; here we found that they improved 
predictive performance in ~ 60% of the traits and scenarios 
considered. Table 3 presents a summary. The increase in 
accuracy also varied. Although the added benefit of using 
TIPs was sometimes modest, TIPs improved correlation by 
more than 30% in traits like grain width or leaf senescence.

All traits analyzed here have an economic impact in rice 
production. Unfortunately though, grain yield phenotypic 
data are not available for the 3 k rice panel, and how grain 
yield is affected by TIPs remains to be studied. This trait 
is largely affected by genotype × environment interaction, 
and so the relevance of TIPs may be harder to characterize. 
Among the traits studied, time to flowering is particularly 
important (Wang and Li 2019). Rice plants needs approxi-
mately, 3–6 months to grow, meaning that earlier or later 
growing can strongly affect the yield. Productivity is also 
determined by morphological trait such as grain weight 
(Chen et al. 2021). Grain weight in turn correlates with 
grain width, Fig. 1 (Li et al. 2021). Most of these traits are 
polygenic. Some traits like time to flowering, grain weight, 
grain width, and grain length seem controlled by large effect 
quantitative trait loci (Begum et al. 2015; Xu et al. 2015; 
Chen et al. 2021). For some traits, e.g., grain width, GP was 

Fig. 4   Predictive accuracy across populations using TIPS from each of 18 recognized MITE families. Each column corresponds to accuracy with 
one MITE family. Model included only MITEs or MITEs and all SNPs. The asterisk shows the best option
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quite accurate and we confirm that GP can largely enhance 
rice genetic progress, in agreement with previous results (Xu 
et al. 2021). For other traits, e.g., leaf length, GP accuracy 
was lower, although it is interesting to note that bootstrap 
sampling suggests that results are repeatable (Supplemen-
tary Tables 4, 5). Since plant breeding builds on cumulative 
progress over generations, even a small advantage can be 
highly relevant in the medium to long term.

The reasons behind the high capacity of TIPs to predict 
phenotypes, which in some cases is far better than SNPs, 
could be manifold. Transposable element insertions can have 
stronger effects than SNPs as some transposon types tend to 
localize near genes. Therefore, TIPs could be in some cases 
causative mutations linked to a specific trait. Indeed, trans-
posable element insertions are known to have played a major 
role in plant genome evolution both in the wild and under 
breeding settings, and examples of TIP causative mutations 
for many agricultural important traits have been reported 
(Lisch 2013; Dubin et al. 2018). In some cases, the TIPs 
linked to the trait may be recent insertions and may not be 
in high LD with surrounding SNPs. This is what was shown 
in recent GWAS analyses performed with TIPs and SNPs in 
tomato and rice, where TIPs revealed associations with traits 
that are not detected with SNPs (Domínguez et al. 2020; 
Akakpo et al. 2020; Castanera et al. 2021). In contrast to 
SNP mutation rate, transposon activity is not constant over 
time, with bursts of transposition associated with stress situ-
ations or environmental stimuli (Dubin et al. 2018). There-
fore, it can be hypothesized that the adaptation of a crop 
to a new environment, say as part of the breeding process, 
could be a period particularly prone to transposition activ-
ity (Baduel and Quadrana 2021). On the other hand, while 
SNPs accumulate relatively homogeneously throughout the 
genome, some TEs target gene-rich regions for integration, 
particularly RLXs and MITEs in rice (Castanera et al. 2021). 
Therefore, the potential for TEs to produce causal mutations 
and TIP associations with traits could be particularly high 

for some agronomic traits. Importantly, we found TIPs are 
especially helpful when prediction was across populations. 
These issues merit further research.

The main families of class I in rice are LTR-retrotranspo-
sons (RLX) and LINEs (RIX), whereas DNA transposons 
(DTX) and MITEs are the main components of rice class II 
TEs (Matsumoto et al. 2005). There are important structural 
and mechanistic differences between class I, or retrotrans-
posons, and class II, or DNA transposons. Although both 
RLX and MITEs target genic regions for integration, their 
dynamics is very different. While RLXs have a high turnover 
and RLX TIPs are usually present at a very low frequency 
in the population, MITEs are maintained in the genome for 
longer evolutionary periods (Castanera et al. 2021). This 
suggests that although both types of TEs can be associ-
ated with traits in rice (Akakpo et al. 2020; Castanera et al. 
2021), their capacity to predict phenotypes may differ. Cer-
tainly, our results show that MITE/DTX are more relevant 
than RLX/RIX for improving prediction (Table 3, Figs. 2, 
3). It is finally interesting to note that a single MITE family 
of ~ 3 k TIPs can predict equally well a phenotype as well as 
200 k SNPs (Fig. 4). In contrast, we did not find a consistent 
or large improvement in prediction when using only gene 
markers as compared to using all available polymorphisms, 
as reported also in humans (Visscher et al. 2021).

Some technical considerations should be borne in mind 
regarding our analyses. Ordinal traits (Supplementary 
Fig. 2) were treated as continuous. It has been known for 
decades that a threshold (logistic model) is theoretically a 
better choice for binary traits than standard linear models 
(Gianola and Foulley 1983). The logistic model is a class 
of the so-called generalized linear models, where the non-
linear relationship between parameters and observations 
becomes linear after applying a transformation, e.g., logit for 
binary traits. Despite their theoretical appeal, these models 
are more difficult to run than linear counterparts and may 
converge poorly. Empirical evidence generally shows small 

Table 3   Maximum predictive 
accuracy and corresponding 
marker set

Trait Scenario

Indica improved varieties ARO/ADM accessions

Culm diameter 0.40 (MITE/DTX) 0.26 (MITE/DTX)
Culm strength 0.28 (SNPs) 0.16 (RLX/RIX)
Flag leaf angle 0.45 (SNPs) 0.28 (RLX/RIX)
Grain length 0.69 (MITE/DTX) 0.66 (ALL)
Grain width 0.83 (SNPs, ALL) 0.64 (MITE/DTX)
Leaf length 0.41 (MITE/DTX) 0.52 (RLX/RIX)
Leaf senescence 0.47 (RLX/RIX) 0.54 (MITE/DTX, RLX/RIX)
Grain weight 0.30 (MITE/DTX) 0.14 (MITE/DTX)
Salt injury 0.28 (SNPs) 0.49 (SNPs, MITE/DTX)
Time to flowering 0.65 (MITE/DTX) 0.73 (ALL)
Panicle threshability 0.29 (SNPs) 0.24 (SNPs)
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differences only (Matos et al. 1997; Olesen et al. 1994). 
Here, we observed (Supplementary Table 4) that a threshold 
model may have a small advantage over linear ones but not 
always. A second issue is the metrics to assess prediction. 
Here we chose correlation as it has a direct interpretation in 
terms of response to selection (Falconer and Mackay 1996) 
and has been widely used, but numerous other metrics exist. 
For instance, mean square error (RMSE) of prediction is 
also widely used. We computed RMSE (Supplementary 
Table 7, 8) and we found concordant results regarding the 
best marker set in 9 (within scenario) or 10 traits (across 
scenario) out of the 11 traits studied. These issues do not 
question our main, and most important conclusion regarding 
that TIPs can improve genomic prediction.

A prerequisite for the inclusion of TIPs in practical 
breeding programs is to automatize their genotyping. TIP 
genotyping should primarily target high-frequency TIPs 
in order to be as informative as possible, as it is usually 
done for SNPs as well. The application of TIP-Chip (Whee-
lan et al. 2006) or transposon insertion profiling (TIP-seq, 
Steranka et al. 2019), and TE-sequence capture (Quadrana 
et al. 2021) to hundreds or thousands of varieties should be 
cheap, as the sequencing coverage needed per sample is very 
small. Finally, given the dropping costs of genome sequenc-
ing, thousands of rice accessions are being re-sequenced 
and made public. TIPs could also be included in standard 
genotyping arrays (Wheelan et al. 2006) as a complement to 
SNPs. Given that TIPs from a single MITE family can be as 
efficient as 200 k SNPs in some traits (Fig. 4), perhaps only 
a small number of TIPs need to be included in the genotyp-
ing protocol.

In conclusion, we consistently observed that TIPs can 
increase predictive accuracy of agronomic traits in rice and 
do explain a non-negligible fraction of phenotypic vari-
ance. Notably, this improvement was larger when prediction 
was across populations than within Indica. Using markers 
positioned within genes did not seem to matter too much, 
although perhaps a more thorough analysis would be needed. 
In contrast, selecting TIPs from some transposon families 
did improve prediction. These are important results from a 
practical point of view and warrant developments to automa-
tize TIP genotyping. From a biological point of view, new 
studies are needed to understand how TIPs affect complex 
trait variation. Improving predictive accuracy from molecu-
lar data is an important task since even small gains add up 
over generations and can make a big long-term difference. 
Assessing the importance of TIPs in other agronomic traits, 
such as grain yield across different environments, remains 
also to be studied. Once a plausible set of parameters linking 
TIPs, SNPs, and yield are estimated from real data, simula-
tions can be used to optimize marker genotyping with SNPs 
and/or TIPs.
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