Skip to main content
. 2022 Aug 5;135(9):3211–3222. doi: 10.1007/s00122-022-04180-2

Table 1.

Means of posterior distributions of genetic variances explained by each marker set

Traits All accessions (N = 738) Indica accessions (N = 451)
σS2 σM2 σR2 σS2 σM2 σR2
Culm diameter 0.16 0.17* 0.16 0.13 0.17* 0.15
Culm strength 0.10 0.25* 0.16 0.11 0.19* 0.14
Flag leaf angle 0.22* 0.14 0.15 0.24* 0.14 0.14
Grain length 0.48* 0.11 0.11 0.41* 0.11 0.13
Grain width 0.49* 0.11 0.12 0.42* 0.11 0.14
Leaf length 0.26* 0.16 0.19 0.22* 0.16 0.19
Leaf senescence 0.12 0.25* 0.18 0.14 0.21* 0.16
Grain weight 0.40* 0.11 0.13 0.31* 0.12 0.13
Salt injury 0.10 0.11 0.12* 0.09 0.11* 0.11*
Time to flowering 0.45* 0.12 0.13 0.39* 0.13 0.13
Pan. threshability 0.11 0.13* 0.10 0.11 0.15* 0.11

σS2: genetic variance explained by SNPs

σM2: genetic variance explained by DNA transposon markers (MITE/DTX)

σR2: genetic variance explained by retrotransposons (RLX/RIX)

Traits are scaled such that phenotypic variances are 1

*Best strategy