Table 1.
Means of posterior distributions of genetic variances explained by each marker set
Traits | All accessions (N = 738) | Indica accessions (N = 451) | ||||
---|---|---|---|---|---|---|
Culm diameter | 0.16 | 0.17* | 0.16 | 0.13 | 0.17* | 0.15 |
Culm strength | 0.10 | 0.25* | 0.16 | 0.11 | 0.19* | 0.14 |
Flag leaf angle | 0.22* | 0.14 | 0.15 | 0.24* | 0.14 | 0.14 |
Grain length | 0.48* | 0.11 | 0.11 | 0.41* | 0.11 | 0.13 |
Grain width | 0.49* | 0.11 | 0.12 | 0.42* | 0.11 | 0.14 |
Leaf length | 0.26* | 0.16 | 0.19 | 0.22* | 0.16 | 0.19 |
Leaf senescence | 0.12 | 0.25* | 0.18 | 0.14 | 0.21* | 0.16 |
Grain weight | 0.40* | 0.11 | 0.13 | 0.31* | 0.12 | 0.13 |
Salt injury | 0.10 | 0.11 | 0.12* | 0.09 | 0.11* | 0.11* |
Time to flowering | 0.45* | 0.12 | 0.13 | 0.39* | 0.13 | 0.13 |
Pan. threshability | 0.11 | 0.13* | 0.10 | 0.11 | 0.15* | 0.11 |
: genetic variance explained by SNPs
: genetic variance explained by DNA transposon markers (MITE/DTX)
: genetic variance explained by retrotransposons (RLX/RIX)
Traits are scaled such that phenotypic variances are 1
*Best strategy