Table 1.
ML algorithms | Model 1 AUROC |
Model 2 AUROC |
Model 3 AUROC |
Model 4 AUROC |
Model 5 AUROC |
Model 6 AUROC |
---|---|---|---|---|---|---|
Extreme gradient boosting | 0.926 | 0.959 | 0.944 | 0.975 | 0.940 | 0.978 |
CatBoost classifier | 0.924 | 0.961 | 0.946 | 0.977 | 0.945 | 0.984 |
Extra Trees classifier | 0.904 | 0.961 | 0.939 | 0.989 | 0.947 | 0.990 |
Random forest classifier | 0.864 | 0.953 | 0.908 | 0.945 | 0.925 | 0.978 |
MLP classifier | 0.859 | 0.959 | 0.922 | 0.977 | 0.930 | 0.983 |
Logistic regression | 0.811 | 0.957 | 0.878 | 0.864 | 0.942 | 0.949 |
Support vector machine- linear kernel | 0.808 | 0.956 | 0.874 | 0.876 | 0.932 | 0.943 |
K neighbors classifier | 0.848 | 0.945 | 0.890 | 0.904 | 0.912 | 0.932 |
The bold numbers are the AUROC values that received the highest score in each model.