Skip to main content
. 2022 Sep 18;18(1):229–239. doi: 10.1007/s11739-022-03101-x

Table 1.

Comparison of algorithm performances

ML algorithms Model 1
AUROC
Model 2
AUROC
Model 3
AUROC
Model 4
AUROC
Model 5
AUROC
Model 6
AUROC
Extreme gradient boosting 0.926 0.959 0.944 0.975 0.940 0.978
CatBoost classifier 0.924 0.961 0.946 0.977 0.945 0.984
Extra Trees classifier 0.904 0.961 0.939 0.989 0.947 0.990
Random forest classifier 0.864 0.953 0.908 0.945 0.925 0.978
MLP classifier 0.859 0.959 0.922 0.977 0.930 0.983
Logistic regression 0.811 0.957 0.878 0.864 0.942 0.949
Support vector machine- linear kernel 0.808 0.956 0.874 0.876 0.932 0.943
K neighbors classifier 0.848 0.945 0.890 0.904 0.912 0.932

The bold numbers are the AUROC values that received the highest score in each model.