Skip to main content
. 2022 Sep 18;18(1):229–239. doi: 10.1007/s11739-022-03101-x

Table 2.

Model performance for the best-performed algorithm

Prediction model Best algorithm Model performance
Accuracy AUROC
(95% CI)
Sensitivity Specificity PPV NPV F1 PLR NLR Scaled brier
Model 1 XGBoost 0.75 0.90 (0.89, 0.91) 0.899 0.657 0.621 0.913 0.74 2.63 0.15 0.297
Model 2 CatBoost 0.915 0.96 (0.95, 0.97) 0.918 0.913 0.754 0.975 0.83 10.63 0.09 0.609
Model 3 CatBoost 0.86 0.946 (0.94, 0.95) 0.886 0.857 0.662 0.959 0.76 6.22 0.13 0.462
Model 4 ET 0.95 0.987 (0.98, 1) 0.965 0.946 0.944 0.967 0.95 17.96 0.04 0.754
Model 5 ET 0.92 0.973 (0.95, 1) 0.881 0.943 0.881 0.942 0.88 15.36 0.13 0.696
Model 6 ET 0.95 0.993 (0.99, 1) 0.945 0.952 0.896 0.976 0.92 19.85 0.06 0.75