Table 2.
Prediction model | Best algorithm | Model performance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy | AUROC (95% CI) |
Sensitivity | Specificity | PPV | NPV | F1 | PLR | NLR | Scaled brier | ||
Model 1 | XGBoost | 0.75 | 0.90 (0.89, 0.91) | 0.899 | 0.657 | 0.621 | 0.913 | 0.74 | 2.63 | 0.15 | 0.297 |
Model 2 | CatBoost | 0.915 | 0.96 (0.95, 0.97) | 0.918 | 0.913 | 0.754 | 0.975 | 0.83 | 10.63 | 0.09 | 0.609 |
Model 3 | CatBoost | 0.86 | 0.946 (0.94, 0.95) | 0.886 | 0.857 | 0.662 | 0.959 | 0.76 | 6.22 | 0.13 | 0.462 |
Model 4 | ET | 0.95 | 0.987 (0.98, 1) | 0.965 | 0.946 | 0.944 | 0.967 | 0.95 | 17.96 | 0.04 | 0.754 |
Model 5 | ET | 0.92 | 0.973 (0.95, 1) | 0.881 | 0.943 | 0.881 | 0.942 | 0.88 | 15.36 | 0.13 | 0.696 |
Model 6 | ET | 0.95 | 0.993 (0.99, 1) | 0.945 | 0.952 | 0.896 | 0.976 | 0.92 | 19.85 | 0.06 | 0.75 |