Skip to main content
. 2022 Sep 16:1–53. Online ahead of print. doi: 10.1007/s11063-022-11023-0

Table 2.

Remaining summary of DL-based Covid-19 X-Ray, CT diagnosis systems

Author Type Training Model Resol-ution Total Images
Wang et al. [95] Pre-trained (XRay) RestNet50, ResNet101, ResNet152 18,567
Arellan,Ramos [53] Pre-trained (XRay) DenseNet121 38
Minaee et al. [56] Pre-trained (XRay) Deep-COVID (ResNet18,ResNet50, SqueezeNet, DenseNet-121) 5420
Demir [99] Custom (XRay) DeepCoroNet 100 × 100 1061
Sheykhivand et al. [52] Pre-trained (XRay) Inception V4 224 × 224 11,383
Mishra et al. [55] Pre-trained (XRay) CovAI-Net (Inception, DenseNet, Xception) 224 × 224 1878
Sakib et al. [100] Custom (XRay) DL-CRC 2905
Tang et al. [44] Custom (XRay) EDL-COVID 15,477
Saha et al. [94] Pre-trained (XRay) EMCNet(AlexNet, VGG 16, Inception, and ResNet-50) 224 × 224 4600
Gupta et al. [54] Hybrid(XRay) InstaCovNet-19 ( InceptionV3,NasNet, Xception,Mobile NetV2, ResNet101) 224 × 224 3047
Vaid et al. [134] Pre-trained (XRay) VGG19 224 × 224 545
Bhosale et al. [47] Custom (XRay) LDC-Net (IoT based) 1024 × 1024 10,800
Serener et al. [111] Pre-trained (CT) ResNet-50, ResNet-18, MobileNetV2, VGG,AlexNet,SqueezeNet, DenseNet121 224 × 224 1005
Voulodimos et al. [96] Pre-trained (CT) FCN-8, U-Net 630 × 630 939
Chen et al. [1] Pre-trained (CT) ResNet50, Unet +  +  512 × 512 80,030
Wu et al. [50] Pre-trained (CT) ResNet50 256 × 256 495
Shah et al. [108] Custom, Pre-trained (CT) CTNet-10,DenseNet 169, VGG16/19, ResNet50,InceptionV3, 128 × 128 to 224 × 224 812
Khan et al. [102] Hybrid (CT) H3DNN(3DResNet, C3D, 3D DenseNet, I3D, LRCN) 224 × 224 880
Author Classes Partition Performance Data Source Time
Wang et al. [95] 8851(Normal), 9576(Pneumonia), 140(Covid19) NA Accuracy:96.1% [72, 80] NA
Arellan,Ramos [53] 19(Covid + Ve), 19(Covid-Ve) NA Accuracy:99%, Recall:89%,Precision:91%,Fscore: 89% [73, 82] NA
Minaee et al. [56] 5000(Normal), 420(Covid19) Random Sensitivity:98%, Specificity:92.9% [72, 90] NA
Demir [99] 361(Covid19), 200(Normal), 500(Pneumonia) Training:80%, Testing:20% Accuracy:100%, Sensitivity:100%, Specificity:100% [71, 82, 113], Train: 53 M 22 s
Sheykhivand et al. [52] 2923(Healthy), 2842(Covid19), 2778(Bacterial), 2840(Viral) Training:70%, Testing:10%, Validation:20% Accuracy:99.5%, Sensitivity100%, Specificity:99.02% [7174] Test: 3 s
Mishra et al. [55] 570(Pneumonia), 630(Non-pneumonia), 369(Covid19 +), 309(Covid19 -) Random Accuracry:98.31%, Precision:100%, Sensitivity:96.74%, Specificity:100%, F1-Score:98.34% [77, 80], ESR NA
Sakib et al. [100] 219 (Covid19 +), 1341(Normal), 1345(pneumonia) fivefold cross validation Accuracy:93.94%, AUC:95.25% [71, 72, 82] NA
Tang et al. [44] 6053(Pneumonia), 8851(Normal), 573(Covid19) Accuracy:95%, Sensitivity:96.0%, PPV:94.1% [120] 1 s Exec
Saha et al. [94] 2300(Covid19), 2300(Normal) Training:70%, Testing:10%, Validation:20% Accuracy:98.91%, Precision:100%, Recall:97.82%, F1-score:98.89% [71, 72, 75, 77, 80, 82, 133], NA
Gupta et al. [54] 1345(Pneumonia), 1341(Normal), 361(Covid19) Training:80%, Testing:20% Accuracy:99.53%, Precision:100%, Recall:99%, F1-Score:99% [73, 82, 90] NA
Vaid et al. [134] 181(Covid19), 364(NoFinding) Training:80%, Testing:20%, Validation:20% Accuracy:96.3% [72, 82] NA
Bhosale et al. [47] Covid-19, other 8 lung diseases Train:76%, Test:12%, Val:12% Acc:96.3%,Recall: 96.78%,Fscore:96.77%, AUC:98.18% [82] and other 4 datasets 0.136 s
Serener et al. [111] 397(Mycoplasma Pneumonia), 145 (ViralPneumonia), 463(Covid19) Random Accuracy:89%, Sensitivity:98%, Specificity:86%, AUC:95% [81] NA
Voulodimos et al. [96] 447(Covid-negative), 492(Covid-positive) Training:85%, Validation:15% Accuracy:99%, Recall:89%, Precision:91%, F1-Score: 89% [80] NA
Chen et al. [1] 49,089(Covid19), 30,941(Normal) Random Accuracy:96%, Sensitivity:98%, Specificity:94%, PPV:94.23%, NPV:97.92% Renmin Wuhan Univ., Qianjiang Hospital, China NA
Wu et al. [50] 368(Covid19), 127(other pneumonia) Training:80%, Testring:10%, Validation:10% Accuracy:76%, AUC:81.9%, Sensitivity:81.1%, Specificity:61.5% China Medical Univ., BYH in China  < 5 s
Shah et al. [108] 349(Covid19 confirmed), 463(nonCovid19) Training:80%, Testring:10%, Validation:10% CTNet Accuracy:82.1%, VGG19 Accuracy: 94.52% [76] Train: 130 s, Test:0.9, Exe: 0.01233 s
Khan et al. [102] 417(Covid19), 463(Non-Covid19) NA Accuracy:85% [82, 86] NA

NA indicates the corresponding author did not disclose the parameter value