Table 4.
Author | Model | Layer | Kernel Size | Pool size | Stride, Batch Size | Image Size |
---|---|---|---|---|---|---|
Panwar et al. [57] | VGG-19 | Conv:16, Maxpool:5, FCNN:3, | 3 × 3 | 2 × 2 | Batch size:16, Stride:2 | 512 × 512 |
Nath et al. [34] | CNN | Conv:6, BN:6, Pool:4 | 3 × 3 | 2 × 2 | Stride:2 | 256 × 256 |
Kassani et al. [97] | MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionRes-NetV2, VGGNet, NASNet | Standard layer | 331 × 331NASNetLarge, 224 × 224NASNetMobile, 600 × 450 | |||
Hussain et al. [93] | CoroDet | Conv:9, pool:9, dense:2, ft:1,LR:1 | Batch size:10 | 256 × 256 | ||
Gilanie et al. [135] | CNN | Conv:8, pool:2, fc:4 | 3 × 3 | 2 × 2 | Batch size:128 | 512 × 512 |
Silva et al. [106] | EfficientNet | Conv:3, Mbconv:7 | 3 × 3 | Batch size:32 | 104 × 153, 484 × 416 | |
Turkoglu[49] | MKs-ELM-DNN | DenseNet201:3 STD layer block + ELM | Batch size:100 | 224 × 224 | ||
Horry et al. [101] | VGG16/19, Resnet50, Inception V3, Xception, InceptionResNet, DenseNet, NASNetLarge | Standard layer | Batch size:2 and 16 | 224 × 224( VGG), 299 × 299 (Inception) | ||
Dutta et al. [112] | CNN, Inception V3 | Batch size:32 | ||||
Mertyüz et al. [51] | VGG-16, ResNet, GoogleNet, | Standard layer | 3 × 3 | 1 × 1 | Batch size:8 | |
Ko et al. [38] | FCONet, VGG16, ResNet-50, Inception-v3, Xception | Standard layer, fc:2 | Batch size:32 | 256 × 256 | ||
Alazab et al. [67] | VGG16 | Standard layer | 3 × 3 | 1 × 1 | Batch size:25 | 224 × 224 |
Sharma et at [68] | VGG, MobileNet, Xception, DenseNet, InceptionResNet | Standard layer | Batch size:8 | 224 × 224 | ||
Apostolopoulos et al. [66] | VGG19, MobileNetv2, Inception, Xception, Inception-ResNetv2 | Standard layer | Batch size:64 | 200 × 266 | ||
Wu et al. [115] | Covid-AL | 3 × 3 | 1 × 1 | Batch size:30 | 352 × 320 | |
Al-Waisy et al. [39] | COVID-CheXNet (HRNet, ResNet34) | 7 × 7 | 3 × 3 | Batch size:100 | ||
Haghanifar et al. [65] | COVID-CXNet | 224 × 224 | ||||
Sarker et al. [69] | COVID-DenseNet | DenseB:4, TraLayer:3 | Batch size:5 | 224 × 224 | ||
Wang et al. [70] | COVID-Net | 7 × 7 to 1 × 1 | batch size:64 | |||
Mangal et al. [63] | CovidAID(ChexNet, Covid-Net) | Batch size:16 | 224 × 224 | |||
Javaheri et al. [40] | CovidCTNet(BCDU-Net, U Net) | 3DConv:10 3DMaxPool:5, Dense:2 | 128 × 128 | |||
Elkorany et al. [41] | COVIDetection-Net (ShuffleNet, SqueezeNet) | 300 × 300 | ||||
Tabik et al. [46] | COVIDSDNet | Batch size:16 | ||||
Ucar et al. [103] | COVIDiagnosis-Net (Bayes-SqueezeNet) | 3 × 3 | 1 × 1 | Batch size:32 | 227 × 227 | |
Hemdan et al. [42] | COVIDX-Net (VGG19, DenseNet201, InceptionV3,ResNetV2, InceptionResNetV2, Xception, MobileNetV2) | Standard layer | Batch size:7 | 224 × 224 | ||
Kedia et al. [48] | CoVNet-19 (DenseNet121, VGG16) | Dense layer: 32 | Batch size:32 | 224 × 224 | ||
Ouchicha et al. [45] | CVDNet | Conv:9, max pool:9, concat:1, ftn:1,fc:3 | 5 × 5, | 2 × 2 | Batch size:8 | 256 × 256 |
Javor et al. [91] | ResNet50 | Standard Layer | Batch size:32 | 448 × 448 | ||
Ismael et al. [98] | ResNet18, ResNet50, ResNet101, VGG16, VGG19 | Conv:5, ReLU:5, BN:5 | 3 × 3 | 1 × 1 | 224 × 224 | |
Rohila et al. [124] | ReCOV-101 (ResNet50, ResNet101,DenseNet169, DenseNet201) | Conv2D:23, pool:1 | 3 × 3 | 2 × 2 | 224 × 224 | |
Padma et al. [35] | 2DCNN | 2 × 2 | ||||
Jain et al. [64] | Inception V3, Xception, ResNeXt | Standard Layer | 128 × 128 | |||
Anwar et al. [107] | EfficientNet B4 | Standard Layer | Batch size:16 | 348 × 348 | ||
Sethi et al. [104] | Inception V3, ResNet50, MobileNet, Xception | Standard Layer | Batch size:32 | |||
Ying et al. [43] | DRE-Net (ResNet50) | Batch size:15 | 512 × 512 | |||
Jiang et al. [36] | VGG, ResNet, Inception-v3, DenseNet, InceptionResNetv2, | Standard Layer | Batch size:4 | 512 × 512 | ||
Yang et al. [92] | DenseNet | DenseBlock:4, pool:1, linear:1 | Batch size:32 | |||
Serener et al. [111] | ResNet50, ResNet18, MobileNetV2, VGG, SqueezeNet, AlexNet, DenseNet121 | 224 × 224 | ||||
Basu et al. [28] | DETL(AlexNet, VGGNet, ResNet50) | Alex:8, Vgg:16, Res:50 | 11 × 11 | 3 × 3 | ||
Wang et al. [95] | RestNet50, ResNet101, ResNet152 | Batch size:64 | ||||
Arellano, Ramos [53] | DenseNet121 | Standard Layer | ||||
Voulodimos et al. [96] | FCN-8, U-Net | 3 × 3 | 1 × 1 | 630 × 630 | ||
Chen et al. [1] | ResNet50, Unet + + | 512 × 512 | ||||
Wu et al. [50] | ResNet50 | Standard Layer | Batch size:4 | 256 × 256 | ||
Minaee et al. [56] | Deep-COVID (ResNet 18, ResNet50, Squeeze Net, DenseNet-121) | 3 × 3 | 1 × 1 | Batch size:20 | 224 × 224 | |
Demir[99] | DeepCoroNet | 11 layers | Batch size:6 | 100 × 100 | ||
Perumal et al. [23] | Resnet50, VGG16, InceptionV3 | Standard layer | 3 × 3 | 2 × 2 | Stride:1, Batch size:250 | 226 × 226 |
Sheykhivand et al. [52] | Inception V4 | Conv:4,pool:4, lstm:2: fc:2 | 4 × 4 | 1 × 1 | Batch size:10 | 224 × 224 |
Mishra et al. [55] | CovAI-Net (Inception, DenseNet, Xception) | Conv:8, pool:4, d:2, | 7 × 7 | 3 × 3 | Stride:2, Batch size:32 | 224 × 224 |
Shah et al. [108] | CTNet-10 (DenseNet-169, VGG-16, ResNet-50, InceptionV3, VGG-19) | Conv:5, pool:3, fc:3 | Batch size:32 | 128 × 128 CTNet10, 224 × 224 VGG19 | ||
Sakib et al. [100] | DL-CRC | Batch size:8 | ||||
Tang et al. [44] | EDL-COVID | 6 layers of CovidNet | 3 × 3 | 1 × 1 | Batch size:64 | |
Saha et al. [94] | EMCNet(AlexNet, VGG 16, Inception, ResNet-50) | Conv:6, pool:5, ft:1, db:6, fc:2, | 7 × 7 | 3 × 3 | Batch size:32 | 224 × 224 |
Khan et al. [102] | H3DNN(3D ResNets, C3D, 3DDenseNets, I3D, LRCN) | Conv:9, pool: 6, incep:9,fc:2 | 7 × 7 | 3 × 3 | Batch size:2 | 224 × 224 |
Gupta et al. [54] | InstaCovNet-19 ( NasNet, (InceptionV3, Xception, ResNet101, MobileNetV2) | 3 × 3 | 1 × 1 | Batch size:16 | 224 × 224 |
Author | Learning Rate | Epoch | Performance | Activation function | Optimizer | Software |
---|---|---|---|---|---|---|
Panwar et al. [57] | 47 | Accuracy:95.61%, Sensitivity:94.04%, Specificity:95.86% | Softmax | Adam | ||
Nath et al. [34] | 0.001 | 15 | Accuracy X-ray:99.68%, CT:71.81% | ReLU | SGDM, Adam, RmsProp | Matlab 2019b |
Kassani et al. [97] | Accuracy:99% | Keras package with Tensor flow | ||||
Hussain et al. [93] | 0.0001 | 50 | Accuracy: 99.1%, Precision:99.27%, Recall:98.17%, F1-score:98.51% | Sigmoid, ReLU, Leaky ReLU | Adam | Google Colab Keras, Tensorflow 2.0 |
Gilanie et al. [135] | 0.01 | 25 | Accuracy:96.68%, Specificity:95.65%, Sensitivity:96.24% | ReLU, Softmax | MATLAB 2018b | |
Silva et al. [106] | 0.001 | 20 | Accuracy:87.6%, F1-score:86.19%, AUC:90.5% | ReLu, Sigmoid | Adam | TensorFlow Keras |
Turkoglu[49] | 100 | ReLUELM, PReLU-ELM, TanhRL | ||||
Horry et al. [101] | 0.001, 0.00001 | 10 | Precision: 86% for X-ray, 100% for LUS, 84% for CT scans | Keras APIs with a TensorFlow 2 | ||
Dutta et al. [112] | 0.00003 | 31 | Accuracy:84% | Sigmoid | RMSprop | Google Colab TensorFlow |
Mertyüz et al. [51] | 0.00001 | 20 | Accuracy:96.90%, Sensitivity:95.45%, Specificity:100% | ReLu, Sigmoid | Anaconda Spyder, Keras | |
Ko et al. [38] | 0.0001 | optimal epoch | Sensitivity:99.58%, Specificity:100.00%, Accuracy:99.87% | SoftMax | Adam | TensorFlow package, Keras |
Alazab et al. [67] | 0.1 | 25 | F-Measure:99% | Pandas, Scikit, TensorFlow | ||
Sharma et at [68] | 0.0001 | 100 | Accuracy:98%, Sensitivity:100%, Specificity:100%, Precision:100%, | Relu | Adam | sklearn, tensorflow, keras |
Apostolopoulos et al. [66] | 10 | Accuracy:96.78%, Sensitivity:98.66%, Specificity:96.46% | Relu | Adam | ||
Wu et al. [115] | 0.001 | 30 | Accuracy:86.60%, Precision:96.20%, AUC:96.80% | Softmax | ||
Al-Waisy et al. [39] | 0.01 | 10, 20 | Accuracy:99.99%, Sensitivity:99.98%, Specificity:100%, Precision:100%, F1-score:99.99%, MSE:0.011%, RMSE:0.012% | Adam, SGD | ||
Haghanifar et al. [65] | 0.0001 | 100 | Accuracy:98.68%, F-score:94% | Sigmoid | Adam | |
Sarker et al. [69] | 0.00001 | Accuracy:94%, Precision:94%, Recall:94%, F-score:94% | Softmax | Adam | ||
Wang et al. [70] | 0.0002 | 22 | Accuracy:93.3%, Sensitivity:100%, Precision:80% | Adam | Keras, Tensor- Flow | |
Mangal et al. [63] | 0.0001 | 30 | Accuracy:99.94%, Sensitivity100%, Precision:93.80% | Sigmoid | Adam | |
Javaheri et al. [40] | 0.001 | Accuracy:91.66%, Sensitivity:87.5%, Specificity:94%, AUC:95% | Adam | |||
Elkorany et al. [41] | Recall:94.45%, Specificity:98.15%, Precision:94.42%, F1-score:94.4% | Softmax | ||||
Tabik et al. [46] | 0.0002 | 100 | Accuracy:76.18%, Sensitivity:72.59%, Specificity:78.67%, F1-score:75.71%, | Softmax | SGD, Adam | |
Ucar et al. [103] | 0.0004 | 35 | Accuracy:98.26%, Specificity:99.13%, F1-score:98.25% | ReLU | MATLAB | |
Hemdan et al. [42] | 0.001 | 50 | Accuracy:90%, F1-score:91% | SGD | Keras package with TensorFlow2 | |
Kedia et al. [48] | 0.001 | 5 to 10 | Accuracy:99.71%, | ReLU, Softmax | Adam | Keras,TensorFlow2 Scikit-Learn |
Ouchicha et al. [45] | Adaptive LR | 20 | Accuracy:96.69%, Precision:96.72% Recall:96.84%, F1-score:96.68% | Softmax | Adam | |
Javor et al. [91] | 17 | Accuracy:95.6%, Sensitivity:99.3%, Specificity:75.8% | ||||
Ismael et al. [98] | 0.01 | 10 | Accuracy:94.7%, Sensitivity:91.00%, Specificity:98.89%, F1-score94.79%, AUC:99.90% | ReLU | SGDM | MATLAB |
Rohila et al. [124] | 0.0001 | 100 | Accuracy:94.9% | ReLU | Adam, SGD | |
Padma et al. [35] | Accuracy: 99.2%, Sensitivity:99.1%, Specificity:98.8%, Precision:100% | ReLU | ||||
Jain et al. [64] | 0.001 | 14 | Accuracy:97.97% | LeakyReLU | Adam | |
Anwar et al. [107] | 0.0001 | 25 | Accuracy:89.7, F1-score:89.6%, AUC:89.5% | Adam | Google colab | |
Sethi et al. [104] | 200 | Accuracy:98.6%, Specificity:99.3%, Precision:87.8%, Sensitivity:87.8%, F1-score:87.8% | Adadelta | Google Colab | ||
Ying et al. [43] | Accuracy:98.6%, Specificity:99.3%, Precision:87.8%, Sensitivity:87.8% | |||||
Jiang et al. [36] | 0.0002 | Accuracy:98.92%, Recall:97.80%, Precision:100.00%, F1-score:98.89% | Adam | TensorFlow | ||
Yang et al. [92] | 0.9 | 20 | Accuracy:95%, Sensitivity:100%, Specificity:90%, F1-score:95%, AUC:99% | SGD | Sklearn 0.22.1 | |
Serener et al. [111] | Accuracy:89%, Sensitivity:98%, Specificity:86%, AUC:95% | SGD | ||||
Basu et al. [28] | 0.0001 | 100 | Accurary:99% | ReLU | Adam, SGD | TensorFlow, Keras |
Wang et al. [95] | 0.0001 | 50 | Accuracy:96.1% | Softmax | ||
Arellano, Ramos [53] | Sensitivity:89.47%, Specificity:100% | ReLU | Gradient Descent | Pandas, seaborn, matplotlib, Keras, | ||
Voulodimos et al. [96] | Accuracy:99%, Recall:89%, Precision:91%, F1-Score:89% | Keras, TensorFlow Google Colab | ||||
Chen et al. [1] | Accuracy:96%, Sensitivity:98%, Specificity:94%, PPV:94.23%, NPV:97.92% | Keras | ||||
Wu et al. [50] | 0.00001 | Accuracy:76%, AUC:81.9%, Sensitivity:81.1%, Specificity:61.5% | rmsprop | Keras 2.1.6 | ||
Minaee et al. [56] | 0.0001 | 100 | Sensitivity:98%, Specificity:92.9% | SoftMax | Adam | |
Demir[99] | 0.001 | 150 | Accuracy:100%, Sensitivity:100%, Specificity:100% | SoftMax | SGDM | MATLAB 2020a |
Perumal et al. [23] | Accuracy:93.8% | ReLu | Adam | |||
Sheykhivand et al. [52] | 0.001 | 200 | Accuracy:99.5%, Sensitivity100%, Specificity:99.02% | Leaky-Relu | RMSProp | Keras, Tensorflow |
Mishra et al. [55] | 0.001 | 60 | Accuracry:98.31%, Precision:100%, Sensitivity:96.74%, Specificity:100%, F1-score:98.34%, PPV:100% | ReLU, Softmax | Adam | Tensorflow, Keras |
Shah et al. [108] | 0.0001 | 30 | CTNet Accuracy:82.1%, VGG19 Accuracy: 94.52% | Sigmoid | RMSProp, Adam | Google Colab |
Sakib et al. [100] | 0.001 | 100 | Accuracy:93.94%, AUC:95.25% | Leaky-Relu | Adagrad | Keras, TensorFlow |
Tang et al. [44] | 0:002 | 50 | Accuracy:95%, Sensitivity:96.0%, PPV:94.1% | TensorFlow 2.0.0 | ||
Saha et al. [94] | 0.0001 | 50 | Accuracy:98.91%, Precision:100%, Recall:97.82%, F1-score:98.89% | ReLu | ||
Khan et al. [102] | 0.00001 | 1000 | Accuracy:85% | Softmax | Adam | Keras TensorFlow |
Gupta et al. [54] | Reduced L.R | Accuracy:99.53%, Precision:100%, Recall:99%, F1-score:99% | SoftMax, Relu | Adam | NumPy, Scikit-Learn, TensorFlow 2 |