Skip to main content
. 2022 Sep 16;39(1):111–143. doi: 10.1007/s10565-022-09773-7

Table 2.

Therapeutic candidates studied to treat hyperoxic injury

Candidate Mechanism of action Models Outcomes References
Antioxidants
MitoTEMPO/MitoTEMPOL Mitochondrial O2•– scavenger Murine BPD, various in vitro models

↑Alveolarization

↓Right ventricular hypertrophy

↓ACE2 and TMPRSS2 expression

↓Proinflammatory cytokines

↓Cell death

↓Mitochondrial fragmentation

(Datta et al. 2015; Forred et al. 2017; Ma et al. 2018; Yee et al. 2020)
Ascorbate (vitamin C) Alkyl hydroperoxide scavenger, regenerates reduced tocopherol

Healthy patients, congestive heart failure patients,

Murine HALI, various in vitro models

↑Left ventricular function

↓Hyperventilation

↓Oxidative biomarkers in blood

↓HMGB1 levels

↓Leukocyte infiltration

↓Lipid and protein oxidation

↓Vasoconstriction

(Mak et al. 2002; Al-Shmgani et al. 2012; Gao et al. 2012; Patel et al. 2020; Fernandes et al. 2021)
Tocopherol (vitamin E) Alkyl hydroperoxide scavenger In vitro OIR, neonatal rabbits, other in vitro models

↓Lipid and protein oxidation

↓Vascular cell injury

↓Surfactant system impairment

(Tripathi and Tripathi 1984; Ward and Roberts 1984; Wispe et al. 1986; Al-Shmgani et al. 2012)
Retinol/retinoic acid (vitamin A) ROS scavenger, retinoid X receptor agonist Murine BPD

↑Surfactant protein levels

↑Alveolar maturation

↓Lung damage

↓Growth retardation

↓MIP-2 expression

(Zimová-Herknerová et al. 2008; James et al. 2010; Gelfand et al. 2020)
Coenzyme Q10 ROS scavenger Murine neonatal organ injury

↑Antioxidant enzyme activity in heart, kidney, and brain

↓Oxidative stress in liver

(Lee et al. 2022)
N-acetylcysteine L-cysteine prodrug, replenishes GSH Murine HALI, in vitro models

↑Mitochondrial membrane potential

↓Lung damage

↓Cell death

↓Cyt c release

↓HGMB1 and RAGE expression

↓TLR2/4 and NF-κB activity

↓Proinflammatory cytokine secretion

(Huang et al. 2016a; Qiao et al. 2019; Zou et al. 2019)
Curcumin and analogs ROS scavenger, multiple molecular targets Murine BPD

↑Relaxation of tracheal smooth muscle

↑Lung maturation

↑Alveolarization

↑PPAR-γ activation

↑Catalase activity

↓Apoptosis

↓ERK1/2 activation

↓TNF-α expression

↓TGF-β signaling

(Sakurai et al. 2011, 2013; Stamenkovska et al. 2020)
Sulforaphane ROS scavenger, Nrf2 inducer, NF-κB inhibitor, other targets Murine BPD and HALI

↑Nrf2-mediated transcriptional response

↑Macrophage function

↓Inflammatory cell infiltration

↓LDH levels

↓Mucous hypersecretion

(McGrath-Morrow et al. 2014; Cho et al. 2019; Patel et al. 2020)
Resveratrol ROS scavenger, SIRT1, multiple molecular targets Murine brain injury, murine HALI and BPD

↑SIRT1/PGC-1α signaling

↑PGC-1α, NRF1, and TFAM expression

↑Mitochondrial biogenesis

↑SOD and GSH

↓Alveolar simplification

↓Lung fibrosis

↓Apoptosis

↓Mitochondrial dysfunction

↓p53 expression

↓Proinflammatory cytokine release

↓Wnt/β-catenin signaling

(Özdemir et al. 2014; Xu et al. 2015; Zhu et al. 2020, 2021; Kang et al. 2021; Yang et al. 2022)
Quercetin ROS scavenger, multiple molecular targets Murine BPD, fetal airway smooth muscle cells

↑Alveolarization

↓Inflammation

↓NF-κB levels

↓Lipid peroxidation

↓Senescence

(Maturu et al. 2018; Parikh et al. 2019)
Anthocyanins ROS scavenger Murine OIR, HUVECs

↑Nrf2 gene targets

↑Cell viability

↓Mitochondrial dysmorphology

↓Endothelial cell proliferation

(Cimino et al. 2013; Ercan et al. 2019)
Caffeine ROS scavenger, A2AR antagonist, multiple molecular targets Murine BPD, neonatal murine brain injury

↑Alveolar development

↑Weight gain

↓DNA damage

↓A2AR expression

↓Proinflammatory cytokines

↓Inflammatory infiltration

↓Apoptosis

↓ER stress

↓NLRP3 inflammasome expression

↓NF-κB activation

↓MMP2 levels

(Endesfelder et al. 2017, 2019; Teng et al. 2017; Chen et al. 2020c)
Indole-3-carbinol ROS scavenger, AhR agonist/inducer, other targets Murine BPD

↑AhR gene targets

↑Alveolarization

↑NF-κB target genes

↓Fibrosis

(Guzmán-Navarro et al. 2021)
Tetrandrine ROS scavenger, multiple molecular targets Murine BPD

↑Antioxidant enzymes

↓Apoptosis

↓Inflammation

↓Fibrotic markers

↓NF-κB and ERK1/2 signaling

(Jiao et al. 2020)
Antiapoptotic
Cyclosporin A Cyclophilin D inhibitor; delays mPTP opening Murine

↓Cyt c release

↓Mitochondrial swelling

↓Lung damage

(Pagano et al. 2004)
TRP601 Caspase inhibitor Murine brain injury

↓Apoptosis

↓Neurodegeneration

(Sifringer et al. 2012)
Anti-inflammatory
Interleukin-10 Anti-inflammatory cytokine Murine HALI, fetal alveolar cells (in vitro)

↑Survival

↑VEGF release

↑Proliferation

↑Jak1 and TYK2 phosphorylation

↓Lung injury

↓Cell death

↓NF-κB activation

↓Proinflammatory cytokines

↓iNOS and NO levels

↓MMP2 and MMP9 activities

(Lee and Kim 2011; Li et al. 2015b; Lee and Lee 2015)
Interleukin-1 receptor antagonist Anti-inflammatory cytokine Murine BPD, murine BPD-pulmonary hypertension

↑Pulmonary small vessels

↑Immune cell viability

↓Pulmonary vascular resistance

↓Lung structural disintegration

↓Cardiac fibrosis

↓Immune cell activation

↓Proinflammatory cytokines

(Nold et al. 2013; Bui et al. 2019)
Acetylsalicylic acid COX inhibitor Murine HALI

↓NF-κB activation

↓ROS

↓Proinflammatory cytokines

↓Macrophages

↓Neutrophil infiltration

↓Lung edema

(Chen et al. 2020b; Tung et al. 2022)
Ibuprofen COX inhibitor Murine OIR

↓Retinopathy score

↓Extra-retinal nuclei count per section

(Sharma et al. 2003)
HIF-1 upregulators
FG-4095 PHD inhibitor Fetal baboon lung explants, primate BPD, distinct cell lines

↑HIF-1/2α target genes

↑Angiogenesis

↑Alveolar surface area

↑Lung compliance

(Asikainen et al. 2006, 2005)
Dimethyloxalylglycine PHD inhibitor Murine OIR

↑Peripheral vascularity

↓Neovascularization

↓Ischemia

(Sears et al. 2008; Trichonas et al. 2013)
Roxadustat PHD inhibitor Murine BPD

↑Survival

↑Alveolarization

↑eNOS expression

↑VEGF expression

(Huang et al. 2021)
Others
Memantine NMDA receptor antagonist Murine brain injury

↑Neuron viability

↓Apoptosis

(Polat et al. 2020)
Lacosamide Enhances slow Na+ channel inactivation Murine brain injury

↑Neuron viability

↓Apoptosis

(Polat et al. 2020)
Vitamin D Vitamin D receptor agonist Murine BPD

↑Alveolarization

↑VEGF and VEGFR2 expression

↑HIF-1α expression

↓Alveolar simplification

↓Apoptosis

↓TLR4 expression

↓IFN‐γ and IL‐1β expression

↓Neutrophil extracellular traps

↓Proinflammatory cytokines

(Kose et al. 2017; Yao et al. 2017; Chen et al. 2020a; Wang and Jiang 2021)
Metformin AMPK activator Murine BPD, HUVECs

↑Radial alveolar count

↑Vascular proliferation

↑ATP levels

↑Lung capillary number

↓Mortality

↓Inflammation

↓Fibrosis

(Chen et al. 2015; Yadav et al. 2020)
Rosiglitazone PPAR-γ agonist Murine BPD and HALI, preterm rabbits

↑Radial alveolar count

↑Alveolar sacculation

↑Lung maturation

↑Surfactant proteins

↑VEGF expression

↓Wnt and TGF-β signaling

↓Neutrophil influx

(Richter et al. 2016; Rehan et al. 2010; Dasgupta et al. 2009)
Alda-1 ALDH2 activator Murine HALI, HMVECs

↑Mitochondrial membrane potential

↑Akt/mTOR signaling

↓Alveolar damage

↓Inflammation

↓Immune cell infiltration

↓Bax and cyt c levels

↓4-HNE levels

(Sidramagowda Patil et al. 2019, 2021)

Abbreviations: ACE2, angiotensin converting enzyme 2; AhR, aryl hydrocarbon receptor; ALDH2, aldehyde dehydrogenase 2; Alda-1, ALDH2 activator 1; AMPK, adenosine monophosphate-activated kinase; ATP, adenosine triphosphate; A2AR, A2A adenosine receptor; BPD, bronchopulmonary dysplasia; COX, cyclooxygenase; cyt c, cytochrome c; ER, endoplasmic reticulum; ERK1/2, extracellular signal-regulated kinase 1/2; GSH, reduced glutathione; HALI, hyperoxic acute lung injury; HIF-1/2, hypoxia-inducible factor 1/2; HMGB1, high mobility group box 1; HUVECs, human umbilical vein endothelial cells; Jak, Janus kinase; IFN-γ, interferon γ; IL-1β, interleukin-1β; LDH, lactate dehydrogenase; MIP-2, macrophage inflammatory protein 2; MMP2, matrix metalloproteinase 2; mPTP, mitochondrial permeability transition pore; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR family pyrin domain containing 3; NMDA, N-methyl-D-aspartate; NRF1, nuclear respiratory factor 1; Nrf2, nuclear factor erythroid 2-related factor 2; NO, nitric oxide; eNOS, endothelial NO synthase; iNOS, inducible NO synthase; OIR, oxygen-induced retinopathy; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 α; PHD, prolyl hydroxylase domain; PPAR-γ, peroxisome proliferator-activated receptor γ; RAGE, receptor for advanced glycation end-products; ROS, reactive oxygen species; SIRT1, sirtuin 1; SOD, superoxide dismutase; TMPRSS2, transmembrane protease, serine 2; TGF-β, transforming growth factor β; TFAM, transcription factor a, mitochondrial; TLR2/4, toll-like receptor 2/4: TNF-α, tumor necrosis factor α; TYK2, tyrosine kinase 2; VEGF, vascular endothelial growth factor; VEGFR2, VEGF receptor 2; 4-HNE, 4-Hydroxynoneal