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Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of is-
chemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed 
that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its in-
activation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The 
goal of this study was to determine how meprin β expression impacts IL-6 and 
downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-
induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and 
meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time 
PCR, western blot, and immunostaining/microscopy approaches were used to 
quantify mRNA and protein levels respectively, and immunofluorescence coun-
terstaining with proximal tubule (PT) markers to determine protein localization. 
The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both 
genotypes. Interestingly, western blot data showed increases in protein levels 
for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, im-
munohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins 
in select kidney tubules in both genotypes, shown to be PTs by immunofluores-
cence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO 
at a global level but immunoflourescence counterstaining demonstrated p-JAK2 
and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only 
in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed 
in leukocytes. Immunohistochemical analysis confirmed higher levels of leuko-
cyte infiltration in WT kidneys when compared to βKO kidneys. The present data 
demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/
JAK2/STAT3-mediated signaling.
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1   |   INTRODUCTION

Ischemia/reperfusion (IR) is a major cause of acute kid-
ney injury (AKI), with adverse clinical effects that include 
tubulointerstitial inflammation (Thurman et al.,  2006). 
Meprins metalloproteinases are abundantly expressed in 
the brush border membranes (BBMs) of kidney proximal 
tubules and small intestines (Sterchi et al., 2009). Meprins 
are also expressed in leukocytes (monocytes and mac-
rophages; Sun et al., 2009), suggesting a role in the immune 
response. Meprin have been implicated in the pathophysi-
ology of IR-induced kidney injury. Meprin β-deficient 
mice showed a significant protection against renal IR 
injury, indicating that meprin expression exacerbates IR-
induced kidney injury (Bylander et al.,  2008). However, 
the mechanisms by which meprins modulate kidney in-
jury are not fully understood. In vitro studies showed that 
meprin β proteolytically processes interleukin-6 (IL-6), 
leading to inactivation of IL-6 (Keiffer & Bond, 2014). It 
was recently reported that meprins also cleave the IL-6 
receptor (IL-6R; Arnold et al., 2017). Thus, existing data 
suggest that meprins could modulate IL-6-mediated in-
flammation. IL-6 binds to its membrane bound receptor 
(mbIL-6R) activating the classic IL-6 signaling pathway 
or the soluble form of the receptor (sIL-6R) activating 
the IL-6 trans-signaling pathway (Kaur et al.,  2020). In 
both signaling cascades, the IL-6/IL-6R complex activates 
the membrane-bound gp130 dimer, which in turn acti-
vates the Janus Kinase2-Signal Transducer and Activator 
of Transcription3 (JAK2/STAT3; Heinrich et al.,  1998; 
Kaur et al.,  2020; Mascareno et al.,  2001; Schindler & 
Strehlow,  1999). This activation of STAT3 by tyrosine 
phosphorylation leads to translocation of phosphorylated 
STAT3 (p-STAT3) into the nuclei, and transcription of 
several genes that include the pro-apoptosis genes, B-cell 
lymphoma/leukemia 2 (BCL-2; Horiguchi et al.,  2002), 
anti-apoptosis genes, and cysteine-aspartic acid protease 
3 (Caspase3, CASP3; Zhao et al., 2020). However, it is not 
known whether meprin β cleavage of IL-6 in vivo and 
subsequent inactivation of IL-6 modulate downstream 
mediators of the IL-6 signaling pathway in kidney tissue. 
Meprin β expression on macrophages and its ability to 
cleave extra-cellular matrix (ECM) proteins suggest that 
meprin B could enhance leukocyte infiltration (Bedau 
et al.,  2017; Bylander et al.,  2008; Crisman et al.,  2004; 
Yura et al., 2009), thus indirectly contributing to inflam-
mation in the kidneys subjected to IR injury. The goal of 
the current study was to determine how meprin β expres-
sion mediates inflammation via modulation of IL-6 levels 
and downstream mediators of IL-6 signaling pathway in 
mice kidneys subjected to IR injury.

2   |   MATERIALS AND METHODS

2.1  |  Experimental animals

Wild-type (WT) and meprin β knockout (βKO) male 
mice on a C57BL/6 background were used. The WT mice 
express both meprin α and meprin α, and therefore have 
all three mrprin protein isoforms while the βKO mice are 
deficient in two meprin protein isoforms, meprin B (β–β) 
and the heterodimeric form of meprin A (α-β). The βKO 
mice were generated by the laboratory of Judith Bond, 
Pennsylvania State University. The βKO mice were bred 
at the Laboratory Animal Resource Unit (LARU) of 
North Carolina A&T State University (NC A&T). Age-
matched WT mice were purchased from Charles River 
Laboratories (Wilmington, MA). The mice were housed 
in groups of up to five mice per standard cage and were 
fed a standard rat chow (Purina) and water ad libitum 
with exposure to a 12:12 h light–dark cycle. All the ani-
mal protocols for this study were approved by the NC 
A&T Institutional Animal Care and Use Committee 
(IACUC).

2.2  |  Induction of kidney injury

We induced kidney injury in 12-week-old male mice by 
clamping the renal pedicle of the kidney for 27 min as pre-
viously described (Ahmed et al.,  2020) followed by 24 h 
reperfusion. The contralateral kidney was not clamped 
and served as the control for each mouse. The mice were 
then euthanized by CO2 asphyxiations and kidney tis-
sues harvested for proteomics and immunohistochemical 
analysis. A minimum of four mice were per genotype were 
euthanized at 24 h post-IR.

New and Noteworthy Annotation
This study demonstrates for the first time that ex-
pression of meprin β by proximal tubule cells and 
leukocytes impacts IL-6 and downstream media-
tors of apoptosis and cell survival via the p-JAK2- 
and p-STAT signaling pathway in IR-induced 
kidney injury. Previous in vitro data showed pro-
teolytic processing of IL-6 by meprin β, resulting 
in inactivation of the IL-6. This study confirms 
that proteolytic processing of IL-6 by meprin β 
impacts inflammation in vivo.
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2.3  |  Processing of kidney tissues

The harvested kidneys were de-capsulated and sections 
of each kidney processed appropriately for protein ex-
traction, RNA extraction, or paraffin embedding and 
subsequent immunohistochemistry. For protein extrac-
tion, kidney sections were wrapped in aluminum foil and 
snap-frozen in liquid nitrogen, then stored at −80°C. For 
immunohistochemistry, 2 mm mid-section tissue samples 
were stored in Carnoy's fixative (60% ethanol/30% chloro-
form/10% acetic acid) overnight at 4°C, then transferred 
to 70% ethanol at 4°C until processed for paraffin em-
bedding. Paraffin embedding and cutting tissue sections 
onto slides were performed at the Wake Forest University 
Pathology Laboratory. The kidney tissue samples for RNA 
extraction were stabilized and stored in RNALater® solu-
tion (Invitrogen Cat# AM7021) for 24 h at 4°C. After 24 h, 
the RNALater® was aspirated and tissues were stored at 
−80°C until used for RT-PCR analysis.

2.4  |  Assessment of kidney injury

Because injury was not induced in the contralateral kid-
ney, blood samples could not be used for biochemical 
assessment of kidney function. Instead, sections of each 
kidney were subjected to immunohistochemical staining 
for kidney injury molecule-1 (KIM-1), an established kid-
ney injury biomarker. Immunohistochemical data from 3 
mice per group showed that the expression of KIM-1 in-
creased significantly (p ≤ 0.0001) in select tubules for kid-
neys subjected to IR for both genotypes relative to their 
control counterparts, confirming injury in kidneys sub-
jected to IR (Figure 1a).

2.5  |  RNA extraction and cDNA synthesis

Kidney tissues were disrupted using a tissue homog-
enizer (Bead Mill 4 Homogenizer, Thermo Scientific 
Cat# 15-340-164) and total RNA from control and is-
chemic kidneys were isolated using the Qiagen RNeasy 
Mini Kit (Qiagen Cat# 74106) according to manufac-
turer's guideline. Concentration and purity were deter-
mined at 260/280 and 260/230 using a spectrophotometer 
(Spectrophotometer NanoDrop 2000, Thermo Scientific 
Cat# 13400519). Denatured RNA was reverse transcribed 
into cDNA in a 20 μl reaction volume using High-Capacity 
cDNA Reverse Transcription Kit with RNase Inhibitor 
(Thermo Fisher Cat# 4368814). Reverse transcription was 
performed at 37°C for 90 min, 85°C for 3 min, followed by 
quick chilling on 4°C and obtained cDNA stored at −20°C 
until subsequent amplification.

2.6  |  Real-time PCR analysis

Two-steps RT-PCR reactions were performed with 
QuantiFast SYBR® Green PCR Reagents (Qiagen Cat# 
204056) according to the manufacturer's instructions 
using Bio-Rad's Multiplate™ 96-Well PCR Plates. The 
qPCR cycling conditions were 50°C for 2  min, 95°C for 
10  min followed by 40 cycles of a two-step amplifica-
tion program (95°C for 15 s and 58°C for 1 min). At the 
end of the amplification, melting curve analysis was ap-
plied using the dissociation protocol from the Sequence 
Detection System to exclude contamination with non-
specific PCR products. Oligonucleotides for all genes were 
designed as mouse-specific primer pairs obtained from 
Integrated DNA Technologies (IDTDNA) (Corlvielle, IO). 
Oligonucleotides sequences of the primer sets are: (i) IL-
6, Forward: GTT CTC TGG GAA ATC GTG GA, Reverse: 
TGT ACT CCA GGT AGC TAT GG (Ma et al.,  2021); 
(ii) BCL-2, Forward: GCC TTT TTC TCC TTT GGC GG, 
Reverse: AAG AGT GAG CCC AGC AGA AC (Damodaran 
et al., 2020); (iii) CASP3, Forward: GAG CTT GGA ACG 
GTA CGC TA, Reverse: CCG TAC CAG AGC GAG ATG 
AC (Al-Megrin et al.,  2020). The mRNA expressions of 
target genes were presented as a fold change relative to 
control samples of WT kidneys. Data were normalization 
using the mRNA of housekeeping gene GAPDH: Forward: 
AGG TCG GTG TGA ACG GAT TTG, Reverse: GGG GTC 
GTT GAT GGC AAC A (Chen et al., 2017) and analyzed 
via the 2–ΔΔCt method (Schmittgen & Livak, 2008).

2.7  |  Protein extraction from 
kidney tissues

Protein Extraction from kidney tissues utilized previ-
ously described protocols (Ahmed et al., 2020; Niyitegeka 
et al.,  2015; Ongeri et al.,  2011). Briefly, kidneys were 
homogenized in 9 volumes of ice-cold buffer (0.02 mM 
HEPES pH  7.9, 0.015 mM NaCl, 0.1 mM Triton-X 100, 
0.01 mM SDS, 1 mM Na3VO4) with protease and phos-
phatase inhibitors. RIPA buffer was used to obtain protein 
lysates from sections of the kidney tissue. Protein concen-
trations in each sample were determined via the Bradford 
protein assay method using Bio-Rad's protein assay rea-
gent (Bio-Rad). All the extracted proteins were stored in 
aliquots at −80°C until analyzed by western blot.

2.8  |  Western blot analysis

Western blot analysis was used to evaluate the pro-
tein levels of IL-6, phospho-STAT3 (Tyr705) (p-STAT3), 
phospho-JAK2 (Tyrosine 1007+1008, Y1007 + Y1008) 
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(P-JAK2), Caspase3 (CASP3), and BCL-2 in the kidney 
tissues using previously described protocols (Ahmed 
et al.,  2020; Niyitegeka et al.,  2015; Ongeri et al.,  2011). 
Kidney Proteins (45–90 μg) were subjected to electropho-
resis on 8%–12% polyacrylamide gels and transferred to 
nitrocellulose membrane. Non-specific bindings were 
blocked by incubating in 5% fat-free milk in Tris-buffered 
saline with 0.1% Tween (Chen et al.,  2017) (TBS-T) for 
1 h at room temperature. Nitrocellulose membranes were 
incubated with primary antibodies at room temperature 
for 1 h or overnight at 4°C as follows: IL-6 (Abcam Cat# 
ab9324, RRID:AB_307175) diluted 1:1000, p-STAT3 (Cell 
Signaling Technology Cat# 9145, RRID:AB_2491009) 
diluted 1:500, STAT3 (Cell Signaling Technology Cat# 
30835, RRID:AB_2798995) diluted 1:2000, p-JAK2 (Abcam 
Cat# ab32101, RRID:AB_775808) diluted 1:300, CASP3 
(Cell Signaling Technology Cat# 9662, RRID:AB_331439) 
diluted 1:1000, BCL-2 (Cell Signaling Technology Cat# 
15071, RRID:AB_2744528) diluted 1:1000, and Anti-β 
tubulin (Origene Cat# TA301569) diluted 1:7000. The 
tubulin served as a loading control. Secondary anti-
body, either goat anti-mouse(Bio-Rad Cat# 172–1011, 

RRID:AB_11125936) or anti-rabbit IgG (Bio-Rad Cat# 
170–6515, RRID:AB_11125142) dilution 1: 10,000 were 
added onto the membrane and incubated for 1  h at 
room temperature or overnight at 4°C. The membranes 
were exposed to chemiluminescence substrates (Thermo 
Scientific Cat# 34577) and developed on X-ray film. The 
protein band intensities were determined by densitometry 
using Image Studio™ Lite Software (Version 2.5.2). To 
obtain the relative optic densities (relative ODs) for each 
protein, the ODs for each protein band were normalized 
to the ODs of β-tubulin for the same sample. The ODs for 
phosphorylated proteins were normalized to their corre-
sponding non-phosphorylated total proteins ODs.

2.9  |  Immunohistological analysis

Immunohistochemical staining was used to evaluate the 
protein expression of KIM-1, IL-6, p-STAT3, p-JAK2, 
CASP3, and BCL-2 using previously described proto-
cols (Ahmed et al., 2020; Niyitegeka et al., 2015; Ongeri 
et al.,  2011). In summary, slides were deparaffinized by 

F I G U R E  1   Immunohistochemical staining for kidney injury marker 1 (KIM-1). (a) Ten non-overlapping fields for tubular and 10 
non-overlapping fields of renal corpuscle sections from each kidney were imaged at 60× magnification and analyzed in a blinded manner. 
Relative optical density (ODs) values were quantified (n = 3 mice/group) and analyzed using Image J analysis Software. The OD data were 
analyzed by two-way ANOVA. (b) Immunofluorescence counterstaining of KIM-1 (red) and meprin β (green) in wild-type (WT) and villin 
(green) in meprin β knockout (βKO) kidneys to determine KIM-1 protein localization as an indicator of kidney injury. DAPI (blue) was 
used to stain the nuclei. There were significant increases in KIM-1 in select proximal tubules at 24 h post-IR in both genotypes (p < 0.0001), 
confirming kidney injury.
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immersing in Xylene 2 times for 5 min each, 100% Ethanol 
2 times for 3  min each, 95% Ethanol 2 times for 3  min 
each, and distilled water 1 time for 5  min. Slides were 
then exposed to antigen unmasking via boiling in 10 mM 
sodium citrate buffer, pH 6.0, for 10 min. The slides were 
then immersed in methanol (MeOH) quench buffer (25% 
of 30% H2O2 in MeOH) for 20 minutes to quench endog-
enous peroxidase activity. Slides were washed for 5 min in 
PBS-T (1% BSA and 0.3% Triton-X-100), then incubated in 
1% normal goat serum in PBS buffer at room temperature 
for 1 h in a humidified chamber in order to block the non-
specific binding sites. Slides were then incubated in pri-
mary antibodies diluted in PBS buffer with 2.5% normal 
goat serum overnight at 4°C or at room temperature for 
1 h. Antibodies used were; rabbit polyclonal anti-KIM-1 
antibodies (Abcam Cat# ab47635, RRID:AB_882998) di-
luted 1:100, mouse monoclonal anti-IL-6 (Abcam Cat# 
ab9324, RRID:AB_307175) diluted 1:1000, rabbit poly-
clonal anti-p-STAT3 (Cell Signaling Technology Cat# 9145, 
RRID:AB_2491009) diluted 1:500, rabbit monoclonal anti-
p-JAK2 (Abcam Cat# ab32101, RRID:AB_775808) diluted 
1:1000, rabbit monoclonal anti-CASP3 (Cell Signaling 
Technology Cat# 9662, RRID:AB_331439) diluted 1:500 
and mouse monoclonal anti-BCL-2 (Cell Signaling 
Technology Cat# 15071, RRID:AB_2744528) diluted 
1:400, rabbit polyclonal anti-CD45 diluted 1:200 (Abcam 
Cat# ab10558, RRID:AB_442810), rabbit monoclonal 
anti-F4/80 (Abcam Cat# ab111101, RRID:AB_10859466) 
diluted 1:200. After that, slides were washed in PBS 3 
times for 5 min each. Slides were incubated for 30 min in 
a secondary antibody solution (BPS buffer with 2% uni-
versal biotinylated secondary antibody and 2% normal 
goat serum), and then washed in PBS 2 times for 5 min-
utes each. For standard immunostaining, we used the 
Vectastain® Elite® ABC Universal Kit Protocol (Vector 
Laboratories Cat# PK-6200, RRID: AB_2336826) follow-
ing the manufacturer's instruction. The tissue sections 
were evaluated for IL-6, p-STAT3, p-JAK2, CASP3, BCL-
2, CD45 and F4/80 using light microscope (KEYENCE 
Corporation of America) and imaged using BZ-X700 anal-
ysis Software. Ten non-overlapping fields for tubular and 
10 non-overlapping fields of renal corpuscle were imaged 
at 60× magnification from each kidney section and ana-
lyzed in a blinded manner. To determine staining intensity 
levels for IL-6, p-STAT3, p-JAK2, CASP3 and BCL-2, cali-
brated 8–bit images based on the quantified OD standard 
were evaluated for optical density values (ODs) via Image 
J analysis Software (ImageJ/Fiji 1.46). For evaluation of 
leukocyte infiltration, kidney sections were probed with 
anti-CD45 and anti-F4/80 antibodies and the number of 
positive staining cells were counted in 10 non-overlapping 
tubulointerstitial sections and 10 renal corpuscles per kid-
ney in a double-blinded manner.

2.10  |  Immunofluorescence staining

Immunofluorescence counterstaining was used to deter-
mine the localization of the proteins of interest according 
to the previously described protocol (Ahmed et al., 2020), 
with meprin and villin as proximal tubule biomarkers. 
Briefly, slides were deparaffinized by immersing in Xylene 
3 times for 5 min each, 100% Ethanol 2 times for 10 min 
each, 95% Ethanol 2 times for 10 min each, and distilled 
water 2 times for 5 min each. Slides then were exposed to 
antigen unmasking via boiling in 10 mM sodium citrate 
buffer, pH 6.0, for 10 min. In order to block the non-specific 
binding sites, slides were incubated in blocking buffer of 
PBS with 5% normal goat serum and 0.3% Triton X-100 
for 1 h at room temperature. Slides then were incubated in 
primary antibodies diluted in a dilution buffer of PBS with 
0.3% Triton X-100 and 1% BSA at same dilution levels as 
described in the previous immunohistological analysis sec-
tion. Sections were counterstained overnight at 4°C or at 
room temperature for 1 h with polyclonal goat anti-mouse 
meprin β antibodies for WT and with villin for βKO sec-
tions: mouse monoclonal anti-villin antibodies (Santa Cruz 
Biotechnology Cat# sc-58,897, RRID:AB_2304475) diluted 
1:200 and goat anti-mouse polyclonal meprin β antibod-
ies (R and D Systems Cat# AF3300, RRID:AB_2143451) 
diluted 1:200. The slides were then rinsed three times in 
PBS for 10 min each and incubated for 1 h at room tem-
perature in fluorophore-conjugated secondary antibodies 
diluted in same dilution buffer at 1:1000: chicken poly-
clonal anti-rabbit, Alexa Fluor® 488 (Invitrogen, Cat# A-
21441, RRID:AB_2535859) for KIM-1, p-STAT3, p-JAK2 
and CASP3; chicken monoclonal anti-mouse, Alexa 
Fluor® 488 (Invitrogen Cat# A-21200, RRID:AB_2535786) 
for IL-6 and BCL-2; donkey polyclonal anti-mouse, Alexa 
Fluor® 647 (Abcam Cat# ab150107, RRID:AB_2890037) 
for villin and chicken polyclonal anti-goat, Alexa Fluor® 
488 (Invitrogen, Cat# A-21467, RRID:AB_141893) for 
meprin β. Diluted 4,6-diamidino-2-phenylindole (DAPI) 
(Vector Laboratories Cat# SK-4100, RRID:AB_2336382) 
was used for nuclear staining (1:1000). To prevent fluores-
cence signal from fading, all slides were covered by cov-
erslips with prolong anti-fade reagent (Life Technologies) 
and allowed to dry at room temperature overnight. Tissue 
sections were evaluated for expression and localization 
using a BZ-X700 Series all-in-one fluorescence microscope 
(KEYENCE Corporation of America) and imaged using 
BZ-X700 analysis software at 60× magnification.

2.11  |  Statistical analysis

Data analysis of mRNA expression of the target genes 
were performed for each group versus the WT control 
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group. All data were analyzed by two-way ANOVA with 
Tukey's pair-wise comparisons using GraphPad 7.0 Prism 
Software (GraphPad). Data are presented as mean ± SEM. 
p ≤ 0.05 were considered statistically significant.

3   |   RESULTS

The levels of the kidney injury biomarker, KIM-1, in-
creased in both genotypes for kidneys subjected to IR 
but not in control counterparts (Figure  1a), confirm-
ing that our surgical procedure induced kidney injury. 
Immunofluorescence counterstaining with proximal 
tubules biomarkers (meprin β in WT and villin in βKO 
kidneys) showed that high KIM-1 expression level was 
predominantly in the proximal tubules (PTs) and not in 
distal tubules (DTs) (Figure 1b). Interestingly, we also ob-
served KIM-1 shed in the lumen of PTs in βKO kidney sec-
tions, suggesting KIM-1 excretion and clearance into the 
urine after kidney insult in AKI as previously shown by 
others (Sohotnik et al., 2013; Peng et al., 2012).

3.1  |  Meprin β deficiency associated with 
increased IL-6 protein levels in kidney 
tissue at 24 h post-IR

To determine the impact of meprin β expression/activ-
ity on IL-6 levels in vivo, mRNA and protein expression 
of IL-6 were evaluated in kidney tissue at 24 h-post-IR. 
Real-time PCR data showed a significant increase in IL-6 
mRNA levels in both WT (p ≤ 0.01) and βKO (p ≤ 0.0001) 
mice subjected to IR when compared to the counterpart 
control kidneys (Figure  2a). Western blot data showed 
that IL-6 protein levels significantly increased in βKO kid-
neys (p ≤ 0.0001) but not in WT counterparts at 24 h post-
IR (Figure  2b), suggesting meprin β-mediated decreases 
in IL-6. Interestingly, immunohistochemical staining of 
kidney sections for IL-6 showed significant increases in 
IL-6 expression in select kidney tubules for both geno-
types but no significant change in the renal corpuscles 
(Figure  2c,d). To identify the localization of increased 
KIM-1 and IL-6 expression in kidney tissues, we used im-
munofluorescence counterstaining with proximal tubule 
biomarker, villin in both WT and βKO kidneys. In WT, 
IL-6 expression was observed in both PTs, which express 
meprin β and DTs, which lack meprin β. We also observed 
increases in IL-6 levels in the lumen of PTs only in WT 
kidney sections at 24 h post-IR. On the other hand, we 
observed increases in IL-6 levels in the lumen of both 
PTs and DTs in βKO kidneys, suggesting IL-6 excretion 
and clearance into the urine at 24 h post-IR (Figure 2e). 
Our data also showed that IL-6 expression was positively 

associated with KIM-1 and thus kidney injury in several 
tubules in both genotypes subjected to IR (Figure 2f). The 
data further suggest that western blot analysis is not sensi-
tive in evaluating changes in IL-6 protein expression pat-
terns as the increase is not global but in select tubules.

3.2  |  Meprin β deficiency associated with 
increased renal p-JAK2 protein expression 
at 24 h post-IR

To determine whether meprin β expression affects down-
stream modulators of the IL-6 signaling pathway, levels 
of p-JAK2Y1007+Y1008 were evaluated using western blot 
analysis and immunohistochemical staining approaches. 
Phosphorylated protein levels of Janus kinase on Tyrosine 
1007 and 1008 (p-JAK2Y1007+Y1008) could not be detected 
using western blot analysis. However, light microscopy 
and analysis of the immunostaining showed that p-JAK2 
levels significantly increased in select tubules of both 
WT (p  =  0.005) and βKO (p  ≤ 0.0001) kidneys at 24 h 
post-IR when compared to counterpart control kidneys 
(Figure  3a). However, in renal corpuscles, p-JAK2 lev-
els significantly increased only in the βKO (p  ≤ 0.0001) 
and not in WT kidney sections subjected to IR when 
compared to their corresponding controls (Figure  3b). 
Immunofluorescence counterstaining with proximal tu-
bule biomarkers, showed that IR-induced increases in p-
JAK2 levels occurred in the PTs and not in DTs for both 
genotypes with comparable baseline expression levels in 
the PTs of control kidneys of both genotypes (Figure 3c). 
Additionally, immunofluorescence staining showed in-
crease p-JAK2 levels in the lumen of PTs only in βKO 
group, suggesting increased release of p-JAK2 into filtrate 
and subsequently into urine.

3.3  |  Meprin β deficiency associated with 
increase in p-STAT3 α and β levels at 24 h 
post-IR

To determine whether meprin β expression affects the 
levels of transcription factor signal transducer and 
activator of transcription 3 (STAT3), a downstream 
modulator of the IL-6 signaling pathway, total STAT3 
and the phosphorylated STAT3 on Tyrosine 705 (p-
STAT3Y705) proteins were evaluated using western blot 
analysis. Two isoforms for both forms were detected, 
STAT3-α and p-STAT3-αY705 (at 94 kDa) and STAT3-β 
andpP-STAT3-βY705 (at 88 kDa). Immunoblot analysis 
showed that baseline protein expression of both iso-
forms of p-STAT3 were significantly lower (p ≤ 0.0001) 
in WT when compared to βKO kidneys (Figure  4a). 
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F I G U R E  2   IL-6 mRNA and protein expression in kidney tissue. (a) Relative mRNA levels for IL-6. Values for IL-6 mRNA levels were 
presented as fold change relative to control WT kidneys. Each value represents the mean ± SEM of triplicate combinations from 4 mice per 
group. Data were and analyzed by two-way ANOVA. a–c means values with different letters are significantly different. (b) Representative 
immunoblots of kidney IL-6 proteins. The protein bands in each lane represent samples from individual kidneys. The relative ODs were 
calculated by normalizing the ODs of IL-6 to the OD for β-tubulin in the same sample. Data are means ± SEM from 3 mice per treatment 
group. (c) Immunohistochemical staining for IL-6 in kidney tubules. (d) Immunostaining for IL-6 in renal corpuscles. Ten non-overlapping 
fields for tubular and 10 non-overlapping fields of renal corpuscle sections from each kidney were imaged at 60× magnification. Relative 
ODs were quantified (n = 3 mice/group) and analyzed by two-way ANOVA. A–c means values with different letters are significantly 
different. There was a significant increase in IL-6 mRNA and protein in select tubules in both genotypes (p < 0.01). (E) Localization of IL-6 
and KIM-1 in kidney tubules. Immunofluorescence counterstaining of IL-6 (red) and the proximal tubule marker, villin (green); (F) Co-
localization of KIM-1 (green) and IL-6 (red). DAPI (blue) was used to stain the nuclei.
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Additionally, the 94-kDa p-STAT3-αY705 increased sig-
nificantly in both βKO (p ≤ 0.0001) and WT (p ≤ 0.0232) 
kidney tissues subjected to IR when compared to con-
trol kidneys. However, p-STAT3-βY705 increased only in 
βKO mice subjected to IR (p ≤ 0.0001) when compared 
to control mice but not in WT kidneys. On the other 
hand, levels of non-phosphorylated 94-kDa STAT3-α 
and the 88-kDa STAT3-β proteins were comparable in 
all groups. Increased p-STAT3Y705 protein levels was 
confirmed using light microscopy, with immunostain-
ing intensity for p-STAT3Y705 being significantly in-
creased (p  ≤ 0.0007) in select tubules and in renal 
corpuscles of both genotypes for kidneys subjected to 
IR when compared to control kidneys (Figure  4b,c). 
When compared to βKO kidneys, the p-STAT3 baseline 
levels were lower in WT kidneys. Immunofluorescence 
counterstaining showed that the levels of p-STAT3 pro-
teins were high in PTs of both genotypes at 24 h post-
IR (Figure 4d). However, accumulation of p-STAT3 in 
the lumen of PTs were observed only in βKO kidneys 
at 24 h post-IR. Individual interstitial cells (presumed 
to be resident macrophages) stained positively for p-
STAT3Y705 in both genotype at 24 h post-IR sections. 
The levels of p-STAT3Y705 and expression patterns 
were comparable in PTs and DTs in both control and 
IR kidneys.

3.4  |  Meprin β deficiency increased the 
levels of pro-apoptotic protein, CASP3, in 
proximal tubules at 24 h post-IR

To determine whether meprin β expression impacts 
downstream apoptotic targets of the IL-6 signaling path-
way, mRNA and protein levels of CASP3 were evaluated 
in kidney tissue. Data from RT-PCR analysis showed a 
significant increase in CASP3 mRNA levels in both WT 
(p  ≤ 0.001) and βKO (p  ≤ 0.05) kidneys at 24 h post-IR 
relative to their control counterpart kidneys. However, 
the baseline mRNA levels for CASP3 were significantly 
lower (p ≤ 0.0001) in WT when compared to βKO kidneys 
(Figure  5a). Western blot analysis showed that protein 
levels for CASP3 (detected at 35 kDa) significantly in-
creased (p ≤ 0.0001) only in βKO kidneys subjected to IR 
compared to control kidneys (Figure  5b). Interestingly, 
the baseline protein expression of CASP3 was significantly 
lower (p ≤ 0.0001) in WT when compared to βKO kidneys. 
Immunohistochemical staining coupled with evalua-
tion by light microscopy showed a significant increase 
(p ≤ 0.0001) in CASP3-staining intensity in select tubules 
of both genotypes subjected to IR compared to their con-
trols with a higher base level in βKO (Figure 5c). However, 
levels of CASP3 were comparable in the glomerular sec-
tions of both genotypes at 24 h post-IR when compared to 

F I G U R E  3   p-JAK2 protein expression in kidney tissue. (a) Immunohistochemical staining for phosphorylated JAK2Y1007+Y1008 (P-JAK2) 
protein in tubules. (b) Immunostaining for p-JAK2 in renal corpuscles. Relative ODs were quantified for 10 non-overlapping fields of tubular 
and 10 non-overlapping fields of renal corpuscle sections for each kidney. OD data were quantified (n = 3 mice/group) and analyzed by two-
way ANOVA. a–c Mean values with different letters are significantly different (p < 0.01). (c) Immunolocalization for p-JAK2 (red) in kidney 
tubules. Meprin β (green) and villin (green) were used as PT biomarkers in WT and βKO respectively. There were significant increases in 
p-JAK2 levels in PTs in both genotypes and in renal corpuscle of βKO kidneys only.
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their control kidneys (Figure  5d). Immunofluorescence 
staining showed high CASP3 expression in PTs and DTs of 
WT kidneys at 24 h post-IR (Figure 5e). However, in βKO 
kidneys subjected to IR, CASP3 expression increased only 
in PTs (Figure 5e). Additionally, CASP3 levels increased 
in the lumen of PTs in both genotypes at 24 post-IR. These 
data suggested that meprin deficiency was associated with 
increased levels of pro-apoptotic activity of CASP3 in re-
sponse to IR.

3.5  |  Meprin β deficiency is associated 
with increase anti-apoptotic protein, BCL-
2, at 24 h post-IR

To determine whether meprin β expression impacts 
downstream anti- apoptotic targets of the IL-6 signal-
ing pathway, levels of BCL-2 mRNA and proteins in 
kidney tissue were evaluated. RT-PCR analysis showed 
IR-induced increases in BCL-2 mRNA levels in both WT 
(p ≤ 0.0001) and βKO (p ≤ 0.005) kidneys when compared 
to the counterpart control kidneys (Figure 6a). However, 
western blot data showed that total BCL-2 protein levels 
(detected at 26 kDa) significantly increased (p = 0.0330) 
in the βKO only and not in WT kidneys subjected to IR 

(Figure  6b). Immunohistochemical analysis showed 
that BCL-2 expression levels were significantly higher in 
select kidney tubules of both βKO (p ≤ 0.0001) and WT 
(p  =  0.0025) kidneys subjected to IR when compared 
to their control counterparts (Figure 6c). Furthermore, 
BCL-2 expression in the renal corpuscle was signifi-
cantly higher in WT kidneys subjected to IR (p ≤ 0.0001) 
but not in βKO kidneys (Figure  6d). Counterstaining 
of BCL-2 with proximal tubule markers (meprin β 
in WT and villin in βKO) showed that IR-induced in-
creases in BCL-2 occur in both PTs and DTs (Figure 6e). 
Additionally, BCL-2 secretion into the lumen was ob-
served in both PTs and DTs tubules in βKO, but only on 
PTs of WT kidneys.

3.6  |  Meprin β increased the levels  
of leukocytes infiltration, in 
tubulointerstitium and renal corpuscles at 
24 h post-IR

To determine whether meprin β expression impacts 
leukocytes infiltration which exacerbate inflamma-
tion, the leukocytes staining for F4/80 (macrophages 
marker) and CD45 (myeloid marker) were evaluated 

F I G U R E  4   p-STAT3 proteins in kidney tissue. (a) Representative immunoblots of the phosphorylated STAT3 (Tyr705) spliceforms, 
94-kDa p-STAT3αY705 and 88-kDa p-STAT3βY705 proteins. The relative optic densities (ODs) were calculated by normalizing the ODs 
of p-STAT3α705 and p-STAT3β705 to the OD of their corresponding non-phosphorylated proteins levels STAT3αY705 and STAT3βY705 
which were in turn normalized to β-tubulin in the same blot. Data are mean ± SEM from 3 mice per group. (b) Immunohistochemical 
staining with p-STAT3 protein in tubules. (c) Immunostaining for p-STAT3 in renal corpuscles. Ten non-overlapping fields for tubular 
and 10 non-overlapping fields of renal corpuscle sections were imaged at 60X magnification from each kidney. OD data were quantified 
(n = 3 mice/group) and analyzed by two-way ANOVA. a–d mean values with different letters are significantly different (p < 0.01). (d) 
Immunolocalization of p-STAT3 (red) in kidney tubules. Meprin B (green) in WT and villin (green) in βKO were used as proximal tubule 
markers and DAPI (blue) was used to stain the nuclei. There were significant increases in protein levels of p-STAT3α705 in both genotypes 
and p-STAT3βY705 in βKO with increase total p-STAT3 in tubules and renal corpuscle of both genotypes.
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in 10 non-overlapping tubulointerstitial sections and 
10 renal corpuscles per kidney at 24 h post-IR using 
standard immunohistochemical staining approaches. 
Immunohistochemical staining with F4/80 showed sig-
nificant increases (p ≤ 0.0001) in the number of F4/80 
positive stained cells in tubulointerstitium regions 
(Figure 7a) for both genotypes subjected to IR when com-
pared to their control counterparts. Similarly, levels of 
F4/80 positive cells increased in renal corpuscles of both 
WT (p ≤ 0.0001) and βKO (p ≤ 0.05) kidneys subjected 
to IR when compared to control kidneys (Figure  7b). 
The same pattern was observed for when tubulointer-
stitium and renal corpuscles were evaluated for CD45 
positive stained cells. Data showed that CD45 positive 
cells increased (p ≤ 0.0001) in tubulointerstitium regions 
(Figure 7c) and in renal corpuscles (Figure 7d) of both 
genotypes compared to their control counterparts at 
24 h post-IR. However, the number of positively staining 
cells for both leukocytes markers, F4/80 and CD45, were 
significantly higher (p ≤ 0.0001) in meprin β-expressing 
mice (WT) when compared to meprin β-deficient mice 
(βKO) subjected to IR, suggesting a role for meprin β in 
enhancing leukocyte infiltration in IR-induced kidney 
injury.

4   |   DISCUSSION

IR is the leading cause of AKI and is associated with 
high morbidity and mortality rates (Patidar et al., 2022; 
Yali et al.,  2022). Inflammation plays a central role 
in the progression of AKI (Han et al.,  2020; Vázquez-
Carballo et al.,  2021) and kidney injury induced by IR 
(Meng et al., 2020). In AKI, IL-6 signaling is a key link 
for local and systemic inflammation (Joseph et al., 2020; 
Rahn & Becker-Pauly, 2021; Shang et al., 2020). In the 
IL-6 “classic signaling pathway” a pro-inflammatory 
pathway, the epithelial cells membrane-bound IL-6 re-
ceptor (mbIL-6R) binds to gp130 receptor to activate a 
downstream signaling cascade (Ebihara et al.,  2011; 
Grigoryev et al., 2008; Malchow et al., 2011; Rose-John 
& Heinrich,  1994; Scheller et al.,  2011). On the other 
hand, when IL-6 binds to its soluble receptor (sIL-6R), 
the IL-6/sIL6R complex binds to the membrane-bound 
gp130 dimer to form a complex that activates the IL-6 
“trans-signaling pathway”. The IL-6 trans-signaling is an 
anti-inflammatory pathway (Rose-John,  2017; Scheller 
et al.,  2011) that plays a protective role by promoting 
repair processes in IR-induced AKI (Lemay et al., 2000; 
Yoshino et al., 2003). The IL-6 trans-signaling pathway 

F I G U R E  5   CASP3 mRNA and proteins in kidney tissue. (a) CASP3 mRNA levels. Values for mRNA levels are expressed as fold 
change relative to the wild-type (WT) control group. Each value represents the mean ± SEM of triplicate combinations from 4 mice per 
group. Data were analyzed by two-way ANOVA. a–c means values with different letters are significantly different. (b) Representative 
immunoblots of the CASP3 proteins. The protein bands represent samples from individual kidneys. The relative optic densities (ODs) were 
calculated by normalizing the ODs of CASP3 to the OD for β-tubulin in the same sample. Data are means±SEM from 3 mice per group. (c) 
Immunohistochemical staining for CASP3 in kidney tubules. (d) Immunostaining staining for CASP3 in renal corpuscles. OD data were 
quantified (n = 3 mice/group)and analyzed by two-way ANOVA for 10 non-overlapping fields for tubular and 10 non-overlapping fields of 
renal corpuscle sections from each kidney (imaged at 60× magnification). a–d means values with different letters are significantly different 
(p < 0.01). (e) Immunolocalization of CASP3 proteins (red) in kidney tubules. Meprin β (green) in wild-type (WT) and villin (green) in βKO 
were used as PT markers and DAPI (green) was used to stain the nuclei. There was a significant increase in CASP3 mRNA and proteins in 
both genotypes.
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is dominant in cells that lack mbIL-6R expression (Kaur 
et al.,  2020; Rose-John,  2017; Su et al.,  2017). Meprin 
metalloproteinases have been implicated in the patho-
physiology of kidney injury. Meprins are abundantly 
expressed in the BBM of kidney proximal tubules, and 
redistributed from BBMs of kidney proximal tubules to 
the cytoplasm and basolateral compartments of proxi-
mal tubule cells as an active shed form in IR-induced 
AKI (Bylander et al.,  2008). The redistribution allows 
meprin β to closely interact with proteins present in the 
cytosolic and basolateral cell compartments. Meprins 
are also expressed by leukocytes (monocytes and mac-
rophages) suggesting a role in the immune response. 
More importantly, meprins have been shown to pro-
teolytically process several proteins that modulate in-
flammation in vitro and in vivo. The membrane-bound 
meprin β, proteolytically processes IL-6, leading to in-
activation of IL-6 in vitro (Keiffer & Bond, 2014). It was 
recently reported that the membrane-bound form of me-
prin β also cleaves the membrane-bound IL-6 receptor 
(mbIL-6R) (Armbrust et al., 2021), leading to activation 
of the classic IL-6 signaling on the mbIL-6R expressing 
cell. In contrast, proteolytic release of the soluble form, 
sIL-6R activates the trans-signaling pathway on adjacent 
cells that do not express mbIL-6R (Arnold et al., 2017; 

Su et al., 2017). As proximal tubule epithelial cells and 
macrophages do not express mbIL-6R (Su et al., 2017), 
the IL-6 pathway in these cells must be activated via 
IL-6 trans-signaling.

Data from the present study showed that in IR-induced 
kidney injury, meprin β regulates expression of IL-6. 
While data from RT-PCR showed that IL-6 mRNA expres-
sion levels increased in both genotypes subjected to IR, el-
evation in IL-6 protein levels was correlated with meprin β 
deficiency in βKO mice subjected to IR. It is likely that the 
low levels of IL-6 proteins observed in meprin-expressing 
mice, despite the increases in IL-6 mRNA levels, is due 
to the proteolytic processing of newly synthesized IL-6 
proteins by meprin β. These findings are consistent with 
data from previous studies; reinforcing the hypothesis, 
that meprin β modulates inflammation by processing 
and inactivating IL-6 (Atreya & Neurath, 2005; Banerjee 
& Bond, 2008; Keiffer & Bond, 2014). The inflammatory 
mediators, such as IL-6, contribute to the pathogenesis of 
tubular injury by mediating exfoliation of epithelial cells 
(Glynne et al., 2001; Wangsiripaisan et al., 1999). Data from 
the current study show that IL-6 expression correlates with 
kidney injury in select tubules in both genotypes subjected 
to IR. Proximal tubules, which express meprins, are more 
susceptible to IR-induced kidney injury when compared 

F I G U R E  6   BCL-2 mRNA and proteins in kidney tissue. (a) BCL-2 mRNA. The values for mRNA levels are expressed as fold change 
relative to the wild-type (WT) control group. Each value represents the mean ± SEM of triplicate combinations from 4 mice per group. 
Data were analyzed by two-way ANOVA. a–c mean values with different letters are significantly different. (b) Representative immunoblots 
of the BCL-2 proteins. The protein bands represent samples from individual kidneys. The relative optic densities (ODs) were calculated 
by normalizing the ODs of BCL-2 to the OD for β-tubulin in the same sample. Data are presented as mean ± SEM from 3 mice/group. (c) 
Immunohistochemical staining for BCL-2 in tubules. (d) Immunostaining staining for BCL-2 in renal corpuscle of kidney tissue. Ten non-
overlapping fields for tubular and 10 non-overlapping fields of renal corpuscle sections were imaged at 60× magnification from each kidney 
section (n = 3 mice/group) and analyzed in a blinded manner. a–c mean values with different letters are significantly different (p < 0.01). (e) 
Immunolocalization of BCL-2 proteins. Villin (green) was used as a PT marker and the DAPI (blue) was used to stain the nuclei. There were 
significant increases in BCL-2 mRNA levels for both genotypes at 24 h post-IR. However, BCL-2 proteins increased only in βKO kidneys 
subjected to IR.
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with distal tubular cells which are deficient in meprins 
(Weinberg et al., 1991). Additionally, proximal tubule cells 
interact with other resident cells of the renal cortex in pro-
ducing or responding to co-stimulatory cytokines (Yard 
et al.,  1992). Immunofluorescence counterstaining with 
proximal tubule markers, show that IL-6 expression in-
creased primarily in meprin β-expressing kidneys at 24 h 
post-IR. This suggests that meprin-mediated release of 
IL-6 into filtrate and subsequently into urine, is partly re-
sponsible for the increased urinary levels of IL-6 after IR-
induced injury (Bylander et al., 2008; Kwon et al., 2003).

We further investigated the effect of meprin β expres-
sion on the levels of the two main downstream modulators 
of the IL-6 signaling pathway, JAK2 and STAT3. Previous 
studies reported that IL-6 activates the JAK/STAT signaling 
pathway (Heinrich et al., 1998; Kaur et al., 2020; Mascareno 
et al., 2001; Schindler & Strehlow, 1999) which serves as a 
potential target for early intervention in IR-induced acute 
renal failure (Yang et al., 2008). The IL-6/JAK2/STAT3 axis 
plays roles in various biological functions, including im-
mune regulation, lymphocyte growth and differentiation, 
oxidative stress (Garbers et al.,  2018; Kang et al.,  2019), 
cell proliferation, differentiation, cell migration and apop-
tosis (Ihle, 1996; Schindler & Strehlow, 1999). Activation 
of the JAK2/STAT3 cascade starts with the Janus kinase 
(JAK2) phosphorylation (p-JAK2). Immunohistochemical 
analysis of kidney tissue from the current study showed 
that phosphorylated JAK2Y1007 increased in select 

kidney tubules of mice subjected to IR for both genotypes. 
Subsequently, JAK2 phosphorylates and activates the sig-
nal transducers and activators of transcription 3 (STAT3). 
STAT3 plays an important role in cytokine-mediated in-
duction of acute-phase response (Abualsunun & Piquette-
Miller,  2018). Activation of STAT3 (dependent upon 
tyrosine phosphorylation), showed a rapid increase in in-
jured renal tubule cells (Talbot et al., 2011), after IR injury 
(Arany et al.,  2012; Ogata et al.,  2012). Phosphorylation 
of STAT3 is the main regulator of IL-6 target gene expres-
sion (Ihw et al., 2012; Jain et al., 1999). In previous stud-
ies, two STAT3 spliceforms were identified as short forms 
of STAT3 (STAT3β), which is missing the 55 C-terminal 
amino acid residues of the long form (STAT3α) and has 
seven additional amino acid residues at its C terminus, 
with distinct functions for each isoform (Chakraborty 
et al., 1996; Schaefer et al., 1995). STAT3α normally has 
higher expression levels compared to STAT3β and acts 
as a pro- and anti-inflammatory factor based on the ac-
tivating signal (Hodge et al., 2005; Hutchins et al., 2013). 
On the other hand, STAT3β acts as a suppressor of sys-
temic inflammation (Zhang et al., 2019) as well as a sig-
nificant transcriptional regulator that has direct actions 
in modulating STAT3α activation after IL-6 stimulation 
(Ihw et al.,  2012). Additionally, induction of a splicing 
switch toward the STAT3β isoform leads to apoptosis and 
cell-cycle arrest (Musteanu et al., 2010). However, at the 
phosphorylation level, absence of cytokine stimulation 

F I G U R E  7   Leukocyte infiltration in kidney tissue. (a) Immunohistochemical staining for F4/80 in tubulointerstitium. (b) 
Immunostaining staining for F4/80 in renal corpuscle of kidney tissue. (c) Immunohistochemical staining for CD45 in tubulointerstitium. 
(d) Immunostaining staining for CD45 in renal corpuscle of kidney tissue. Ten non-overlapping fields for tubulointerstitium and 10 non-
overlapping fields of renal corpuscle sections were imaged at 60× magnification from each kidney section (n = 3 mice/group). The positive 
stained cells were counted manually in a double blinded manner and the data subjected to 2-way ANOVA. a–c means values with different 
letters are significantly different (p < 0.0001). The data show that meprin β enhanced leukocyte infiltration in both tubulointerstitium and 
renal corpuscles at 24 h post-IR.
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enhanced phosphorylation of STAT3α isoform (Hevehan 
et al., 2002). Our western blot data showed that phosphor-
ylated STAT3α increased in both genotypes. However, 
phosphorylated STAT3β increased only in βKO at 24 h 
post-IR. Taken together, our results provide compelling 
evidence that meprin β mediated IL-6 response to IR-
induced renal injury is a STAT3β-isoform-specific effect. 
Furthermore, our immunohistochemical results demon-
strated that IR induced a significant increase in p-STAT3 
in tubules and glomerular of both genotypes.

In addition to mediating tubule-interstitial injury, me-
prins expressed in macrophages can mediate glomerular 
inflammation. A variety of cytokines are expressed by res-
ident mesangial cells or by infiltrating leukocytes in renal 
corpuscles during the process of glomerular injury (Kanai 
et al., 2001), and mediate their inflammatory response via 
STAT3 activation (Zhang et al., 2005). For example, IL-6 
produced by macrophages induced mesangial prolifer-
ative glomerulonephritis (Horii et al.,  1993). Activation 
of IL-6/STAT3 signaling pathway in macrophages plays 
a key role in chemokine production from macrophages 
(Zhang et al., 2013) and involved in M1/M2 macrophage 
polarization (Yin et al., 2018). In addition, phosphoryla-
tion of STAT3 is a critical event associated with the sta-
tus of macrophages activation (Matsukawa et al.,  2003; 
Takeda & Akira, 2000, 2001; Welte et al., 2003). As JAK/
STAT is the main intracellular signaling pathway of IL-6 
cytokine, it is likely that both JAK2 and STAT3 are acti-
vated also in the renal corpuscles during IR-induced AKI. 
Data from the current study show that JAK2/STAT3 sig-
naling was upregulated in the glomerular of mice with IR-
induced injury. On the other hand, the expression levels 
of CASP3 and BCL2 were not significantly elevated in the 
glomerular, which suggests that JAK2/STAT3 signaling 
could be activated prior to the increase of these exacerbat-
ing factors. Several studies indicated to the role of JAK/
STAT signaling pathway in the renal corpuscles in other 
renal disease models (via STAT3), such as in experimen-
tal nephrotic syndrome, unilateral ureteral obstruction 
(Li et al., 2007; Pang et al., 2010), and Alport syndrome 
(Yokota et al., 2018). Furthermore, phosphorylated STAT3 
(tyr705) proteins dimerize and translocate into the nucleus 
to regulate transcription of anti-apoptosis gene, BCL-2 
(Horiguchi et al., 2002) and pro-apoptosis gene (CASP3) 
(Zhao et al., 2020). Several previous studies showed that 
expression of BCL-2 and CASP3 increased in IR injury 
(Domitrović et al., 2014; Kim et al., 2010; Lan et al., 2016; 
Sari et al., 2020; Vinuesa et al., 2008). In apoptosis, CASP3 
(35 kDa) is activated by cleavage into cleaved a 17 kDa 
CASP3 fragment. However, the 17 kDa CASP3 was not 
detected by western blot analysis of kidney tissue from 
either genotype, suggesting that there is no significant 
apoptosis at 24 h post-IR. Future studies will be done to 

determine the CASP3 cleavage at later time points. Data 
from immunolblots and immunohistological analysis in 
the current study showed meprin β mediates downstream 
IL-6- apoptotic effects via increased CASP3 and BCL-2 lev-
els in IR-induced kidney injury, which could be supported 
by the previously reported dual effect of CASP3 and in-
ducing cellular responses other than apoptosis (Lamkanfi 
et al., 2007). For example, CASP3 was shown to play im-
portant role in T and B lymphocyte proliferation by act-
ing as checkpoints to control their cell cycle and selective 
cleavage of the supressors or inducers of their cell cycle 
machinery (Launay et al.,  2005). Additionally, CASP3 
was shown to have a strict proteolytic activity on selected 
substrates (Lamkanfi et al., 2007; Launay et al., 2005) and 
controling cell survival (Franchi et al., 2003). Therefore, 
under some conditions, CASP3 seems to be cytoprotective 
rather than cytotoxic, but this dual effect is not fully un-
derstood. The high expression of CASP3 and BCL-2 pro-
teins found in our study, indicate that cell apoptosis in IR 
tissues might be controlled by the balance of these two 
pro-apoptotic and anti-apoptotic factors. Our data also 
showed that BCL-2 increased in the renal corpuscles of 
WT kidneys at 24 h post-IR, suggesting a role for meprin β 
expressed in leukocytes.

In addition to direct modulation of inflammatory 
pathways, meprin β could enhance leukocyte infiltration 
(Herzog et al., 2019) via cleavage of extracellular matrix 
proteins (ECM) proteins such as collagen IV, laminin, 
nidogen-1, and fibronectin (Kaushal et al.,  1994), cyto-
skeletal proteins (actin and villin) (Ongeri et al., 2011), 
and tight junction proteins (E-cadherin and occludin) 
(Bao et al., 2013; Huguenin et al., 2008). This hypothe-
sis is supported by data from the current study with the 
number of cells positive for F4/80 (EGF-like module-
containing mucin-like hormone receptor-like 1, mac-
rophages marker) and CD45 (lymphocyte common 
antigen, myeloid marker) being significantly higher in 
WT kidneys in both tubulointerstitium regions and renal 
corpuscles at 24 h post-IR. These results are aligned with 
data from previous studies (Bedau et al., 2017; Bylander 
et al.,  2008; Crisman et al.,  2004; Yura et al.,  2009). 
Furthermore, inflammatory macrophage accumula-
tion adjacent to tubular cells (tubulointerstitium re-
gions) showed to be associated with tubular apoptosis 
(Lange-Sperandio et al.,  2003; Tesch et al.,  1999). IL-6 
trans-signaling also involves in leukocyte trafficking 
and infiltration (Jones & Rose-John,  2002; Kaplanski 
et al.,  2003), controls leukocyte apoptosis and the ex-
pression of inflammatory chemokines and adhesion 
molecules (Atreya et al., 2000; Chen et al., 2004; Hurst 
et al., 2001; Marin et al., 2001; McLoughlin et al., 2003; 
Modur et al., 1997; Romano et al., 1997).
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In summary, our data suggest that proteolytic process-
ing of IL-6 by meprin β plays an important role in mod-
ulating IL-6 expression and influences the downstream 
signal transduction/pathway mediated via JAK2/STAT3 
in IR-induced kidney injury. The data provide evidence 
for meprin β modulation of IL-6/JAK2/STAT3 signaling 
and their convergence to activate the downstream tar-
get genes of IL-6 signaling in IR-induced kidney injury. 
Taken together, data from the current study provide new 
insights on how meprin β regulates the pathophysiology 
of kidney injury through the IL-6/JAK2/STAT3 signal-
ing pathway.
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