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explanation method for graph neural networks

Andrea Mastropietro,1,* Giuseppe Pasculli,1 Christian Feldmann,2 Raquel Rodrı́guez-Pérez,2,3

and Jürgen Bajorath2,4,*

SUMMARY

Graph neural networks (GNNs) recursively propagate signals along the edges of
an input graph, integrate node feature information with graph structure, and
learn object representations. Like other deep neural network models, GNNs
have notorious black box character. For GNNs, only few approaches are available
to rationalize model decisions. We introduce EdgeSHAPer, a generally applicable
method for explaining GNN-based models. The approach is devised to assess
edge importance for predictions. Therefore, EdgeSHAPer makes use of the Shap-
ley value concept from game theory. For proof-of-concept, EdgeSHAPer is
applied to compound activity prediction, a central task in drug discovery.
EdgeSHAPer’s edge centricity is relevant for molecular graphs where edges
represent chemical bonds. Combined with feature mapping, EdgeSHAPer pro-
duces intuitive explanations for compound activity predictions. Compared to a
popular node-centric and another edge-centric GNN explanation method,
EdgeSHAPer reveals higher resolution in differentiating features determining
predictions and identifies minimal pertinent positive feature sets.

INTRODUCTION

The increasing popularity of deep neural network (DNN) architectures for machine learning (ML) across

many areas of science and business has pros and cons. On the one hand, deep learning (DL) has led to un-

precedented progress in areas such as computer vision, natural language processing, or network analysis

(LeCun et al., 2015) and opened the door to new scientific applications going beyond the capacity of stan-

dard ML; on the other hand, it has partly mystified ML, among both non-experts and ML experts, and—at

least in the authors’ opinion—frequently triggered unrealistic expectations concerning the problem-solv-

ing ability of machines and their putative ability to arrive at decisions beyond human reasoning. Such trends

have been corroborated by the frequent synonymous use of the terms artificial intelligence (AI) and ML,

implying that intrinsically statistical approaches would be equipped with some special form of new ‘‘ma-

chine intelligence’’, which is not the case. In computer science, AI is well defined and ML is classified as

a part of the AI spectrum, together with other approaches such as expert systems or robotics (Rapaport,

2020). DNNs have definitely not added new forms of ‘‘intelligence’’ to this spectrum. However, a character-

istic feature of most MLmethods—by nomeans confined to DNNs—is their often quoted ‘‘black box’’ char-

acter (Castelvecchi, 2016), meaning that decisions of ML models remain machine-internal and are hard, if

not impossible to comprehend for humans. The black box issue has been on the ML agenda for decades,

working against the acceptance of ML results to guide experimental design in many areas. With increas-

ingly complex DNN architectures being employed for many scientific applications, the problem has further

increased in magnitude. In interdisciplinary research settings in the life sciences including drug discovery,

the natural reluctance of experimentalists to rely on ML results that they cannot rationalize in biological or

chemical terms often limits the impact of ML (Rodrı́guez-Pérez and Bajorath, 2021a, 2021b). Such limita-

tions are being recognized. As a consequence, with the advent of DL, there are increasing discussions in

the field about the relationship between ML model complexity and interpretability and the tendency to

use models that are too complicated for prediction tasks at hand (Rudin, 2019). Furthermore, increasing

attention is paid to explainable ML (Belle and Papantonis, 2021; Rodrı́guez-Pérez and Bajorath, 2021a)

and the overarching area of explainable AI (XAI) (Gunning et al., 2019, 2021; Jiménez-Luna et al., 2020;

Xu et al., 2019). XAI refers to different categories of computational approaches for rationalizing ML models

and their decisions in different areas of basic and applied research (Gunning et al., 2019; Jiménez-Luna
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et al., 2020; Xu et al., 2019) as well as in scientific teaching (Clancey and Hoffman, 2021). Explanation

methods are equally relevant for classification and regressionmodels (Letzgus et al., 2021; Rodrı́guez-Pérez

and Bajorath, 2020a). Conceptually different XAI approaches include methods for feature weighting or

attribution, causal methods, counterfactuals and contrastive explanations, transparent probabilistic

models, or graph convolution analysis methods (Gunning et al., 2021; Jiménez-Luna et al., 2020). In addi-

tion, local approximation models have been introduced for instance-based explanations of decisions by

complex black box models (Ribeiro et al., 2016; Lundberg and Lee, 2017). Furthermore, methods for

uncertainty estimation (Feng et al., 2020) and feature visualization at different levels of abstraction from

test objects (Bertolini et al., 2022; Rodrı́guez-Pérez and Bajorath, 2020b) fall into the XAI spectrum. Hence,

there is considerable methodological diversity among XAI approaches, which can be further classified into

model/algorithm-dependent and -independent (-agnostic) methods. Given their general applicability to

algorithms and models of varying complexity, model-agnostic approaches are particularly sought after.

In ML, explanation methods typically attempt to identify representation features that determine predic-

tions. These include, for example, algorithm-dependent approaches such as feature weighting and visual-

ization techniques as well as model-agnostic methods (Belle and Papantonis, 2021; Rodrı́guez-Pérez and

Bajorath, 2021a, 2021b). Graph neural networks (GNNs) represent an increasingly popular class of DNNs

for deep learning in the life sciences and chemistry, with message passing neural networks (MPNNs) being

a prominent example (Scarselli et al., 2008; Gilmer et al., 2017). This is at least in part due to their ability to

learn directly from graph representations, which alleviates the need for the use of pre-defined features and

descriptor engineering. These GNNs are particularly attractive for representation learning in chemistry

(Gilmer et al., 2017), given that molecular graphs are the primary data structure for conveying molecular

structure, implicit structure-based properties, or molecular interactions. In a typical molecular graph, no-

des represent atoms and edges represent bonds connecting atoms. Like other DNNs, GNNs have black

box character, which also confines their acceptance in chemistry (and other fields). In this work, we report

the development and assessment of a new explanation method for GNNs.

RESULTS

Scientific context of EdgeSHAPer

The EdgeSHAPer approach introduced herein was devised to assess edge importance for GNN predic-

tions. The GNNExplainer approach is also edge-centric, but applied to identify the subgraph for an object

determining its prediction (Ying et al., 2019). In addition to GNNExplainer, a method termed GNN Expla-

nation Supervision has been reported that combines node- and edge-based model explanation through

graph regularization techniques, aiming to achieve consistency between node- and edge-based explana-

tions through supervised adaptive learning (Gao et al., 2021). For graph convolutional networks (GCNs),

edges important for model decisions have also been identified using previously introduced agnostic local

explanation models (Kasanishi et al., 2021). In addition, MPNN variants with self-attention mechanisms

have been reported to enable the extraction of learned attention weights (Tang et al., 2020; Xiong et al.,

2020). Furthermore, self-explainable GNNs are investigated that aim to identify K-nearest labeled nodes

for each unlabeled node based on node and graph structural similarity to generate an explainable node

classification (Dai and Wang, 2021). There are only a few more approaches currently available to aid in

the rationalization of GNN learning, as further discussed below, which employ the Shapley value concept

introduced in the next section.

EdgeSHAPer was originally conceptualized for assessing the importance of bond information for graph-

based compound activity prediction, representing a novel approach, and was specifically evaluated in

this context. Compound activity prediction is a central task for ML in chemoinformatics and medicinal

chemistry. However, our newmethodology is generalizable and applicable to many tasks in GNNs learning

where edge distributions play a role, including any node degree-sensitive MPNNs.

Shapley values in explainable machine learning

EdgeSHAPer makes use of Shapley values that were first introduced in cooperative game theory (Shapley,

1953) to quantify the contributions of individual players to the performance of a team. The Shapley value

concept has recently gained popularity in XAI as a model-agnostic framework for rationalizing ML deci-

sions. In this context, Shapley values are calculated to quantitatively assess feature importance for individ-

ual predictions. Since the calculation of Shapley values depends on the order of players (features) and is

thus combinatorial in nature, it becomes computationally demanding in high-dimensional feature spaces
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(which are typically used for compound activity predictions). Therefore, the Shapley additive explanations

(SHAP) approach has been introduced, which approximates a complex ML model in the feature space vi-

cinity of a test instance with a simpler local model based upon a kernel function (Lundberg and Lee, 2017).

SHAP can be perceived as an extension of the locally interpretable model-agnostic explanations (LIME)

approach (Ribeiro et al., 2016). SHAP-based methodologies have also been introduced and evaluated

for compound activity, multi-target activity, and potency predictions (Rodrı́guez-Pérez and Bajorath,

2020a, 2020b). While SHAP-based explanations have been proposed for rationalizing different types of ac-

tivity predictions in chemoinformatics, they have exclusively been applied to ML and DNN models trained

using pre-computed descriptors (Rodrı́guez-Pérez and Bajorath, 2021a).

The Shapley value concept has recently also been applied to graphs in other fields. For example, GraphSVX

(Duval and Malliaros, 2021) was introduced as a decomposition method for GNNs that relies on a linear

approximation of Shapley values to determine node and node feature contributions. The method offers

post-hoc local explanations by using a surrogatemodel on a perturbed dataset, similar to LIME. In addition,

SubgraphX (Yuan et al., 2021) is a subgraph-centric method that approximates Shapley values to determine

the most relevant fully connected subgraph for predictions. Finally, GRAPHSHAP (Perotti et al., 2022) was

specifically developed as a motif-focused explanatory approach for generic graph classification with

node awareness (Gutiérrez-Gómez and Delvenne, 2019). This methodology is based on motif masking

and uses an approximation kernel for Shapley values to assess the most influential motifs in the graph.

While these SHAP-based methodologies produce explanations focused on nodes, subgraphs, or motifs,

none of them quantifies edge importance, although graph information is primarily distributed through

edges. The missing SHAP-dependent quantification of edge importance for GNN predictions has partly

motivated the development of our new approach in the context of molecular graphs. The principal meth-

odological differences between EdgeSHAPer, as introduced herein, and the other SHAP-based explana-

tory approaches for graph learning preclude a meaningful direct comparison. However, in light of edge

centricity, results of EdgeSHAPer applications can be compared to those of GNNExplainer, although

the approaches are also conceptually distinct.

EdgeSHAPer algorithm

The Shapley value concept has been adapted for EdgeSHAPer using the following analogies: we consider a

setting in which ‘‘players’’ corresponding to edges in a graph work collaboratively toward a team (graph)

reward, which represents the probability of a prediction for a test instance obtained with an ML model.

Each player makes an individual contribution to the reward (payout), which is represented by its Shapley

value and computed as the average marginal contribution over all possible feature coalitions (orderings).

Since enumerating all possible coalitions becomes computationally hard for larger feature sets, Shapley

values are approximated for ML applications.

In our approach, each edge of a graph has its own payout contribution to the predicted output probability

(value v). The Shapley value for edge j is computed as:

4jðvÞ =
1

jEj
X

S 4 E fjg

vðS W jÞ � vðSÞ� jEj � 1
jSj

�
where E is the set of all edges and jEj its cardinality, S indicates all the possible subsets of edges excluding j

and jSj its cardinality, vðSÞ is the value achieved by subset S, and vðsWjÞ is the value obtained when edge j

joins the subset S (considering the edge’s marginal contribution).

Monte Carlo sampling of edges

In ML, the practical inability to compute Shapley values directly in many cases requires the use of approx-

imation methods. We developed a Monte Carlo sampling strategy for graph edges, which is central to the

EdgeSHAPer algorithm. Instead of randomly sampling a data point from a dataset (�Strumbelj and Kono-

nenko, 2014), which is not applicable in this context, we generate a random graph Z that contains the

same number of nodes as the explained graph G according to a binomial probability distribution. If an

edge e exists in G, it exists in Z with a probability equal to P. The density of graph G, which is analogous

to the probability for an edge to exist in this graph, proved to be a meaningful choice for P, as further
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described below. At any Monte Carlo step, a new graph Z is generated. The complete EdgeSHAPer algo-

rithm with Monte Carlo sampling is provided in Algorithm 1.

Here,G is the graph to explain, E the list of edges of this graph, andN are the nodes; j is the edge for which

the current Shapley value is computed, P the probability of an edge to exist in graph Z (density of G in our

implementation), M the number of Monte Carlo steps (corresponding to the number of randomly gener-

ated graphs Z ), and bf is the function learned by the GNN. Hence, EdgeSHAPer creates a random permu-

tation p and sorts the edges in E and in Ez according to this permutation. Then, two edge lists are created

by appending edges from the two permuted lists, considering the permuted position of j, jp; as a split

point: in E+ j edge j originates from the original graph G while in E� j, its counterpart originates from Z .

Thereby, the contribution of an edge to the output is calculated. The algorithm is repeated for each

edge in the graph. In practice, new edge lists are created by sorting and appending edge indices and bi-

nary masks defining the presence or absence of edges.

Notably, the random graph used for Monte Carlo sampling is not an Erd}os–Rényi (E-R) random graph (Erd}os

and Rényi, 1960). Here, an edge with probability P exists in the generated random graph only if it also exists in

the original molecular graph. This enables the quantification of specific edge contributions in coalitions with

other edges and thus the determination of the importance of a particular bond in a given compound. The un-

derlying idea is the use of random graphs starting from a test molecule to define information baselines relative

to which the contribution of each edge/bond can be quantified. Moreover, the use of this specifically gener-

ated random graph enables the generalization of EdgeSHAPer for applications in different domains.

To study the evolution of the approximation over sampling steps and determine the number of steps

required for a reliable approximation value, we analyzed the variance and convergence for

EdgeSHAPer. The random variable was given by the sum of Shapley values 4jðGÞ, for any edge j of the

graph, and the expected value by output probability for the prediction. Figure 1A shows the evolution

of variance and Figure 1B of the quadratic error for a test compound. The quadratic error represents the

deviation between the predicted probability and the sum of Shapley values.

Increasing numbers of Monte Carlo sampling steps yielded an accurate and stable approximation of the

prediction probability as the sumof the Shapley values. During sampling, the variance decreased asymptot-

ically against 0 (Figure 1A) and the quadratic error was already very close to 0 after only 100 steps (Figure 1A).

Therefore, given the need to evaluate EdgeSHAPer on a large set of samples, M = 100 was considered a

Algorithm 1. Description of the EdgeSHAPer methodology
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proper choice, providing a favorable compromise between approximation accuracy and computational

time requirements. In addition, a termination criterion was implemented for the sampling procedure

defining a permitted deviation between the sum of the Shapley values and the predicted probability.

Consistent with GNN learning, EdgeSHAPer considers both directions for edges; each direction has its

own contribution. Given the additivity property of Shapley values, the total contribution of an edge can

Figure 1. EdgeSHAPer variance and error convergence

Shown are variance (top graph) and error convergence (bottom) for an exemplary test compound over increasing

numbers of Monte Carlo sampling steps.
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be calculated by summing the Shapley values for the two directions. The final output of the algorithm is a

ranking of edges on the basis of approximated Shapley values.

Specific evaluation metrics

To quantitatively evaluate the performance of GNN explanation methods, two metrics were introduced

including FID+ (Fidelity) and FID- (Infidelity) (Yuan et al., 2022). These metrics evaluate the quality of unim-

portant and important features, respectively, and are defined as:

FID + =
1

N

XN
i = 0

f ðGiÞ -- f ðUiÞ

and

FID � =
1

N

XN
i = 0

f ðGiÞ -- f ðIiÞ

whereGi is the original graph, Ui is the graph obtained fromGi exclusively containing unimportant features

(nodes, edges, or node/edge features), Ii is the graph obtained byGi exclusively containing important fea-

tures, and N is the number of samples (graphs) for which the metric is computed. Herein, the probability

version of FID+ and FID- was used, as introduced previously (Yuan et al., 2021). AnMLmodel with meaning-

ful feature representation should tend to produce high FID+ and low FID- scores.

In our work, we used an adapted version of these metrics relying on minimal sets of relevant features. The

pertinent positive set (PPOS ) (Herman, 2016) represents the minimal set of features required for a given class

label prediction of an instance. Moreover, we defined the minimal top-k set (TK ) as the minimal set of fea-

tures that need to be removed to invert the class label (here from active to inactive). Those sets are

composed of the features with the highest Shapley value estimates from EdgeSHAPer. PPOS is created in

an inductive manner by adding edges with the highest Shapley values one by one to the graph until a

test compound is correctly predicted to be active. By contrast, TK is obtained following a deductive

approach; starting from a compound correctly predicted to be active, the most important edges are

removed until the molecule is classified as inactive. The consideration of such minimal feature sets deter-

mining class label predictions is related to the concept of contrastive explanations (Lipton, 1990; Molnar,

2020). This feature selection scheme ensured that most influential features for predictions were identified

on the basis of (molecular) graphs with varying numbers of edges (bonds). FID+ and FID- are computed on

the basis of TK and PPOS , respectively.

Compound classification

We applied GCN and random forest (RF) (Breiman, 2001) models to a compound classification task aiming

to systematically distinguish between dopamine D2 receptor ligands and other randomly selected active

compounds.

For the RF model, a balanced accuracy (BA) of 0.99 was obtained for the test set. Furthermore, 99% of the

active compounds were successfully identified, while maintaining a high precision of 0.99. The GCNmodel

also achieved a high BA of 0.97 for the test set. In addition, to evaluate the stability of the predictive per-

formance andmodel explanations, the training set was divided into three disjoint subsets and the GCNwas

re-trained on each of these size-reduced partitions. Despite the smaller number of training samples, only

slightly lower mean classification BA of 0.95 was obtained. Hence, these results confirmed the stability of

the GCN predictions. The high level of classification accuracy achieved by RF and alternative GCNmodels

provided a sound basis for explaining compound activity predictions and comparing different methods.

Predictions of these models were first used to evaluate the consistency of EdgeSHAPer explanations, fol-

lowed by orthogonal featuremapping analysis in comparison to TreeExplainer for RF as well as quantitative

and qualitative comparisons to GNNExplainer.

Explaining GCN predictions

EdgeSHAPer explanations and their consistency

Initially, we evaluated EdgeSHAPer explanations and their consistency for training sets of different size and

composition. EdgeSHAPer was applied to multiple GCN models derived on the basis of a complete

training set or random training data subsets. These explanation results were quantitatively and qualitatively
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compared. Quantitative comparisons were carried out on the basis of the FID+ and FID- metric variants to

assess minimal features sets determining correct predictions of active compounds. Qualitative comparison

with feature visualizations was also obtained by mapping minimal feature sets on correctly predicted test

compounds.

Edges prioritized by EdgeSHAPer were mapped on test compounds (Figure 2). In this and the

following figures, coloring identifies most important edges representing covalent bonds. Red coloring

indicates positive (supporting the prediction) and blue negative contributions (opposing the prediction).

The intensity of the color scales with increasing edge importance. For test compounds belonging to

different chemical series, depicted in Figures 2A and 2B, respectively, feature mapping revealed that

edges prioritized by EdgeSHAPer consistently formed the same coherent substructures in test com-

pounds predicted with GCN models derived on full and partial training sets. Minor differences between

features prioritized using non-overlapping subsets with distinct compounds are expected. Importantly,

for each chemical series, the same coherent substructures responsible for correct predictions were iden-

tified in different test compounds using distinct subsets of only one-third of the size of the original

training set, indicating the stability of the EdgeSHAPer results. For GCN models generated with different

training subsets of reduced size, the identified substructures were slightly smaller than for the model

trained on complete training set, due to the lower number of training instances and features in subsets.

It is emphasized that the formation of coherent substructures of limited size by prioritized features in

both compound series revealed that these features delineated chemically meaningful substructures

Figure 2. EdgeSHAPer explanations for differently trained models

In (A, top)) and (B, bottom), explanations are provided for exemplary test compounds. The color bar in (A) applies to

Figures 2–4.
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determining the predictions. Furthermore, as also shown in Figure 2, positive contributions clearly domi-

nated correct compound activity predictions, with only very little balancing influence of negative

contributions.

Visual analysis was complemented and confirmed by the quantitative assessment in Table 1, reporting dif-

ferences on the basis of FID+ and FID- values and the cardinalities of the minimally informative sets. Hence,

EdgeSHAPer explanations were non-ambiguous, consistent, and stable.

EdgeSHAPer vs. TreeExplainer

An orthogonal qualitative comparison of features determining GCN and RF predictions was also carried

out. Therefore, the EdgeSHAPer and TreeExplainer methods were applied to rationalize GCN and RF pre-

dictions, respectively. In this case, substructures delineated by principally distinct molecular features, that

is, pre-defined structural features for RF and the representation learned by GCN, were compared. For this

analysis, RF models were implemented in combination with TreeExplainer since it enables exact (rather

than locally approximated) calculation of SHAP values for decision tree methods and is node (atom)-

centric, in contrast to EdgeSHAPer. Figure 3 shows representative results.

EdgeSHAPer’s bond-centric and TreeExplainer’s atom-centric explanations delineated overlapping yet

distinct substructures responsible for correct predictions, despite the use of different ML algorithms

with pre-defined vs. learned representation features, respectively. While these results were not necessarily

expected, they supported the relevance and robustness of the SHAP-based explanatory framework.

Notably, substructures identified by EdgeSHAPer explanations were smaller than those identified by

Table 1. Mean test set FID+ and FID- scores for EdgeSHAPer and the complete training set as well as non-

overlapping subsets of the training set and the mean number of edges comprising the minimal sets

FID+ FID- # edges in PPOS # edges in Tk

Training set 0.934 0.137 12.85 3.75

Training subset 1 0.886 0.108 5.50 4.80

Training subset 2 0.851 0.245 7.20 3.75

Training subset 3 0.926 0.120 7.45 4.10

Figure 3. Mapping of features determining RF and GCN predictions

In (A, top) and (B, bottom), mappings are shown for exemplary test compounds.
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TreeExplainer, which either resulted from the different features used or corresponded to higher resolution

of EdgeSHAPer explanations, focusing on substructures decisive for predictions.

EdgeSHAPer vs. GNNExplainer

EdgeSHAPer was then compared to GNNExplainer, which is also exclusively considering edges for model

explanation and does not employ other local approximationmethods. The same quantitative/qualitative anal-

ysis schemeas abovewasapplied. Table2 reports thequantitative comparison. EdgeSHAPer identified smaller

pertinent positive sets of chemical bonds required for accurate predictions, similar to the observations dis-

cussed above. Furthermore, EdgeSHAPer yielded higher FID+ scores than GNNExplainer and identified

smaller minimal top-k sets. GNNExplainer produced low FID- scores since it identifiedminimal sets with larger

numbers of edges. Indeed, pertinent positive sets with increasing numbers of features rendered predicted

probabilities closer to the original probability of a prediction, which led to decreasing FID- values. However,

EdgeSHAPer scores were of comparable magnitude showing that its smaller pertinent positive sets conveyed

important information. Table 3 shows the comparison of the explanations for the training subsets, again con-

firming the stability of the results and higher resolution of EdgeSHAPer’s explanations.

Feature mapping gave consistent results (Figure 4). As observed in the comparisons discussed above,

EdgeSHAPer identified small coherent substructures in test compounds driving correct predictions, whereas

features prioritized by GNNExplainer frequently covered entire compounds, making it difficult to rationalize

anddifferentiate betweenpredictions. As discussed above, the formation of coherent substructures by features

prioritizedbyEdgeSHAPer thatweremuch smaller than theonesdelineatedbyGNNExplainer clearly indicated

that chemically meaningful structural motifs were driving the predictions, as identified by EdgeSHAPer.

Taken together, the results indicated that EdgeSHAPer distinguished between bonds of different rele-

vance for correct predictions at a higher resolution than GNNExplainer. Moreover, TK edges found by

EdgeSHAPer were critically important for the predictions. Removal of these bonds eliminated substructural

coherency while determining PPOS edges using EdgeSHAPer revealed how salient substructures evolved,

representing a high level of consistency between feature importance assessment and mapping.

We also determined the correlation between edge/bond importance derived using the different explanation

methods. Since the absolute values from the differentmethods could not be directly compared, we computed

different rank correlation coefficients for importance-based edge rankings including Spearman’s, Pearson’s,

and Kendall t coefficients (Forthofer and Lehnen, 1981), as reported in Table 4. For both the complete ranking

and the top 25% of ranked edges, correlation coefficients were generally close to 0, indicating the presence of

largely distinct rankings produced with the different methods. These findings also reinforced the need for

featuremapping and identification of coherent substructures determining thepredictions, which are indicative

of meaningful bond ensembles prioritize for model explanation, as shown for EdgeSHAPer above.

DISCUSSION

With EdgeSHAPer, we have introduced a novel methodology devised to assess the importance of edge

information for GNN-based predictions. Even though GNNs are increasingly popular in many fields,

including chemoinformatics and medicinal chemistry, they are among the most challenging ML models

Table 2. Mean test set FID+ and FID- scores for EdgeSHAPer and GNNExplainer for the complete training set and

mean number of edges comprising the minimal sets

FID+ FID- # edges in PPOS # edges in Tk

EdgeSHAPer 0.934 0.137 12.85 3.75

GNNExplainer 0.813 0.154 31.10 15.55

Table 3. Mean test set FID+ and FID- scores for EdgeSHAPer and GNNExplainer for the training subsets and mean

number of edges comprising the minimal sets of the subsets

FID+ FID- # edges in PPOS # edges in Tk

EdgeSHAPer 0.888 0.158 6.72 4.22

GNNExplainer 0.782 0.176 22.40 21.83
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to explain (Jimenez-Luna et al., 2022). EdgeSHAPer combines the Shapley value concept from cooperative

game theory and a novel Monte Carlo sampling strategy. Shapley values determining predictions are esti-

mated for each edge of a graph. By analyzing Shapley value contributions, informative graph pathways can

be identified. Given its edge-centric nature, EdgeSHAPer is particularly attractive for chemical applications

where edges correspond to bonds connecting atoms in a molecular graph. However, EdgeSHAPer is by no

means confined to rationalizing compound predictions, but generally applicable to any GNN.

In our proof-of-concept investigation, ML-based compound activity predictions were carried out and ex-

plained. Feature attributions from EdgeSHAPer were compared to a popular SHAP method for explaining

decision tree models (TreeExplainer) and the only other edge-centric explanation method that is currently

Figure 4. Mapping of minimal feature sets identified by EdgeSHAPer or GNNExplainer

In (A, top) and (B, bottom), mappings are shown for exemplary test compounds.

Table 4. Rank correlation coefficients for EdgeSHAPer compared to TreeExplainer and GNNExplainer for the

complete ranking and the most important edges (top 25%), reported as the mean over the test set

Spearman Pearson Kendall t

Complete ranking

TreeExplainer 0.097 0.097 0.070

GNNExplainer �0.010 �0.010 0.022

Top 25%

TreeExplainer 0.013 0.055 0.022

GNNExplainer 0.012 0.012 0.016
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available, representing the state-of-the-art in the field (GNNExplainer). For correct predictions,

EdgeSHAPer yielded high fidelity scores and smallest pertinent positive feature sets. Although

GNNExplainer is designed to identify the subgraph determining an individual prediction, EdgeSHAPer

produced smaller edge sets driving correct model decisions, leading to simpler interpretations.

Feature mapping on compound structure representations provides intuitive access to predictions for

chemists. Substructures delineated by edges determining correct predictions can be interpreted in molec-

ular terms. Such visualizations revealed the formation of coherent substructural motifs by bonds prioritized

by EdgeSHAPer. The reference methods identified larger feature sets responsible for activity predictions,

which often encompassed nearly complete compound structures. These findings indicated higher resolu-

tion of EdgeSHAPer explanations.

Our analysis clearly showed that GNN-based molecular predictions can be rationalized on the basis of

edge/bond information, rather than node/atom information, which has mostly been attempted thus far.

This might be especially interesting for MPNNs centered on bonds instead of atoms, which avoid unnec-

essary loops during the message passing phase, as proposed for molecular property prediction (Yang

et al., 2019). Taken together, our findings indicate that EdgeSHAPer further extends the spectrum of cur-

rent XAI approaches for chemical applications and beyond and should merit further consideration. To

these ends, EdgeSHAPer code is made freely available to the scientific community to support methodolog-

ical extensions and refinements as well as further applications in different areas.

Limitations of the study

EdgeSHAPer depends on a Monte-Carlo sampling procedure that is heuristic in nature and requires appli-

cation-specific monitoring.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for code and resources should be directed to and will be fulfilled by the

lead contact, Jürgen Bajorath (bajorath@bit.uni-bonn.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Compound data andmodel results have been deposited at GitHub and are publicly available as of the date

of publication. Accession numbers are listed in the Key resources table.

The source code and compound data used in this study can be accessed at https://github.com/

AndMastro/EdgeSHAPer. The compound data, training, validation and test sets are also available as a

Mendeley Data.

All original code has been deposited at GitHub and is publicly available as of the date of publication.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Graph convolutional network model

Any GNN model can be explained using EdgeSHAPer. For our proof-of-concept study, we used a graph

convolutional network (GCN) (Kipf and Welling, 2016), due to its increasing popularity in chemistry. The

model was constituted by four convolutional layers with 256 hidden units and rectified linear unit (ReLU)

as activation function. Global mean pooling and dropout with probability of 0.5 were considered. The

GCN was trained for 100 epochs with a batch size of 32, Adam optimizer (Kingma and Ba, 2014) and a

learning rate of 0.001. The model was implemented in PyTorch (Paszke et al., 2019).

Application to compound activity prediction

To provide a meaningful basis for the assessment and comparison of explanation methods, we selected a

test case that was expected to yield high ML classification accuracy based on prior experience. Therefore,

compounds with activity against the dopamine D2 receptor were selected. Compounds and correspond-

ing exact (‘‘ = ’’) standard potency measurements (Ki, Kd or IC50) of at least 10 mM were obtained from

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Compound activity data ChEMBL 30 https://doi.org/10.6019/CHEMBL.database.30

Confirmed aggregators Aggregator advisor http://advisor.docking.org/faq/#Data

Datasets This paper https://github.com/AndMastro/EdgeSHAPer/tree/main/

experiments/data

https://doi.org/10.17632/bs6myg75tr.1

Software and algorithms

RDKit Zenodo https://doi.org/10.5281/zenodo.6605135

Lilly-Medchem-Rules GitHub https://github.com/IanAWatson/Lilly-Medchem-Rules

Scikit-learn GitHub https://github.com/scikit-learn/scikit-learn

PyTorch GitHub https://github.com/pytorch/pytorch

EdgeSHAPer This paper https://github.com/AndMastro/EdgeSHAPer
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ChEMBL (version 29) (Bento et al., 2014) and recorded as the negative decadic logarithm. Only direct in-

teractions (target relationship type: ‘‘D’’) against human wild-type proteins at the highest target confidence

level (target confidence score: 9) were retained, while discarding measurements flagged as ‘‘potential

author error’’’ or ‘‘potential transcription error’’. Using publicly available filters (Landrum, 2013; Irwin

et al., 2015; Bruns and Watson, 2012) molecules exceeding a mass of 1000 Da were removed along with

potential assay interference compounds. Based on this protocol, 4174 active compounds were obtained

and complemented with an equal number of randomly selected active compounds (omitting ligands

with activity against functionally related G protein-coupled receptors). The compound dataset was divided

into training (80%), validation (10%) and test (10%) sets.

Random forest classifier

The random forest (RF) algorithm consists of an ensemble of decision trees built with bootstrapping and

feature bagging. The scikit-learn RF implementation was utilized (Pedregosa et al., 2011). For RF classifica-

tion, structural features of compounds were generated and hashed using the RDKit implementation of the

Morgan fingerprint with a bond radius of 2 (Landrum, 2013; Rogers and Hahn, 2010). The presence or

absence of generated features was recorded in a binary feature vector in which features were mapped

to unique positions.

RF classifiers with different hyperparameter settings were derived for 50% of the training set and evaluated

on the remaining training set compounds (representing a validation set). Hyperparameters’ grid search

included number of decision trees (25, 50, 100, 200, 400), minimum number of samples per node split (2,

3, 5, 10), and minimum number of samples per leaf node (1, 2, 5, 10) and hyperparameter value combina-

tions with the highest balanced accuracy (BA) over 10 independent training-validation partitions were used

to derive the final classifier on the complete training set. BA is defined below, where TP, TN, FP, FN are true

positive, true negative, false positive, and false negative predictions, respectively.

BA =
1

2
$

�
TP

TP + FN
+

TN

TN+ FP

�
Exact Shapley values for predicted class probabilities of RF classifiers (fraction of positive predictions in the

tree ensemble) were calculated using the TreeExplainer algorithm with the interventional feature perturba-

tion approach, for which the training data served as a background sample (Rodrı́guez-Pérez and Bajorath,

2020b; Lundberg et al., 2020).

Computational complexity of EdgeSHAPer

The computational complexity of EdgeSHAPer with Monte Carlo sampling for a single graph is OðjEj2Þ$
OðMÞ, as derived below.

In Algorithm 1, the loop starting at line 2 contains operations with costOðjNjÞ (line 3) andOðjEjÞ (lines 4, 6, 8,
9, 10 and 11). The cost of the remaining operations is constant. We note that the complexity of the GNN

forward pass at line 13 is omitted from the analysis, given that it is highly dependent on the architecture

used. Thus, operations in the loop have an asymptotic cost ofOðjNjÞ+OðjEjÞ. Given that the loop is iterated

M times, the overall cost for a single edge becomes OðMÞ$ðOðjNjÞ +OðjEjÞÞ. Furthermore, given that the

number of nodes and edges in a molecular graph typically is of comparable magnitude, we can approxi-

mate jNj � jEj, obtaining an asymptotic cost of OðMÞ$2ðOðjEjÞÞ = OðMÞ$OðjEjÞ. Since the operation

must be repeated for all the edges in a molecular graph, the overall asymptotic cost is OðjEj2Þ$OðMÞ.
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