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As the UK, together with numerous countries in the world, moves towards a new phase of the 
COVID-19 pandemic, there is a need to be able to predict trends in sufficient time to limit the 
pressure faced by the National Health Service (NHS) and maintain low hospitalisation levels. In this 
study, we explore the use of an epidemiological compartmental model to devise a periodic adaptive 
suppression/intervention policy to alleviate the pressure on the NHS. The proposed model facilitates 
the understanding of the progression of the specific stages of COVID-19 in communities in the UK 
including: the susceptible population, the infected population, the hospitalised population, the 
recovered population, the deceased population, and the vaccinated population. We identify the 
parameters of the model by relying on past data within the period from 1 October 2020 to 1 June 
2021. We use the total number of hospitalised patients and the fraction of those infected who are 
being admitted to hospital to develop adaptive policies: these modulate the recommended level 
of social restriction measures and realisable vaccination target adjustments. The analysis over the 
period 1 October 2020 to 1 June 2021 demonstrates our periodic adaptive policies have the potential 
to reduce the hospitalisation by 58% on average per month. In a further prospective analysis over the 
period August 2021 to May 2022, we analyse several future scenarios, characterised by the relaxation 
of restrictions, the vaccination ineffectiveness and the gradual decay of the vaccination-induced 
immunity within the population. In addition, we simulate the surge of plausible variants characterised 
by an higher transmission rate. In such scenarios, we show that our periodic intervention is effective 
and able to maintain the hospitalisation rate to a manageable level.

The Coronavirus Disease-2019 (COVID-19, caused by the virus novel Severe Acute Respiratory Syndrome 
Coronavirus 2: nSARS-CoV-21), originally identified in Wuhan, China, in late 20192, has disrupted the hospital 
networks in the UK and around the world. The initial lack of appropriate non-pharmaceutical interventions, 
prophylactic therapy and acute treatments led to high numbers of admissions to hospitals. Since March 2020 to 
date, nearly a million people have been hospitalised with COVID-19 in the UK, with a peak bed occupancy of 
39,254 (i.e., more than 33% of the bed capacity) recorded on 18 January 20213–5. Whilst the healthcare expendi-
ture has been increased by 12.8% of GDP in the UK in 2020, this was also responsible for a significant delay in 
elective and non-elective care (a drop of nearly 20% in non-COVID-19 admissions6), postponed appointments 
of outpatients and limited the ability for Primary Care to perform face to face consultations. During the first 
wave of the pandemic, the COVID-19 outbreak also caused an unprecedented excess of mortality in care homes7. 
These elements give a perspicuous explanation of the wider pressure the NHS has been subjected to beyond the 
hospitalised patients. Wide-spread non-pharmacological interventions, social restrictions and lock-downs were 
imposed to try to slow down and halt the spread of the Coronavirus8.
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Additionally, there has been an unprecedented cancellation and postponement of non-COVID-19 treatments 
including in some cases cancer treatments to prioritise the support of COVID-19 patients.

The bed capacity in the NHS hospitals was consequently rearranged to better cope with the extraordinary 
pandemic challenges and new so-called Nightingale hospitals were built4. The repercussions of these interven-
tions, in England and Wales, resulted in 607,922 recorded deaths in 2020, 14% higher than the national average 
over previous years, and the most excess deaths since World War Two9. This grave reality caused by COVID-19 
called for the need to manage the NHS hospital admissions more efficiently and possibly automatically10, whilst 
also being better prepared for further waves of the current or future pandemics11,12.

From December 2020, thanks to the unprecedented efforts of medical research, mass vaccination campaigns 
started worldwide and in the UK3,13, raising the hope that the COVID-19 disease could finally be beaten via 
immunisation of the population. Multiple types of vaccines have been approved by national and international 
health organisations in order to reduce hospitalisations and death due to the disease. However, they have not 
halted the transmission of the virus and hospitalisations14. Several studies have also shown how the freedom of 
movement of people can potentially lead to a surge of infections15,16 .

In the meantime, there has been a rapid spread of new COVID-19 variants, such as the Alpha Variant (B1.1.7, 
first identified in Kent) in December 2020, the Gamma Variant (P.1, first identified in Brazil) and the Delta Vari-
ant (B1.316.2, first identified in India) during the Spring of 202117. Furthermore, the vaccination campaign was 
also characterised by vaccine shortages and difficulties in conceiving an efficient vaccination plan18. These issues 
revealed that a blended approach based on both pharmaceutical interventions (i.e. the vaccination campaigns), 
and non-pharmaceutical interventions (i.e social restrictions and lockdowns policies) was required to slow down 
the spread of the virus so as to bring pressure on the NHS back within the limits of sustainability19.

Since the COVID-19 disease started spreading, the mathematical modelling has been utilised as a front-line 
tool to decide the level of non-pharmaceutical interventions in the UK20. Mathematical modelling entails devel-
oping a set of equations whose solutions mimic the evolution of a real process. This approach can be effectively 
used to describe and understand the spread of a viral disease such as Coronavirus. Different solutions have 
been proposed in the literature to identify suitable models to reproduce the real spread of the disease21–23. The 
mathematical model can be refined and tuned by utilising available time-series data published by Public Health 
England - such as the number of hospitalised patients from the population, the number of new infections, and 
the number of deceased.

The COVID-19 modelling approach proposed in this paper partitions the population into compartments, such 
as the susceptible population (S(t)), the infected population (I(t)), the hospitalised population (H(t)), the recov-
ered population (R(t)), the deceased population (D(t)), and the vaccinated population (V(t)). Conventionally, the 
mathematical models are denoted via the acronyms composed of the initials of the compartments adopted. For 
example, the well-known SIR model24 includes only the susceptible, infected and recovered population, whilst 
the SIHRD model25 includes also the hospitalised, the recovered and the deceased ones. The model, by means 
of simulation, determines the evolution over time of the number of people belonging to each compartment, and 
it receives as inputs the lockdown (non-pharmaceutical) interventions policy, and the vaccination rate policy. 
The model is also characterised by key-parameters (which are usually unknown and time-varying), namely the 
transmission rate, the hospitalisation rate, the recovery rate and the mortality rate of the COVID-19 disease26.

In this class of mathematical models, three key-parameters are typically utilised to describe the spread of 
a viral disease such as COVID-19: the Basic Reproduction Number ( R0 ), the Reproduction Number ( R(t) ), 
and the Current Reproduction Number ( Rc(t) ). The Basic Reproduction Number is a fixed parameter and it 
is the expected number of infected people generated by a single infected individual in a completely susceptible 
population27. The Basic Reproduction Number is estimated to be around 3 for the first strain of Coronavirus 
originated in Wuhan, China, whilst it is estimated to be around 7 for the Delta Variant28. The Reproduction 
Number is instead a time-varying parameter, and it is defined as the average number of new infections caused by 
a single infected individual (in a population only partially susceptible)29. The Current Reproduction number is 
obtained multiplying the Reproduction Number by the ratio between the current number of susceptible individu-
als and the total population13. Whenever the Current Reproduction Number is greater than one, the number of 
infected individual increases over time. It is important to note that the Reproduction Number and the Current 
Reproduction Number are predominantly influenced by the non-pharmacological interventions employed29.

In the available published research, the use of mathematical models for COVID-19 has been typically focused 
on predicting the pandemic evolution under different scenarios. For example, a recent study13 shows the impact 
of different vaccination rates along with the surge of new Coronavirus variants in Italy. This study revealed the 
impact of pre-defined intervention policies on the hospitalisation occupancy. Mathematical models have also 
been adopted to predict the bed occupancy in the South West of England30.

Research on the design of automatic model-driven periodic intervention policies to mitigate the spread of 
COVID-19 disease is still in its infancy. The key-idea of such a line of research is to guide automatically the 
intervention policies (such as target vaccination rates and the extent of social restrictions) over time to avoid 
unbearable levels of pressure on the NHS. Only a few studies have already been published. For instance, the use 
of a SIHRD mathematical model for COVID-19 spread has shown that it is possible to maintain the infected 
population number under a prescribed level31, also considering the United States topology25. A recent study has 
demonstrated that a periodic scheme, which is composed of short lockdown periods followed by an easing of 
restrictions, has the potential to slow down the Coronavirus spread32.

Distinctively, in our study, we propose an original model-based automatic and periodic adaptive interven-
tion policy, which aims to keep the hospitalised population below a chosen threshold level, thus alleviating the 
pressure on the NHS (note that the attributes “periodic adaptive” are here to be understood in the sense that the 
intervention policy is adapted to the current situation with a certain temporal frequency). We adopt an original 
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SIHRD-like model accounting also for the vaccination campaign, and we identify the relevant parameters relying 
on open-data relating to the UK. We undertake two tests of our scheme:

(i)
Retrospective Test: We undertake a comparison during the time period October 2020-June 2021 between the 

model-free intervention policy, which was applied in reality in the UK, and our proposal. In this study, it is shown 
that our policy would have been able to keep the pressure on the NHS to a more manageable level.

(ii)
Prospective Test: We focus on the period August 2021-May 2022, in which we simulate the appearances of new 

COVID-19 variants. These variants are characterised by a higher transmission rate and a higher hospitalisation 
rate. We also model the loss of COVID-19 vaccination-induced immunity within the population over time. 
Our model-based automatic design of policies for pharmacological and non-pharmacological interventions are 
demonstrated to be successful in limiting hospitalisation in the wake of plausible COVID-19 variants and the 
loss of vaccination immunity in the future.

To the best of our knowledge, the use of an automatic approach to keep the hospitalised population under a 
prescribed (possibly time-varying) level with application to the COVID-19 pandemic has never been proposed 
before. Our finding has the potential to be utilised as a tool to adapt the NHS hospital capacity over time, and 
the underlying principle can be extended to other viral diseases.

Results
COVID‑19 mathematical model.  In this paper, we propose an extended version of the SIHRD model 
which accounts for periodic interventions in terms of the restrictions and the vaccination campaign in the UK. 
We name this model SIHRD-V, the schematic of which is shown in Fig. 1. We make use of the publicly available 
pandemic data on new admissions to hospital, the vaccination rate and the total hospitalisation per day3,19 dur-
ing 1 October 2020 and 1 June 2021 to identify the different parameters of the model. Following the method of 
nonlinear grey-box identification33, the rate parameters of the SIHRD-V model corresponding to recovery of 
the infected (0.1150), hospitalisation (0.0103), recovery of the hospitalised (0.0954) and mortality of the infected 
(0.0020) and the hospitalised (0.010) are determined. A comparison between the measured and the simulated 
data, shown in Fig. 2, primarily illustrates the quality of our model and the identification of its rate parameters.

Existing model based approaches25,31 rely on the number of infected population, which is more difficult to 
acquire34 and often underestimates the actual value of the infected population35. In contrast, we use the total 

Figure 1.   A schematic of the adopted compartmental SIHRD-V epidemiological model The directions of 
the arrows indicate a positive influence on the considered signal. The blue dashed line indicates the NHS 
measurements, whilst the red dashed lines the interventions policies.
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hospitalised population and the infected population being admitted to hospital each day, which are accurately 
gathered on a daily basis via the NHS records3. For given initial conditions concerning the hospitalised, the 
deceased and the recovered population, it is possible to alter different parameters, such the as infection rate of 
the virus and the vaccine efficiency, of the original SIHRD-V model and determine the evolution of the states of 
the COVID-19 pandemic in the UK and gauge their impact on society.

Intervention methodology.  We design a model-driven intervention scheme, which aims to automatically select 
the value of the restrictions policy and the vaccination rate, to maintain the number of the hospitalised popu-
lation below a defined value. The objective is achieved by relying on only the two aforementioned measured 
quantities. The fundamental principle, which is further detailed in the Methods section of this paper, is based 
on a so-called “relays” architecture, as the restrictions policy automatically switches amongst six possible values 
according to the present number of hospitalised people.

In order to ensure the practical feasibility of our approach, the periodic interventions are updated at a fre-
quency of 2 weeks. More precisely, our strategy chooses which one of the six possible levels of restrictions to 
put in place for the upcoming two weeks. We choose these levels relying on the past evolution of the restric-
tions adopted in the UK over the period October 2020-June 2021. The selected levels with an increasing order 
of magnitude are: (1) No restrictions in place other than recommendations about crowded places and personal 
hygiene (0.66); (2) A low level of restrictions, with certain limits on large events and social gatherings (0.77); 
(3) A medium level of restrictions with limits on indoor social gatherings (0.82); (4) An enhanced level of 
restrictions, with no indoor social gathering (0.84); (5) A high level of restrictions, with closures of all hospital-
ity sectors (0.86); (6) A national lockdown, involving the closure of all non-essential shops and stay-at-home 
instructions (0.88).

Accordingly, the realisable vaccination target rate is adjusted too (as explained in the Methods section of 
this paper). Furthermore, we select a nominal value for the threshold equal to 20,000, which is approximately 
17% of the total bed capacity of the NHS4. If the threshold value is adjusted over time, our scheme is capable 
of readjusting the level of restriction also. We introduce a performance metric which captures whenever the 

Figure 2.   Comparison between measured data and estimation from the COVID-19 model identification: 
(a) Time histories of the people tested positive, (b) patients admitted to hospital, (c) patients in hospital, (d) 
deceased population, (e) and the reproduction number over R(t) the period October 2020-June 2021.
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hospitalised population passes its threshold. The greater the value of the metric, the greater the extent to which 
the hospitalised population passes its nominal threshold.

Retrospective test.  The intervention policy adopted in the UK during October 2020 and June 2021 is 
shown in black in Fig. 3. The peak bed occupancy by COVID-19 patients in hospitals was over 39,000, which 
corresponded to 33% of the total beds available in all the hospitals across the UK. In the retrospective test con-
sidered here, we investigate possible alterations to restrictions such that the hospitalisation level is maintained 
below a threshold of 20,000. We simulate the response of the identified SIHRD-V model in two setups.

The first one concerns the application of the proposed automatic periodic intervention policy, driven by the 
SIHRD-V model. The second one is what was actually adopted in the UK between October 2020 and June 2021. 
The same was characterised by five main restrictions updates imposed by the UK government5,19: 

1.	 The three-tier alerts system in the period 1 October 2020-5 November 2020 imposed local social restrictions 
in specific geographical areas with COVID-19 outbreaks. As shown in Fig. 3e, this intervention smoothly 
reduced the current reproduction number. However, the surge in infections and hospitalisation was not 
halted.

2.	 A 4-weeks national lockdown from 5 November 2020 to 2 December 2020. It can be seen from Fig. 3e and 
f that this short lockdown further reduced the current reproduction number and it levelled down the hos-
pitalisation.

Figure 3.   Time histories of the retrospective analysis: 1 October 2020-1 June 2021. The purple line represents 
our SIHRD-V model-driven results with a policy update of 14 days (sihrdv-driv 14d). We also include results 
with a policy update of 7 days (the green dashed line named sihrdv-driv 7d), and of 21 days the (orange dotted 
line named sihrdv-driv 21d). The black line represents the actual intervention policy followed in the UK. The 
black dashed line is desired upper limit for the hospitalisation (equal to 20,000). The hospitalised population 
remains below 20,000 if our intervention strategy is used. The numbers 1, 2, . . . , 5 on the horizontal axis in Sub-
Figures (e) and (f) represent the instants when adjustments are taken in the model-free setup.
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3.	 A relaxation of the measures during the festive period (5 December 2020-5 January 2020). This relaxation 
made the current reproduction number grow to well-above 1, which further led to a surge in infections and 
hospitalisations.

4.	 Another national lockdown (5 January 2021-12 March 2021). This second lockdown lasted for more than 2 
months and brought the current reproduction number below 1. It was extremely effective in bringing down 
the infections and hospitalisations to a manageable level for the NHS.

5.	 A gradual lifting of the restrictions (12 March 2021-1 June 2021). While the relaxation of the measures 
culminated in an increase of the current reproduction number, thanks to the vaccination campaign, it led 
only to a surge in numbers of the infected population from June 2021, without a significant increase in 
hospitalisation and deaths3.

We undertake a retrospective test by considering the real data over the period from 1 October 2020 to 1 June 
2021, and by applying the proposed model-driven intervention policy to keep the hospital bed occupancy below 
a threshold fixed at 20,000. As illustrated by Fig. 3, our SIHRD-V model-driven intervention policy (shown in 
Fig. 3e) is capable of maintaining the hospitalised population below the fixed threshold. Consequently, there 
would have been the potential to reduce the monthly average value of the hospitalisations by 58%. As shown 
in Fig. 3, the hospitalisation levels see a reduction even in the case when our policy is updated every 7 days or 
every 21 days. Though the fastest update (7 days) seems to offer the best performance, this has severe limitations 
in terms of practical implementation when considering the societal requirements. Our intervention policy, as 
shown in Fig. 3e, retrospectively prescribes the following interventions: 

1.	 A national lockdown (0.88 level of restrictions) from November 2020 to February 2021, with a brief relaxation 
during December 2020, so as to bring the current reproduction number below 1 and to keep the hospitalisa-
tion below 20,000.

2.	 A recommendation to avoid the relaxation of the restrictions in December 2020. This would have prevented 
the surge in hospitalisation experienced in the UK in December 2020-January 2021.

3.	 The possibly to ease the restrictions from February 2021.

According to Table 1, the performance metric is equal to zero (i.e. the hospitalised population does not passes 
its threshold) if the period of the interventions is 7 days or 14 days. The metric is equal to 280 if the period is set 
equal to 21 days. Note, however, that the metric is equal to 1761 if the actual policy followed by the UK (model-
free scenario) is considered, as the hospitalised population significantly passes the threshold in this scenario.

Prospective test.  The second key-finding of our study is focused on a potential future scenario for the 
period August 2021-May 2022. We consider two possible situations: (1) the spread of a Coronavirus Delta Vari-
ant, characterised by a basic reproduction number equal to 728. (2) The surge of a new COVID-19 variant char-
acterised by a basic reproduction number of 10, and by an hospitalisation rate 50% higher than the identified 
one. This variant surges from October 2021. Also, since there are still uncertainties around the actual duration of 
the immunity induced by the COVID-19 vaccine36–39, we assume that the immunity decays exponentially over 
time and we assess its impact on the pandemic evolution. We consider different values for the decay constant, 
specifically: 300, 800 and 1200 days.

Additionally, we adopt a time-varying threshold for the hospitalisations: it is equal to 20,000 in the period 
August-November 2021; it decreases to 10,000 in the period November 2021-January 2022; then it increases back 
to 20,000 from February 2022 onward. This threshold adjustment enables the NHS to better manage its capac-
ity during the winter months. We compare again our model-driven intervention policy with a situation where 
the restrictions are not adjusted and they remain at the low level. Figs. 4 and  5 show the main findings of our 
predictive simulations. The lack of active intervention and complete relaxation of rules appear to be inefficient 
in dealing with the considered potential COVID-19 super-spreading event, as denoted in red in Figs. 4 and  5 . 
If a complete relaxation of the rules is adopted, our simulation predicts a peak of hospitalised population above 
30,000 (Fig. 4) or above 40,000 if a new dangerous variant surges (Fig. 5). On the other hand, our intervention 
strategy recommends the following: (1): From Fig. 4e, as no new variant appears, the advice is to maintain an 
intermittent low level of restrictions. If the immunity decays faster within the population (the dashed green line 
situation depicted in Fig. 4e), a medium level of restrictions is necessary to be in place also during May 2022. 
(2): From the scenario depicted in Fig. 4e, as a new variant surges, an intermittent scheme of medium and low 
restrictions are necessary to be kept in place during the whole period. This would also prevent a further re-surge 
of infections and hospitalisation from March 2022 (black line in Fig. 5a,b) due to the immunity decay. According 
to Table 2, the performance metric reaches its maximum value if the mode-free scenario is adopted (indepen-
dently of the possible occurrence of a new COVID-19 variant). As intuitively expected, the metric is equal to 0 
if the the vaccine-induced immunity decays slower (scenario sihrdv-driv vd 1200). The metric increases if the 
immunity decay is faster, and also if new variants arise. Nonetheless, the benefits of our scheme compared to the 
model-free scenarios are also quantitatively demonstrated by Table 2

Discussion
In this paper, we have shown that a periodic and automatic model-based algorithm can be used to maintain the 
number of people in hospital with COVID-19 under a chosen (and also time-varying) threshold. The potential 
benefits of our findings have been demonstrated considering both a retrospective and prospective analysis. As 
for the retrospective test, we have compared our policy with the one actually adopted in the UK for the period 
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October 2020-June 2021. We have demonstrated the benefits of our proposal in terms of its capability of better 
mitigating the impact of the COVID-19 spread on the NHS. In particular, our model recommended that main-
taining a lockdown through December 2020 would have led to an earlier relaxation of restrictions in February 
2021.

For the future analysis, we have modelled possible surges of new COVID-19 variants, which are character-
ised by higher transmission and hospitalisations rates. Additionally, we have modelled the potential decay of 
the vaccination-driven immunisation within the population, which will lead to further spread of COVID-19, 
with the associated surge in the hospitalisation. In such scenarios, we have tested the behaviour of our periodic 
intervention policy compared to a model-free policy. We demonstrated the flexibility of our proposed scheme in 
offering guidance on the level of interventions which might be required, based on specific available information 
so far and certain expected scenarios, to maintain the hospitalised population below a time-varying threshold 
(to account for a seasonal pressure due to winter).

As in any other model-based study, our proposal is characterised by some limitations, which are expected to 
be addressed by the authors in future studies. In particular, despite the fact that our scheme accurately described 
the behaviour of the COVID-19 pandemic as demonstrated by Fig. 2, it does not model the spread of COVID-19 
thorough the geographical regions of the UK. Furthermore, in the present study, the population has not been 
partitioned into age groups. These groups would better describe the impact of the Coronavirus spread on the 
hospitalised and deceased populations. The adopted approach in this paper does not explicitly account for the 
possible effects of multiple vaccine dosage administration or the impact of the prioritisation of the elderly and 
those at higher risk. Moreover, the different efficacies of the vaccines currently approved by the NHS in the UK, 

Figure 4.   Time histories of the perspective test: August 2021-May 2022. No new COVID-19 variants. The 
basic reproduction number is kept equal to R0 = 7 (Delta Variant). The purple line named sihrd-driv vd800 
represents our SIHRD-V model-driven results with a vaccination immunity decay time constant of 800 days. 
We also include the SIHRD-V model-driven results with a vaccination immunity decay time constant of 
300 days (the green dashed line named sihrd-driv vd300), and of 1200 days (the orange dotted line named 
sihrd-driv vd1200). The black line represents the model-free intervention policy, i.e. without any restrictions 
adjustment. The black dashed line represents the chosen time-varying threshold for the hospitalised population. 
The hospitalised population remains below the maximum accepted time-varying threshold with the use of our 
intervention strategy.
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or elsewhere in the world has not been detailed, and an average value of the efficacy has been selected. The math-
ematical description of these aspects is expected to better mimic the real behaviour of the COVID-19 pandemic.

Figure 5.   Perspective Test August 2021-May 2022. A new variant with R0 = 10 appears in October 2021. The 
purple line named sihrd-driv vd800 represents our SIHRD-V model-driven results with a vaccination immunity 
decay time constant of 800 days. We also include the SIHRD-V model-driven results with a vaccination 
immunity decay time constant of 300 days (the green dashed line named sihrd-driv vd300), and of 1200 days 
(the orange dotted line named sihrd-driv vd1200). The black line represents the model-free intervention policy, 
i.e. without any restrictions adjustment. The black dashed line represents the chosen time-varying threshold for 
the hospitalised population. The hospitalised population remains below the maximum accepted time-varying 
threshold with the use of our intervention strategy.

Table 1.   The value of the Performance Metric EH for the retrospective analysis.

Sihrdv-driv 14d Sihrdv-driv 7d Sihrdv-driv 21d Model-free

Performance Metric EH , Fig. 3 0 0 280 1761

Table 2.   The value of the Performance Metric EH for the retrospective tests.

Sihrdv-driv vd800 Sihrdv-driv vd300 Sihrdv-driv vd1200 Model-free

Performance Metric EH , Fig. 4 0 85 0 310

Performance metric EH , Fig. 5 0 2597 0 4493
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Methods
Epidemiological model.  In this paper, we consider an extended version of the epidemiological compart-
mental SIHRD model25 to describe how each compartment of the population evolves over time. The developed 
model consists of the susceptible population S(t), the infected population I(t), the hospitalised population H(t), 
the recovered population R(t), the deceased population D(t) and the vaccinated population V(t), such that

where N represents the total population. The model is denoted throughout this paper with the acronym SIHRD-V. 
It can be represented by the schematic in Fig. 1, and it is governed by the following set of equations:

The model parameters have the following meanings:

•	 β0 is the transmission rate;
•	 � is the hospitalisation rate of the infected population;
•	 γ is the recovery rate of the infected population;
•	 ν is the recovery rate of the hospitalised population;
•	 µ is the mortality rate of the infected population;
•	 µH is the mortality rate of the hospitalised population;
•	 αV is the vaccine efficacy;
•	 Vmin is the minimum vaccination rate.

We consider the term u(t) as the authority intervention levels. The restrictions/lockdown control 0 ≤ u(t) ≤ 1 , 
which is to be designed, is aimed at alleviating the rate of infections whilst keeping the hospitalisation at a 
manageable level. The signal V(t) accounts for the total number of people vaccinated up to time instant t, whilst 
the signal Ṽ(t) represents the vaccination rate, which is the first time derivative of V(t). The signal f(u(t)) is the 
realisable vaccination policy adjustment. In contrast to existing approaches13, in which the vaccination roll-outs 
has been undertaken considering only the susceptible population, we assume to vaccinate the population belong-
ing to both the susceptible S(t) and to the recovered R(t) compartments, which is true in practice3. Therefore, 
the dynamical model appropriately reflects this principle: the signal fRS(t) is defined as

which represents the ratio between the recovered and the susceptible population. Given the vaccination rate Ṽ(t) , 
we assume to vaccine the fraction (1− fRS(t))Ṽ(t) from the susceptible population and the fraction (fRS(t))Ṽ(t) 
from the recovered population, as introduced in equations (2) and (5), respectively.

The measured quantities are indicated by y1(t) and y2(t) , which are, respectively, the hospitalised popula-
tion (H(t)), and the infected population being admitted to hospital at time t ( �I(t) ). The two measurements are 
practically acquired on a daily basis via the NHS in the UK3. For a more compact representation of the model, 
the positive auxiliary constant

can be introduced.

(1)N = S(t)+ I(t)+H(t)+ R(t)+ D(t)+ V(t)

(2)
Ṡ(t) =−

β0

N
(1− u(t))I(t)S(t)

− (1− fRS(t))Ṽ(t)

(3)İ(t) =
β0

N
(1− u(t))I(t)S(t)− (γ + �+ µ)I(t)

(4)Ḣ(t) =�I(t)− νH(t)−µHH(t)

(5)Ṙ(t) =γ I(t)+ νH(t)− fRS(t)Ṽ(t)

(6)Ḋ(t) =µI(t)+µHH(t)

(7)V̇(t) =Ṽ(t)

(8)Ṽ(t) =αV
(

Vmin + f (u(t))
)

(9)y1(t) =H(t)

(10)y2(t) =�I(t)

(11)fRS(t) :=
R(t)

S(t)

(12)ϕ := γ + �+ µ
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The Basic Reproduction Number, R0 , is defined as the expected number of secondary infected cases caused 
by a single infected individual in a completely susceptible population27. R0 for the SIHRD-V model (2)-(10) 
can be defined as27

The Reproduction Number R(t) , instead, is a time-varying quantity, and is defined as the average number 
of new infections (within a population that is only partially susceptible) caused by a single infected individual27. 
In order to derive an expression for R(t) we introduce the auxiliary signal β(t) as

R(t) for the SIHRD-V model (2)-(10) can be defined as13

It is also possible to introduce an additional time-varying parameter, named the Current Reproduction 
Number Rc(t) , which is defined as

By making use of (14) and (15), it is possible to rewrite the model (2)-(10) as

which is employed here for the model identification. If the Current Reproduction Number Rc(t) is considered, 
equations (17)-(18) can be rewritten as:

From (27), note that I(t) increases whenever Rc(t) > 1.

Epidemiological model identification.  We identified the model parameters γ , �, ν, µ relying on the official 
data3, which is available for the period 1 October 2021-1 June 2021, which accounts for the so-called second 
wave of COVID-19 in the United Kingdom. Specifically, we utilise the so-called nonlinear grey-box model iden-
tification approach33 based on the dynamics (17)-(25). The inputs to the identification algorithms are the official 
time-series y1(t) and y2(t) , R(t) , along with the time-series of the vaccination rate Ṽ(t) . We consider an average 
vaccine efficacy of αV = 0.940. The method determines the values of the parameters which minimise the square 
of the errors. The results of the identifications are summarised in Table 3. The study is in accordance with rel-
evant guidelines and regulations. No human experiments have been undertaken. The only human-related data 
are the open data publicly available via the UK GOV source3.

Immunity decay after vaccination.  We assume that the the immunity gained via vaccination is exponentially 
decaying. This principle can be translated into the SIHRD-V model by rewriting the equations (2)-(10) as:

(13)R0 :=
β0

ϕ

(14)β(t) := β0(1− u(t))

(15)R(t) :=
β(t)

ϕ

(16)Rc(t) :=
R(t)S(t)

N

(17)Ṡ(t) =−
R(t)ϕI(t)S(t)

N
− (1− fRS(t))Ṽ(t)

(18)İ(t) =
R(t)ϕI(t)S(t)

N
− ϕI(t)

(19)Ḣ(t) =�I(t)− νH(t)−µHH(t)

(20)Ṙ(t) =γ I(t)+ νH(t)− fRS(t)Ṽ(t)

(21)Ḋ(t) =µI(t)+µHH(t)

(22)V̇(t) =Ṽ(t)

(23)Ṽ(t) =αV
(

Vmin + f (u(t))
)

(24)y1(t) =H(t)

(25)y2(t) =�I(t)

(26)Ṡ(t) =−Rc(t)ϕI(t)− (1− fRS(t))Ṽ(t)

(27)İ(t) = ϕ

(

Rc(t)− 1
)

I(t)
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where the additional terms are in bold, and τvd represents the exponential decay time constant. Ongoing studies 
and trials are being undertaken to evaluate the immunisation decay over time.

Control approach.  Sliding mode principle.  Sliding Mode Control (SMC) techniques have been successful-
ly proposed in the existing literature for robust control of nonlinear uncertain systems41. SMC schemes enforce 
the trajectories of the controlled system to slide along a so-called hyper-surface giving rise to a system behaviour 
named sliding mode. The hyper-surface is defined as a function of the states of the controlled system to be nul-
lified in finite time, thus solving the required control problem42,43. In particular, SMC can be used to track a spe-
cific reference value or to satisfy specific constraints on the system to ensure safety and reliability. SMC has been 
proven to enforce finite time stabilisation of the controlled system, whilst rejecting bounded uncertainties and 
disturbances appearing in the input channel of the systems41. In order to select the appropriate SMC method, 
the relative degree of the hyper-surface with respect to the control input has to be known. If the control signal 
explicitly appears for the first time in the r-th time derivative of the hyper-surface, then the number r is called 
the relative degree44. Amongst the existing SMC approaches, the so-called Sub Optimal Sliding Mode (SOSM) 
was originally proposed in the nineties45. SOSM has been revealed to be easy to implement in experimental 
setups. Furthermore, SOSM can be effectively used for systems with relative degree one to avoid the application 
of discontinuous control action45. In the present paper, we make use of a particular version of the SOSM method 
originally proposed by one of the authors of this manuscript46.

Control design.  The fundamental short term goal of the authorities is to maintain the hospitalised population 
H(t) under a threshold that is a-priory imposed due to the bed capacity constraints of the NHS. With this in 
mind, we select the hyper-surface for the SMC such that the solution of the mathematical model attains the 
desired goal when the evolution is confined to the proposed hyper-surface. Towards this end, suitable feedback 
policies are devised so that the solution reaches and stays on the hyper-surface (or manifold) and renders this set 
forward invariant. Consequently, the goal of maintaining the hospitalised population H(t) below the prescribed 
threshold is achieved. By virtue of the theoretical features of the SMC design, the goal achievement occurs with 

(28)
Ṡ(t) =−

β0

N
(1− u(t))I(t)S(t)

− (1− fRS(t))Ṽ(t)+
1

τvd
V(t)

(29)İ(t) =
β0

N
(1− u(t))I(t)S(t)− ϕI(t)

(30)Ḣ(t) =�I(t)− νH(t)−µHH(t)

(31)Ṙ(t) =γ I(t)+ νH(t)− fRS(t)Ṽ(t)

(32)Ḋ(t) =µI(t)+µHH(t)

(33)V̇(t) =Ṽ(t)−
1

τvd
V(t)

(34)Ṽ(t) =αV
(

Vmin + f (u(t))
)

(35)y1(t) =H(t)

(36)y2(t) =�I(t)

Table 3.   Identified parameters for the SIHRD-V model for the United Kingdom.

Symbol and meaning Identified values

starting date 01 Oct 2020

ending date 01 Jun 2021

γ : recovery rate of the infected 0.1150

� : hospitalisation rate 0.0103

µ : mortality rate of the infected 0.0020

µ : mortality rate of the hospitalised 0.0100

ν : recovery rate of the hospitalised 0.0954
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certain level of robustness against a specific class of perturbations which may appear in realistic operating sce-
narios.

Assumption 1  (for Control Design) It is assumed that: 

	(A1)	 The susceptible population S(t) and the infected population I(t) are always strictly greater than zero, i.e. 
S(t) > 0, I(t) > 0.

	(A2)	 At any fixed time instant t, the hospitalised population can always be written as a fraction of the infected 
population, i.e. 

 where η(t) is an unknown positive time-varying parameter satisfying 0 < η(t) < 1.
	(A3)	 Herd immunity is not achieved yet, which means that the auxiliary variable δ(t) satisfies the following 

	(A4)	 For the control design, the model parameters, which have been identified relying on the COVID-19 data3, 
are assumed positive but unknown with known bounds.

In the control approach, the objective is to have

where Hmax is known and defined a priori. In practice, Hmax represents the population that can be hospitalised 
without overwhelming the NHS. The hyper-surface, denoted as σ(t) is selected as follows:

where aH is a positive design parameter. The selected hyper-surface σ(t) is a linear combination of the hospital-
ised population y1(t) = H(t) , of the infected population being admitted to hospital y2(t) = �I(t) , and of Hmax . 
Therefore, when the sliding mode is enforced, i.e. when the hyper-surface is equal to zero, one has

which guarantees that H(t) ≤ Hmax.

Remark 1  The proposed sliding variable is easy to compute in practice. Specifically, it is a function of the hospital-
ised population H(t) and of the infected population being admitted to hospital at time t ( �I(t) ). These two quanti-
ties are typically known on a daily basis via the NHS records3. In contrast, existing approaches25,31 rely solely on 
the data concerning the infected population I(t), which is more difficult to measure34 and often underestimated35.

The proposed control approach is governed by:

where u(0) is the intervention policy at the initial condition, ( 0 ≤ u(0) ≤ 1 ), α and W are positive design con-
stants. Tuning rules for the same will be derived in the sequel of the paper. Note that in practice α and W deter-
mine how fast the policy update u(t) can occur, i.e. the higher the value, the faster the increase or decrease of 
the control u(t). The signal w(t) is an auxiliary variable, the function sign (·) denotes the sign function, and σ⋆ 
is the value of the hyper-surface σ(t) at the last time instant when the condition σ̇ (t) = 0 was verified45. The 
vaccination policy is adjusted relying on the current restrictions imposed by the signal u(t). In particular, we 
consider increasing the vaccination rate whenever the restrictions are increased, in order to better alleviate the 
pressures on the NHS. Therefore:

As 0 ≤ u(t) ≤ 1 , the positive design constant kV is tuned in such a way that Ṽmax = Vmin + kV , where Vmax 
denotes the maximum vaccination rate.

(37)H(t) = η(t)I(t)

(38)δ(t) :=
S(t)

N
, 1/2 < δ(t) < 1

(39)H(t) ≤ Hmax

(40)σ(t) := y1(t)−Hmax + aHy2(t)

(41)σ(t) = 0 → y1(t) = H(t) = Hmax − �aHI(t)

(42)σ(t) = H(t)−Hmax + aH�I(t)

(43)u(t) = u(0)+

∫ t

0
w(τ )dτ

(44)w(t) =















αW sign
�

σ(t)− σ⋆
2

�

if 0 < u(t) < 1

−W sign
�

u(t)
�

if u(t) ≤ 0

or u(t) ≥ 1

(45)Ṽ(t) = αV
(

Vmin + kVu(t)
)



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15660  | https://doi.org/10.1038/s41598-022-19630-6

www.nature.com/scientificreports/

Stability analysis.  In order to show that the control scheme governed by (42)–(45) ensures the key-inequality 
(39), we determine the first time derivative of σ(t) which yields:

Given the SIHRD-V dynamical model (2)–(10), it follows that σ̇ (t) can be written as

After standard algebraic simplifications,

It can be noted that the relative degree of the sliding variable σ(t) with respect to the control input u(t) is 
equal to one, as the control signal explicitly appears in (48). Furthermore, σ̇ (t) can be compactly rewritten as

SIHRD‑V dynamics during the sliding mode.  We study the dynamical behaviour of the adopted SIHRD-
V model during the the sliding mode, which is characterised by the conditions σ(t) = σ̇ (t) = 0 . As 
σ̇ (t) = g(t)+ b(t)− b(t)u(t) , the so-called equivalent control ue(t) is the specific control input that guarantees 
0 = g(t)+ b(t)− b(t)u(t) , which implies that

We want to determine the tuning rules for aH such that it is guaranteed that

Clearly, g(t) < 0 as � < ϕ by definition (see equation (12)). It follows that ue(t) < 1 . In order to ensure that 
ue(t) > 0 , we need to impose the constraint b(t) > −g(t) , which yields

Under Assumption 1, equation (53) can be rewritten as follows

Solving for aH yields

Therefore, the value of aH should always be chosen to verify (55).

(46)σ̇ (t) = Ḣ(t)+ aH�İ(t)

(47)
σ̇ (t) =�I(t)− νH(t)−µHH(t)

+ aH�
[β0

N
(1− u(t))I(t)S(t)− ϕI(t)

]

(48)
σ̇ (t) =(�− ϕ)I(t)− νH(t)−µHH(t)

+ aH�ρ
β0

N
I(t)S(t)− aH�

β0

N
I(t)S(t)u(t)

(49)σ̇ (t) = g(t)+ b(t)− b(t)u(t)

(50a)g(t) :=(�− ϕ)I(t)− νH(t)−µHH(t)

(50b)b(t) :=aH�
β0

N
I(t)S(t)

(51)ue(t) = 1+
g(t)

b(t)
= 1+

(�− ϕ)I(t)− νH(t)−µHH(t)

aH�
β0
N I(t)S(t)

(52)0 ≤ ue(t) ≤ 1.

(53)aH�
β0

N
I(t)S(t) > (ϕ − �)I(t)+ νH(t)+µHH(t)

(54)aH�β0I(t)δ(t) > (ϕ − �+ η(t))I(t)

(55)aH >
ϕ − �+ η(t)

�δ(t)
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Algorithm 1 Periodic Policy Intervention: a Practical Implementation.

1. Choose the maximum value of the hospitalised population (Hmax) that the NHS can tolerate.

2. Tune the constants C, km, kM , α∗, kV .

3. Determine the value of the hyper-surface

σ(t) = H(t)−Hmax + aHλI(t) (56)

continuously, i.e. at least on a daily basis

4. Determine the value of the signals:

u(t) = u(0) +
∫ t

0
w(τ)dτ (57)

w(t) =






αW sign
(
σ(t)− σ�

2

)
if 0 < u(t) < 1

−W sign
(
u(t)

)
if u(t) ≤ 0

or u(t) ≥ 1

(58)

5. Compute the mean value of u(t) over a running window of τR days

u(t) =
1
τR

∫ t

t−τR

u(τ)dτ

6. Sample u(t) every τR days, using a Zero Order Hold (ZOH) architecture, obtaining a piecewise constant signal up(t)

7. Choose the final practical value reflecting one of the six level of restrictions uR1, uR2, . . . , uR6 as follows

up(t) =






uR1 if 0 < up(t) ≤ uR1

uR2 if uR1 < up(t) ≤ uR2

uR3 if uR2 < up(t) ≤ uR3

uR4 if uR3 < up(t) ≤ uR4

uR5 if uR4 < up(t) ≤ uR5

uR6 if uR5 < up(t) ≤ 1

(59)

8. Determine the vaccination rate policy as

Ṽ (t) = αV Vmin + kV up(t)
)

(60)

The dynamic evolution of the hyper‑surface.  In order to analyse the stability of the SMC, the so-called auxiliary 
system is introduced, which is composed of the hyper-surface σ(t) and its first time derivative σ̇ (t) . By defining 
x1(t) := σ(t) , x2(t) := σ̇ (t) , and given the control scheme in (42)–(45), the auxiliary system is governed by the 
following differential equations: 

where

 An expanded expression for h(t) can be determined utilising the model (2)–(10). Under Assumption 1, it is 
immediately clear that h(t) is bounded, as it is function of the first time derivative of the susceptible, infected 
and hospitalised populations. Given the maximum possible value of |Ṡ(t)| , |İ(t)| and |Ḣ(t)| , it is possible to 
chose the the upper-bound C for h(t) such that |h(t)| < C . Furthermore, under Assumption 1, it follows that 
km < b(t) < kM , where the positive constants km and kM are chosen considering the possible minimum and 
maximum value of the infected and the susceptible populations.

(61a)
ẋ1(t) =g(t)+ b(t)− b(t)u(t)

=x2(t)

(61b)
ẋ2(t) =ġ(t)+ ḃ(t)− ḃ(t)u(t)+ b(t)w(t)

=h(t)+ b(t)w(t)

(61c)

h(t) :=ġ(t)+ ḃ(t)− ḃ(t)u(t)

=(�− ϕ)İ(t)− νḢ(t)−µHḢ(t)

+ aH�
β0

N

(

İ(t)S(t)+ I(t)Ṡ(t)
)

− aH�
β0

N

(

İ(t)S(t)+ I(t)Ṡ(t)
)

u(t)
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The parameter α appearing in (44) is governed by45,46

The positive constant W satisfies

Note that, once the values for C, km , and kM are chosen, the values for α and W in (62) and (63) can be com-
puted accordingly. As proven in Theorem 1 and in Theorem 2 reported in46, given the control scheme, if α and 
W satisfy the conditions (62)-(63), the auxiliary system in (61a)-(61b) converges to the origin in finite time, 
guaranteeing that the condition (39) is satisfied in finite time.

Practical implementation of the control strategy.  In practice, the signals u(t) and Ṽ  in (42)–(45) cannot be con-
tinuously updated on a daily basis, but only every τR days (e.g. every week or every two weeks). Furthermore, 
the signal u(t) should reflect specific restrictions in a wide range of applications, such as different rules in place 
for social mixing, opening of non-essential shops, retails, pubs and restaurants, and travelling throughout the 
country or abroad19. Therefore, in practice, u(t) cannot assume any possible value between 0 and 1. We postulate 
six possible practical values of the control signal relying on its actual history in the UK over the period October 
2020-June 2021. We also match its changes with the policy adjustments dates (labelled as 1, . . . , 5 in Fig. 3-e) to 
derive the corresponding descriptions of the social restrictions to be imposed. The chosen values and the associ-
ated rules are: 

1.	 uR1 = 0.66 : No restrictions in place other than the recommendations about crowded places and personal 
hygiene.

2.	 uR2 = 0.77 : Low level of restrictions, with certain limits on large events and social gatherings.
3.	 uR3 = 0.82 : Medium level of restrictions with limits on indoor social gatherings
4.	 uR4 = 0.84 : Enhanced level of restriction, with no indoor social gathering.
5.	 uR5 = 0.86 : High level of restrictions, with closures of all hospitality sectors
6.	 uR6 = 0.88 : National lockdown, with closure of all non-essential shops and stay-at-home instruction.

Consequently, the practical implementation of our novel periodic intervention policies can be summarised 
by the pseudo-code in Algorithm 1.

Performance metric for the control strategy.  We define the following performance metric to evaluate 
the effectiveness of our control strategy on the hospitalised population H(t):

where eH (t) represents the excess of hospitalised population H(t) with respect to the threshold Hmax (and it is 
equal to 0 if the hospitalised population remains below the threshold), whilst EH (t) is the mean value of eH (t) 
over the time period [0, t] (days).
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