
Prenatal organophosphorus pesticide exposure and executive 
function in preschool-aged children in the Norwegian Mother, 
Father and Child Cohort Study (MoBa)

Jake E. Thistle1,*, Amanda Ramos1, Kyle R. Roell1, Giehae Choi2, Cherrel K. Manley1, 
Amber M. Hall1, Gro D. Villanger3, Enrique Cequier4, Amrit K. Sakhi4, Cathrine Thomsen4, 
Pål Zeiner5,6, Ted Reichborn-Kjennerud6,7, Kristin R. Øvergaard5,6, Amy Herring8, Heidi 
Aase3, Stephanie M. Engel1

1Department of Epidemiology, Gillings School of Global Public Health, University of North 
Carolina At Chapel Hill, Chapel Hill, NC

2Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of 
Public Health, Baltimore, MD

3Department of Child Health and Development, Division of Mental and Physical Health, 
Norwegian Institute of Public Health, Oslo, Norway

4Department of Environmental Health, Division of Infection Control and Environmental Health, 
Norwegian Institute of Public Health, Oslo, Norway

5Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

6Institute of Clinical Medicine, University of Oslo, Oslo, Norway

7Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of 
Public Health, Oslo, Norway

8Department of Statistical Science, Global Health Institute, Department of Biostatistics and 
Bioinformatics, Duke University, Durham, NC, USA

Abstract

Introduction: Prenatal exposure to organophosphorus pesticides (OPPs) has been associated 

with neurodevelopmental deficits in children, however evidence linking OPPs with specific 

cognitive mechanisms, such as executive function (EF), is limited.
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Objective: This study aims to evaluate the association between prenatal exposure to OPPs with 

multiple measures of EF in preschool-aged children, while considering the role of variant alleles in 

OPP metabolism genes.

Methods: We included 262 children with preschool attention-deficit/hyperactivity disorder 

(ADHD), and 78 typically developing children, from the Preschool ADHD substudy of the 

Norwegian, Mother, Father, and Child Cohort Study. Participants who gave birth between 

2004–2008 were invited to participate in an on-site clinical assessment when the child was 

approximately 3.5 years; measurements of EF included parent and teacher rating on Behavior 

Rating Inventory of Executive Function-Preschool (BRIEF-P), and three performance-based 

assessments. We measured OPP metabolites in maternal urines collected at ~17 weeks’ gestation 

to calculate total dimethyl- (ΣDMP) and diethyl phosphate (ΣDEP) metabolite concentrations. 

We estimated multivariable adjusted β’s and 95% confidence intervals (CIs) corresponding to 

a change in z-score per unit increase in log-ΣDMP/DEP. We further characterized gene-OPP 

interactions for maternal variants in PON1 (Q192R, M55L), CYP1A2 (1548T>C), CYP1A1 
(IntG>A) and CYP2A6 (−47A>C).

Results: Prenatal OPP metabolite concentrations were associated with worse parent and teacher 

ratings of emotional control, inhibition, and working memory. A one log-∑DMP increase was 

associated with poorer teacher ratings of EF on the BRIEF-P (e.g. emotional control domain: 

β = 0.55, 95% CI: 0.35, 0.74), when weighted to account for sampling procedures. We found 

less consistent associations with performance-based EF assessments. We found some evidence 

of modification for PON1 Q192R and CYP2A6 −47A>C. Association with other variants were 

inconsistent.

Conclusions: Biomarkers of prenatal OPP exposure were associated with more adverse teacher 

and parent ratings of EF in preschool-aged children.
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1. Introduction

Organophosphorus pesticides (OPPs) are a class of insecticides with widespread agricultural 

use throughout the world (Hertz-Picciotto et al., 2018a). OPPs irreversibly inhibit 

acetylcholinesterase causing nerve impulses to transmit indefinitely (Fukuto, 1990). OPPs 

also cause neurologic damage at lower doses (i.e. without overt symptoms) through 

oxidative stress and effects on proteins involved in fundamental neuronal processes (Slotkin 

and Seidler, 2007; Terry, 2012). Detoxification pathways include paraoxonase 1 (PON1) and 

the cytochrome P450 (CYP) superfamily of monooxygenases, which have common genetic 

variants that may modify expression and/or catalytic efficiency of their respective enzymes 

(Furlong, 2007; Kaur et al., 2017). Multiple OPPs are approved for use within the European 

Union/European Economic Community (EU/EEC), including chlorpyrifos (Bjørling-Poulsen 

et al., 2008). However globally, differences exist in regulations governing the use of OPPs, 

with some countries banning the use of multiple OPPs, while the same compounds may be 

permissible in others (Hertz-Picciotto et al., 2018b).
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Multiple studies have demonstrated that consumption of conventionally-grown produce is 

an important route of exposure to OPPs (Oates et al., 2014; Papadopoulou et al., 2019; 

van den Dries et al., 2019). As such, human exposure may be affected by the import of 

agricultural products from countries where OPPs are approved for use. For example, a recent 

investigation of exposure in Norwegian women found that urinary concentrations of OPP 

metabolites were comparable to those measured in women residing in middle and southern 

Europe, despite the relatively limited use of OPPs in Norwegian agriculture (Haug et al., 

2018), suggesting a role for imported foods as a mechanism of exposure for the Norwegian 

population (Ye et al., 2009).

Prenatal exposure to OPPs has been associated with a variety of neurodevelopmental 

deficits in children (Gonzalez-Alzaga et al., 2014), including reduced IQ (Bouchard et 

al., 2011; Coker et al., 2017; Engel et al., 2016, 2011; Gunier et al., 2017; Rauh et 

al., 2011, 2006; Rowe et al., 2016; Stein et al., 2018), developmental delay (Liu et al., 

2016; Wang et al., 2020, 2017), impaired social responsivity (Furlong et al., 2014), and 

altered brain morphology (Rauh et al., 2012), microstructure (van den Dries et al., 2020), 

and activity (Binter et al., 2020). However, several studies have found no link between 

prenatal exposure and neurodevelopmental endpoints (Cartier et al., 2016; Donauer et al., 

2016; Guo et al., 2019; van den Dries et al., 2019) or small and imprecise effects (Jusko 

et al., 2019; Ntantu Nkinsa et al., 2020). In particular, recent studies in the Generation 

R cohort in the Netherlands found that prenatal OPP exposure was not associated with 

children’s nonverbal IQ (Jusko et al., 2019) or traits of attention-deficit hyperactive disorder 

(ADHD) and autism spectrum disorders (ASD) (van den Dries et al., 2019). Because most 

studies used non-specific biomarkers of OPP exposure, dimethyl- and diethyl phosphate 

metabolites, the lack of harmony in these results may arise from differences in the type or 

extent of OPP parent compound exposure as well as the route of exposure. These differences 

have implications with regard to the amount of exposure to the parent compound relative to 

nontoxic preformed OPP metabolites (Lu et al., 2005; Quirós-Alcalá et al., 2012).

While multiple studies have found impacts of prenatal exposure to OPPs on general 

cognitive abilities (e.g. psychometric intelligence and mental development indices), there 

is little data examining more specific cognitive mechanisms. Executive function (EF) is 

an umbrella term for multiple categories of goal-directed, problem-solving behavior that 

emerge in the preschool period and continue to mature throughout childhood (Anderson, 

2002). Research suggests there are three “core EFs”: 1) inhibition, or self-control 2) working 

memory (WM), the ability to register, maintain and manipulate information, and 3) cognitive 

flexibility, also called shifting; higher order EFs, such as decision-making, goal setting, and 

planning are built from upon these core skills (Diamond, 2013). Deficits in EF are common 

among children diagnosed with neurodevelopmental disorders, such as ASD and ADHD 

(Margari et al., 2016). However, deficiencies in EF may also be found among individuals 

without developmental disabilities (Otterman et al., 2019).

A small number of previous studies have included measurements of EF in later childhood 

or adolescence (Furlong et al., 2017; Sagiv et al., 2021, 2019), and have found relationships 

between OPP exposure and EF in both positive and negative directions. Studies measuring 

WM have generally found reduced scores with increasing OPP exposure (Bouchard et al., 
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2011; Furlong et al., 2017; Rauh et al., 2011; Rowe et al., 2016; Stein et al., 2016). Many of 

these studies were performed in settings with high community exposure (i.e., communities 

exposed due to agricultural drift or residential pesticide application), which may not be 

reflective of contemporary exposure patterns in the general population. In addition, no prior 

study has assessed the effects OPP exposure on measurements of EF taken during preschool, 

which are critical for future educational achievement (Diamond, 2016).

The aim of the current study is to evaluate the association of prenatal exposure to OPPs 

with EF in preschool-aged children, while considering the potentially modifying role of OPP 

metabolism variants. To address these aims, we leverage a well characterized subset of the 

Norwegian, Mother, Father, and Child Cohort (MoBa).

2. Materials and methods:

2.1 Study population

MoBa is a population-based pregnancy cohort study conducted by the Norwegian Institute 

of Public Health (Magnus et al., 2016, 2006). Pregnant women across Norway were 

recruited between 1999 and 2008 (Schreuder and Alsaker, 2014). An invitation was sent 

to women before a routine prenatal ultrasound, which 98% of pregnant women complete 

before the 20th week of gestation (Backe, 1997). Following enrollment and informed 

consent for each pregnancy, MoBa included 114,500 children, 95,200 mothers and 75,200 

fathers, representing 41% of the invited pregnant women. Participating mothers contributed 

biospecimens and completed questionnaires throughout pregnancy and provided updates 

on their child’s health and development longitudinally after birth (Paltiel et al., 2014). 

The establishment of MoBa and initial data collection was based on a license from the 

Norwegian Data Protection Agency and approval from The Regional Committees for 

Medical and Health Research Ethics. The MoBa cohort is now based on regulations related 

to the Norwegian Health Registry Act.

The study population is nested within a substudy of the MoBa cohort, called the Preschool 

ADHD Substudy (Overgaard et al., 2014), which oversampled children exhibiting possible 

ADHD symptoms on the 36-month questionnaire. Selection criteria for the included children 

has been previously described (Choi et al., 2021). Briefly, children born between 04/2004 

and 01/2008 whose mothers reported a high summed scores (>90th percentile) of ADHD-

like symptoms (N = 2,798), and a random sample of remaining children (N = 654), were 

invited to participate in an on-site clinical assessment of preschool ADHD. The enrollment 

groups were based on summed scores combining six items from the Child Behavior 

Checklist (Achenbach and Ruffle, 2000) and five items from the DSM-IV-TR criteria for 

ADHD (American Psychiatric Assocation, 2000). Of those invited, 1,195 children (35%) 

aged 3 to 4 years (mean = 3.5) took part in a 1-day clinical assessment, of which 870 had an 

available maternal prenatal urine sample for the measurement of OPP metabolites (sFigure 

1). Mothers of children who participated were slightly older, more highly educated, and had 

fewer children than those who chose not to participate (Skogan et al., 2015).

The analytic sample for this current analysis includes two clinical groups: 1) children with 

above/subthreshold symptoms of preschool ADHD based on DSM-IV-TR criteria (N = 262) 
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using the Preschool Age Psychiatric Assessment (PAPA) (Egger and Angold, 2004), and 

2) children randomly sampled from the eligible population who were subsequently found 

to have no clinical/subclinical symptoms of ADHD using the PAPA, referred to as the 

typically developing group (N = 78). Further description of the diagnostic procedures for 

these children can be found in Kamai et al. (Kamai et al., 2021). Inverse sampling fractions 

(Richardson et al., 2007) are used to account for the oversampling of children symptomatic 

for preschool ADHD (further details in statistical analysis below).

2.2 Measurement of Executive Function

Parents and preschool teachers were asked to complete standardized inventories of child 

behavior before coming to the clinical assessment, which included neuropsychological tests 

and a semi-structured interview with the child. Methods and results from the preschool 

clinical assessment of neuropsychological functioning in MoBa have been previously 

described (Bendiksen et al., 2017; Biele et al., 2022; Overgaard et al., 2021, 2019, 2018b, 

2018a, 2016, 2014; Rohrer-Baumgartner et al., 2016, 2016, 2014; Skogan et al., 2016, 

2015). From parent and teacher assessments, we selected instruments related to EF (sTable 

1). These included parent- and teacher ratings of the Behavior Rating Inventory of Executive 

Function - Preschool (BRIEF-P), subtests within the Stanford-Binet, 5th edition (SB-5), the 

A Developmental NEuro-PSYchological Assessment, 2nd edition (NEPSY-II), as well as the 

cookie delay task (CDT). Additional information on validation of Norwegian translations of 

the BRIEF-Preschool can be found in Skogan et al. (2016) (Skogan et al., 2016). Briefly, 

confirmatory factor analyses within the MoBa population supported the original 3-factor 

solution proposed by the BRIEF-P authors (Gioia et al., 2000). Additional information on 

neuropsychological testing can be found in Skogan et al. (2014) (Skogan et al., 2014). 

Briefly, tests were administered by a psychologist, or a trained graduate psychology student 

with special competence in child neuropsychology and supervised by a child psychologist or 

psychiatrist. All sessions were videotaped, and data from clinical assessments were reviewed 

by a child psychologist or psychiatrist and scored according to test algorithms. The SB-5 and 

NEPSY-II have been translated into Norwegian (Bayliss et al., 2005; Bull et al., 2008).

The BRIEF-P was developed to examine EF within the context of everyday environments in 

children aged 2–5 (Gioia et al., 1996). The 63-item instrument characterizes five domains 

of EF: emotional control, inhibition, WM, planning/organization, and shift (ability to move 

attention freely between tasks). Raters report whether a behavioral descriptor had been a 

problem for the child on a 3-point scales (never, sometimes, or often) during the past 6 

months. The BRIEF-P was filled out by teachers and parents describing behavior in the 

school and home environment, respectively. For the analysis, we restricted to the emotional 

control, inhibition, and WM scales, because shift and plan/organize may not have reached 

a stable functional level of development at this age (Skogan et al., 2016). Raw scores were 

standardized by age and sex to calculate T scores.

Performance-based assessments were carried out by a psychologist with one parent present, 

as described previously (Rohrer-Baumgartner et al., 2014). The SB-5 (Roid and Pomplun, 

2012) is a test battery used to measure nonverbal and verbal cognitive factors in all 

ages (2–85 years), including WM. Verbal WM was measured by asking participants to 
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repeat sentences of increasing length. Nonverbal WM is measured with subtests: “delayed 

response”, where the child was asked to find an object hidden under one of three cups 

after a few seconds delay, and “block span”, where the child was asked to tap blocks in 

the same order as the administrator. NEPSY-II (Korkman et al., 1998) is a compendium of 

tests that examines attention/EF, language, sensorimotor, visuospatial, and memory/learning 

in children aged 3–12 years. A subtask measuring inhibition called the “Statue task”, 

where a child is asked to follow instructions to inhibit body movement, eye opening, and 

vocalization, under a series of increasing distractions. This test is believed to reflect poor 

inhibitory control and motor persistence (the ability to sustain an action in the absence of 

reinforcement). The CDT is an experimental task designed to evaluate children’s ability 

to delay a response to take a piece of cookie until an interval (of varying lengths) is 

up, signaled by the experimenter clapping their hands. Spearman correlation coefficients 

between measurements among our study participants are shown in sTable 2.

2.3 Measurement of OPP exposure

We estimated prenatal OPP exposure by measuring 3 dimethyl metabolites: dimethyl 

phosphate (DMP), dimethyl thiophosphate (DMTP), dimethyl dithiophosphate (DMDTP), 

and 3 diethyl metabolites: diethyl phosphate (DEP), diethyl thiophosphate (DETP), and 

diethyl dithiophosphate (DEDTP), in maternal single spot urine samples collected at ~17 

weeks’ gestation (sTable 3), using the ultra-performance liquid chromatography-time-of-

flight system (UPLC-TOF) (Cequier et al., 2016). Laboratory quality control (QC) samples 

spiked at 5 and 50 ng/mL were included in each analytic batch, as well as 4–6 laboratory-

blinded pooled QC samples. Average batch-specific coefficients of variation (CVs) for 

spiked QCs were generally between 5–8%. Average batch-specific CVs for laboratory 

blinded QCs were higher (9–20%), largely due to the lower mean concentrations among the 

pooled QC samples (means ranging between 0.4 ng/mL and 2.8 ng/mL, depending on the 

metabolite). Samples were randomly allocated across analytic batches. Specific gravity (SG) 

was measured using a pocket refractometer (PAL-10S) from Atago to account for urinary 

dilution. Metabolites could not be quantified in one participant with above/subthreshold 

preschool ADHD, who was excluded from the analysis. OPP metabolite concentrations were 

adjusted for SG (Boeniger et al., 1993) by standardizing all measurements by the geometric 

mean of the analytic population (OPPSG, i = OPPraw, i * (μSG / (SGi − 1)). Metabolite 

concentrations below the limit of detection (LOD) were imputed from a log-normal 

distribution bound by 0 and the LOD (Lubin et al., 2004). SG-adjusted concentrations of 

dimethyl- and diethyl metabolites were summed by molar weight to calculate total dimethyl- 

(ΣDMP) and total diethyl phosphate (ΣDEP) concentrations, and were subsequently log 

(natural) transformed. DEDTP was not included in ΣDEP because nearly 99% of values 

were below the LOD.

2.4 Measurement of Covariates

We examined factors that could influence prenatal OPP exposure or preschool-aged EF as 

potential covariates. Maternal characteristics at enrollment were obtained from the baseline 

questionnaire (completed at ~17 weeks gestation): marital status (married, cohabitating, 

single/other), education (less than college completed, college completed, more than college, 

other), parity (nulliparous vs. parous), self-reported depression before pregnancy (i.e. history 
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of depression; yes vs. no), self-reported pre-pregnancy weight and height to calculate 

pre-pregnancy body mass index (BMI) (kg/m2), smoking and alcohol consumption during 

the first trimester of pregnancy (any vs. none). Financial problems in the previous 12 

months (yes vs. no) was obtained from a questionnaire given at 30 weeks’ gestation. 

Maternal ADHD score were determined from the ADHD Self-Report Scale in the MoBa 

questionnaire completed when the child was 3 years old. Characteristics such as maternal 

age at birth, birth year, and child sex were obtained via data linkage with the Medical 

Birth Registry of Norway (MBRN) (Irgens, 2000), the national health registry containing 

information about all births in Norway.

Maternal dietary intake during pregnancy was captured using a food-frequency questionnaire 

completed by mothers at approximately 22 weeks’ gestation. For the current analysis, we 

used these dietary data to obtain information on frequency of fruit and raw vegetable 

consumption (servings/day) and choice of ecologically-grown, or “organic” produce (during 

pregnancy (seldom/never vs. sometimes/often/usually). In Norway, certification for labeling 

of organic produce went into effect in 2007 (https://debio.no/english/). Total fish intake 

(g/day) during pregnancy was also calculated from this questionnaire. To examine potential 

non-dietary sources of OPP exposure, we obtained information on mother’s self-reported 

contact with plant care substances (weedkiller, insecticides, and fungicides) in the six 

months before enrollment from the baseline questionnaire. Paternal use of plant care 

substances in the six months before wife became pregnant was obtained from the 

questionnaire administered to the father. We grouped dates of urine collection in June to 

August, September to November, December to February, and March to May, for seasons. 

Residence type (living on a farm vs. other) was additionally examined to look at potential 

agricultural exposure to OPPs and collected in the baseline questionnaire.

2.5 PON1 and CYP genotyping

To evaluate the role of variants in genes critical for OPP metabolism, we characterized single 

nucleotide polymorphisms (SNPs) in PON1 and CYP1A2, CYP1A1 and CYP2A6. DNA 

from maternal blood samples collected during pregnancy was extracted using FlexiGene, 

and candidate SNPs were measured using Sequenom IPLEX. We examined two SNPs in 

PON1: 1) rs662, “Q192R” and 2) rs854560, “M55L”, and three across CYP1A2, CYP1A1 
and CYP2A6: 1) CYP1A2 rs2470890, “1548T>C”, 2) CYP1A1 rs4646421, “IntG>A” 

and 3) CYP2A6 rs28399433, “−47A>C” (sTable 4). PON1 variants examined are well-

characterized (Dardiotis et al., 2019). Q192R is believed to affect substrate specificity, with 

the QQ genotype (“low-risk” allele) considered to have faster metabolism of toxic OPP 

forms (Garin et al., 1997) compared with QR/RR (“high-risk allele). 2) M55L is believe to 

reduce stability and enzyme concentrations (Humbert et al., 1993), although some studies 

have found conflicting evidence (Dardiotis et al., 2019); several studies have identified LL 

as the “high-risk” allele compared to MM/ML (“low-risk”). While CYP genes are also 

involved, less is known about the role of these variants in OPP metabolism; therefore, we 

examined a selection of SNPs in CYP genes with sufficient frequency of variants alleles in 

our study participants.
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2.6 Statistical analysis

All outcome measures were converted to z-scores and standardized so higher scores 

correspond to worse (or more adverse) EF. We created a directed acyclic graph (DAG) to 

identify and select confounders (sFigure 2) (Hernan, 2002). A minimally sufficient set was 

identified using daggity (http://www.dagitty.net/). We also included a variable for child sex, 

which is highly associated with EF skills in preschool-aged children, and potential predictors 

of selection into the study, such as maternal parity, age, and education. For parsimony, we 

used backwards elimination to remove covariates that did not improve models fit (Weng et 

al., 2009), when examining the following response variables: 1) teacher and 2) parent ratings 

of emotional control on the BRIEF-P, and 3) non-verbal WM on the SB-5. Final models 

were adjusted for fruit consumption (servings/day), raw vegetable consumption (servings/

day), age at childbirth, pre-pregnancy BMI, Maternal ADHD score, nulliparity, birth year, 

season of urine collection, and child sex.

We used multiple imputation with fully conditional specification for missingness in 

covariates and combined results using Rubin’s rules implemented in PROC MIANALYZE. 

The imputation model included all covariates, log-ΣDMP/DEP, and the teacher BRIEF-P 

scales. We used multiple linear regression to estimate β’s and 95% confidence intervals (CI) 

corresponding to a change in z-score per unit increase in log-ΣDMP/DEP. To account for 

the sampling procedures, analyses were weighted to the population eligible for the ADHD 

substudy using sampling fractions estimated separately for enrollment groups (children with 

high summed scores of ADHD-like symptoms and random sample of remaining children). 

More details on these procedures and results of a simulation study examining different 

approaches to weighting can be found in Choi et al. (Choi et al., 2021). To evaluate the 

potentially modifying role of SNPs in PON1 and CYP genes, we used regression models 

with interaction terms for the continuous number of variant alleles present (0,1,2) to estimate 

change in β per allele substitution (Δβ). We determined the presence of modification based 

on Wald tests (p-value <0.05) for this parameter. For PON1 genes, we used the genotype 

considered “low-risk” as the referent group, so Δβ’s correspond to change per “high-risk” 

allele. We performed sensitivity analyses removing weighting from models and stratifying 

by clinical group. All analyses were conducted using SAS 9.4 (Cary, NC).

3. Results:

Mothers of study participants had an average age at childbirth of 30 years, most were 

nulliparous (no previous pregnancies) and had a college degree or higher education (Table 

1). The proportion of mothers of above/subthreshold preschool ADHD children who were 

married (44% vs. 54%) and had completed college (35% vs. 24%), were lower compared 

to mothers of typically developing children. Participating mothers reported a median of 

~2.5 servings of fruit and ~0.5 servings of raw vegetables a day during pregnancy, with 

around one third choosing ecologically-grown fruits (31%) and vegetables (33%) sometimes 

or more often (compared to seldom/never). Self-reported use of plant care substances 

(weedkiller, insecticides, and fungicides) in the six months before pregnancy was reported 

by 4.6% mothers. The proportion of mothers living on a farm (vs. other residence type) was 

low (2.2%). The median age at clinical assessment for children was 3.5 years. There were 
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slightly more girls than boys in above/subthreshold preschool ADHD children (56%) and 

typically developing children (54%).

OPP metabolites were frequently detected in urine samples collected at ~17 weeks’ gestation 

(sTable 3). DMTP and DEP were most frequently metabolites in both above/subthreshold 

preschool ADHD children (89% and 41%, respectively) and typically developing children 

(96% and 51%, respectively). There were no differences in metabolite concentrations 

between above/subthreshold preschool ADHD and typically developing children per the 

Wilcoxon ranked-sum test. The distribution of SG-adjusted ∑DMP and ∑DEP (summed by 

molar weight) is shown in Table 2.

Higher levels of prenatal ∑DMP and ∑DEP was associated with worse (higher z-scores) 

preschool-aged measurements of EF, particularly parent and teacher ratings on the BRIEF-P, 

when weighted to account for the study’s sampling procedure (Figure 1; sTable 5). A one 

unit increase in log-∑DMP was associated with nearly a half z-score increase in teacher 

ratings of emotional control (β = 0.55, 95% CI: 0.35, 0.74), inhibition (β = 0.48, 95% 

CI: 0.29, 0.67), and working memory (β = 0.50, 95% CI: 0.30, 0.69). In addition, a one 

unit increase in log-∑DEP and was associated with worse parent and teacher ratings on the 

BRIEF-P, with the largest magnitude of association for parent-rated emotional control (β = 

0.47, 95% CI: 0.24, 0.70). Associations between OPP metabolite molar sums and changes 

in BRIEF-P T-scores are shown in sTable 6, with magnitudes of association mostly ranging 

from 3 to 6 points per log-unit increase in exposure.

Prenatal ∑DMP metabolites were not associated with performance-based assessments of EF 

(Figure 1, sTable 5), An association between log-∑DEP and poorer non-verbal WM on the 

SB-5 (β = 0.45, 95% CI: 0.13, 0.78) was observed, however associations with the remaining 

performance EF assessments were less consistent with this finding.

In sensitivity analyses, we removed weighting by sampling fraction (sTable 7), and stratified 

models according to clinical group (sTable 8). Associations between OPP metabolites and 

preschool-aged measurements of EF were attenuated in unweighted analyses, a population 

that overrepresents children with above/subthreshold preschool ADHD (sTable 7). The 

association between log-∑DMP and higher z-scores of teacher ratings on the BRIEF-P 

was reduced in magnitude by around half (e.g. emotion control domain: β = 0.27, 95% 

CI: 0.05, 0.50). When analyses were stratified by clinical group, some associations between 

∑DMP/∑DEP and z-scores of preschool-aged EF measurements were stronger in typically 

developing children compared to those with above/subthreshold preschool ADHD (sTable 

8).

To evaluate the potential modifying role of common variants in PON1, we estimated the 

change in the association between log-∑DMP and log-∑DEP and teacher ratings on the 

BRIEF-P, per Q192R and M55L substitution in maternal genotype (sTable 9). For Q192R, 

the adverse associations between log-∑DMP and multiple teacher ratings of EF among 

mothers with the QQ genotype was attenuated for those with QR/RR (e.g. Inhibit: Δβ 
per R substitution = −0.40, 95% CI: −0.75, −0.05), however we did not see patterns of 
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modification of ∑DEP by Q192R. No consistent patterns of association were seen for M55L 
substitutions in PON1.

We similarly evaluated SNPs in CYP1A2, CYP1A1, and CYP2A6 (sTable 10). The most 

consistent evidence of effect measure modification was found for the −47A>C allele 

in CYP2A6. Specifically, the associations of log-∑DEP with poorer teacher ratings of 

emotional control, inhibition and WM, were attenuated for mothers with C alleles (e.g. 

emotional control: Δβ per C allele = −0.80, 95% CI: −1.38, −0.22), although there was 

less consistency for ∑DMP. Among the other CYP genotypes measured, patterns of effect 

measure modification varied and were not consistently statistically significant.

4. Discussion:

Leveraging a comprehensive, on-site preschool-aged neuropsychological assessment, we 

examined the relationship between prenatal OPP exposure and preschool-aged EF in a 

well-characterized subset of the MoBa study. We found that ∑DMP and ∑DEP biomarkers 

of OPP exposure were associated with higher z-scores of teacher and parent ratings of 

EF, indicating that elevated prenatal exposure levels are related to poorer EF in the child. 

For example, a one log-∑DMP increase was associated with poorer teacher ratings of 

EF on the BRIEF-P, corresponding to ~ 3 to 6 points on the original BRIEF-P scale 

(T-scores). Increasing ∑DEP was also associated with poorer teacher and parent ratings on 

the BRIEF-P. No consistent pattern between ∑DMP and performance-based assessments 

was found, however we observed an association between ∑DEP and worse non-verbal WM 

on the SB-5. In unweighted analyses, the associations between ∑DMP and ∑DEP and 

BRIEF-P ratings were attenuated, and when stratifying by clinical group, we found stronger 

adverse associations in typically developing children compared to children with clinically 

significant or subthreshold preschool ADHD. We evaluated the potential modifying role of 

variant alleles and found some evidence of significant modification for Q192R in PON1 
and −47A>C in CYP2A6, however patterns of association with other variants were not 

consistent.

The overall results of this study are in agreement with the majority of the previous OPP 

literature, which finds deficits in neurodevelopment associated with increasing exposure 

(Gonzalez-Alzaga et al., 2014). However, there are few papers that have focused specifically 

on EF, and among them, inconsistent results. A 2017 study by Furlong et al. (Furlong et 

al., 2017) in an urban birth cohort in New York (Mount Sinai cohort), found that higher 

concentrations of ∑DMP in third trimester urine samples was associated with an improved 

“EF factor”, comprised primarily of parent-reported BRIEF domains among children 6–9 

years of age. Sagiv et al. (2021) leveraged multiple rater and performance-based assessments 

of EF in the agricultural CHAMACOS cohort (Sagiv et al., 2021), finding associations 

between DMP and DEP metabolites and poorer teacher and parent ratings on the BRIEF 

between 7–12 years of age. In this study, DMP and DEP were most strongly associated 

with the mother’s BRIEF ratings, compared to maternal reporting on the Connors ADHD/

DSM-IV (CADS) and Behavior Assessment System for Children, 2nd ed (BASC-2). Our 

study results are more closely aligned with those of Sagiv et al. (2021), although our study 

participants likely received much lower and more indirect exposure to OPPs, primarily via 
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dietary intake of conventionally grown fruits and vegetables (Ye et al., 2009). However, 

comparisons of DMP and DEP biomarker-based associations across studies is complicated 

in populations with differing routes of OPP exposure, and thus differing profiles of exposure 

to parent compounds. It should be noted that DMP and DEP metabolites are non-specific 

biomarkers of multiple parent compounds whose toxicities vary widely (Sudakin and Stone, 

2011). As such, differences in associations across studies may in part relate to differences 

in the composition of parent compounds to which any specific population is exposed. Direct 

exposure to pesticides through residential insecticide applications, occupational exposures, 

or secondary to agricultural drift, is likely to result in a higher magnitude of exposure to 

the parent compound, and relatively less exposure to preformed DMP and DEP metabolites 

(Quirós-Alcalá et al., 2012; Sudakin and Stone, 2011). However dietary exposure to OPPs is 

likely to a mix of parent compound and preformed metabolites (Lu et al., 2005), the latter of 

which are non-toxic and indistinguishable from parent-compound exposure when measuring 

diethyl and dimethylphosphate metabolites in urine.

Although we found consistent adverse associations with parent and teacher rated EF 

domains, we found less consistent evidence of association with performance-based 

measures. Previous research has shown limited correlation between EF assessments as 

measured by rater-based and performance measures, indicating that different underlying 

cognitive constructs are being tapped by these tools (Isquith et al., 2013, 2005; Toplak et 

al., 2013). We also found limited correlations across performance and rater-based methods 

(sTable 2). In the preschool period, performance-based assessments of EF may be less 

precise than in older children, since EFs are not fully developed until adult age. In addition, 

performance tasks are administered under ideal experimental conditions, in an environment 

that is highly structured, and with the goals of the assessment clearly defined (Toplak et al., 

2013). In contrast, ratings-based assessments ask parents and teachers to reflect on usual 

behaviors in a typical environment (school or home) that may vary in terms of structure. 

Therefore, the lack of overlap in our findings is not entirely unexpected.

Metabolism of OPPs is a two-step process where parent compounds are activated to their 

toxic “oxon” form by CYP genes, then detoxified primarily through hydrolysis by PON1 
(Furlong, 2007; Kaur et al., 2017). Variants (i.e. polymorphisms) in these genes may alter 

their enzymatic activity resulting in exposure to toxic metabolites forms. PON1 has several 

well characterized variants that affect enzymatic activity and/or serum concentrations, 

including Q192R and M55L (Dardiotis et al., 2019). Prior studies evaluating modification of 

OPP associations by Q192R have produced mixed findings. Engel et al. (2011) found that 

relationships between prenatal DMP and DEP and the mental development index (MDI) of 

the Bayley Scales of Infant Development-II (BSID-II) measured at 12 months were stronger 

for mothers with 192QR and RR genotypes, considered slow metabolizers (i.e. “high-risk”), 

particularly among Black and Hispanic mother-child pairs, but found stronger relationships 

between prenatal DMP and perceptual reasoning at 6–9 years old for those with the QQ 

genotype (Engel et al., 2011), who are expected to have faster metabolism and clearance 

of toxic OPP forms. A pooled analysis of four U.S. birth cohorts additionally found more 

adverse associations between DEP and the MDI of the BSID at 24 months among mothers 

with the QQ genotype (Engel et al., 2016). Wang et al. similarly found stronger relationships 

between DEP and several domains on the Gesell Developmental Scales at 12 months for 
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children of mothers with the QQ genotype in Shandong province, China (Wang et al., 

2020). We found some evidence that adverse associations between ∑DMP and teacher 

ratings of preschool-aged EF were strongest among mothers with the QQ genotype, but 

no consistent patterns for ∑DEP. Several studies in US cohorts (Eskenazi et al., 2014; 

Millenson et al., 2017) and a study in Generation R (Jusko et al., 2019) which have assessed 

neurodevelopment later in childhood (ages 5–9 years) reported no evidence of modification 

by Q192R. Only one prior study of prenatal OPP exposure has evaluated the M55L, which 

is believed to reduce stability and enzyme concentrations of PON1; Jusko et al. (2019) 

found no evidence of modification by M55L for the associations of DMP and DEP with 

nonverbal IQ measured at 6 years in Generation R (Jusko et al., 2019). Overall, the literature 

on PON1-mediated modification is inconclusive, potentially due to the lack of specificity in 

the exposure biomarker, and thus their utility as a marker of susceptibility to OPPs may be 

limited (Dardiotis et al., 2019).

Despite the role of CYPs in OPP metabolism (Kaur et al., 2017), there has been less 

attention paid to the potential for common variants to modify the association of prenatal 

OPP exposure on neurodevelopment. Individual CYPs have different affinities for parent 

OPP compounds, which change depending on concentration (reviewed in Kaur et al., 2017). 

While multiple CYPs are involved in OPP metabolism, CYP3A4 has been most consistently 

demonstrated as a major metabolizer of OPPs (Croom et al., 2010; Kaur et al., 2017). Our 

study participants lacked sufficient variability in variant frequency to evaluate the IntG>A 
change in CYP3A4. As such, we evaluated the potential modifying role of SNPs in CYP 
genes involved in xenobiotic metabolism with sufficient variant frequencies in population. 

While no patterns were seen for 1548T>C in CYP1A2 and IntG>A in CYP1A1, we found 

attenuated associations for −47A>C allele changes in CYP2A6, which is believed reduce 

its enzymatic activity. However, we could find no other published studies that have linked 

this allele change in CYP2A6 to metabolism of OPPs. Our study extends this literature by 

examining variants in multiple SNPs in CYP genes for their potential to modify associations 

to chronic, low dose exposure OPPs during pregnancy and preschool-aged EF.

Strength of this study include the use of a comprehensive battery of EF tests, with 

concurrent parent and teacher ratings and performance-based assessments, to better 

characterize the nature of any associations with EF outcomes. Consistency in associations 

across parent and teacher ratings provides further evidence of the reliability of our findings. 

This study was nested within the well-characterized MoBa cohort, which collected detailed 

covariate information on child and maternal characteristics, including dietary patterns 

during pregnancy. These data allowed us to account for important confounders, like dietary 

intake of fruits and vegetables, and maternal symptoms of ADHD, which have not been 

considered in a number of previous investigations. While EFs vary in the general population, 

children with ADHD tend to have lower scores across a range of EF-related outcomes as 

compared to typically developing children (Barkley, 1997). Thus, over-sampling children 

with non-normative EF may have selected for a uniquely susceptible population. Contrary 

to our expectations, DMP and DEPs were somewhat more strongly associated with EF in 

typically developing children, which may indicate that other pathways are more prominently 

related to EF in the setting of ADHD, including heritable pathways. Nonetheless, our 

design allowed us to explore these questions while accounting for the oversampling of 
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those symptomatic for preschool ADHD. Finally, there has been limited research focused 

on cognitive effects in the preschool period, however identifying deficits in this period 

can have important consequences for the child. Previous research has demonstrated the 

utility of interventions for EF at this age (Sasser et al., 2017; Traverso et al., 2015), with 

improvements being critical for educational success later in life (Jacobson et al., 2011; 

Willoughby et al., 2012).

Our study also has several limitations. We were limited to a single spot urine collection at 

mid-pregnancy to assess prenatal exposure to OPPs. OPPs are rapidly metabolized and a 

single measurement during pregnancy may not adequately reflect patterns of exposure over 

the entire period (Spaan et al., 2015). It is possible that study sample, which leveraged 

an on-site standardized assessment of Preschool ADHD nested within the large and 

well characterized MoBa cohort, is impacted by self-selection in relation to factors that 

influenced a mother’s willingness to bring her child in for a long assessment. We attempted 

to address this by using selection weighing approaches, and included in our multivariable 

adjusted covariates that may additionally predict participation in the clinical exam, such as 

maternal education, age, parity and maternal symptoms of ADHD. Finally, while we used a 

standardized clinical inventory of psychiatric symptoms validated for the preschool period to 

ascertain ADHD symptoms relative to DSM-IV criteria, this assessment is not equivalent to 

a diagnostic interview, which would include multiple sources of information and informants 

for a clinical diagnosis of ADHD. A previous study by Overgaard et al. (2021) in the 

MoBA, found that these criteria collected at ~3 years identified around half of children 

with persistent elevation of ADHD symptoms approximately 2 years later (Overgaard et al. 

2021).

5. Conclusions

In a study nested in a Norwegian, population-based birth cohort, we found that higher 

prenatal concentrations of OPP metabolites were associated with worse EF, such as 

emotional control, inhibition, and working, in preschool-aged children, measured using 

parent and teacher ratings on the BRIEF-P. OPP usage has reduced in recent decades due 

to regulations in the Europe, the US, and across the globe (Hertz-Picciotto et al., 2018b). 

As such, levels of exposure measured among women in this current study may be higher 

than exposure in pregnant women today. Nonetheless, dietary exposure to OPPs remains 

widespread even in countries with limited OPP usage, such as Norway, due to importation of 

agricultural products. Our study adds to the evidence that argues for more aggressive global 

regulation of OPPs in order to limit exposure during pregnancy.
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Highlights

1. We examined prenatal organophosphate pesticide exposure and child 

executive functions.

2. Higher prenatal OPP exposure was associated with worse teacher and parent 

rated EF.

3. Associations of OPP with performance assessments of EF were less 

consistent.

4. There was some evidence for modification by Q192R in PON1 and −47A>C 
in CYP2A6.
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Figure 1. Association of log-∑DMP and log-∑DEP with preschool-aged measurements of 
executive function in regression analysis with weighting by sampling fractions
CI, confidence interval; DMP, dimethylphosphate, DEP, diethylphosphate, NEPSY, A 

Developmental NEuro-PSYchological Assessment

a. Dimethyl- and diethyl phosphate metabolites concentrations were adjusted for specific 

gravity (SG) by standardizing to the geometric mean. Concentrations below the limit of 

detection were imputed from a log-normal distribution. Metabolites were summed by molar 

weight (∑DEP, ∑DMP), and log (natural) transformed. DEDTP was not included in ∑DEP 

as 99% of values were below the limit of detection. Samples were measured maternal spot 

urines collected at ~17 weeks’ gestation.

b. β for change in z-score per unit increase in log-∑DMP/DEP standardized so higher scores 

correspond to worse executive function. Weighted to the population eligible for the ADHD 

substudy using sampling fractions.

c. Adjusted for fruit consumption (servings/day), raw vegetable consumption (servings/

day), age at childbirth, pre-pregnancy body mass index (kg/m2), maternal ADHD score, 

nulliparity, birth year, season of urine collection, and child sex.
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Table 1.

Characteristics of the study population nested in the preschool ADHD study of the Norwegian Mother, Father 

and Child Cohort Study, 2004–2008

Maternal characteristics
a

Above/subthreshold 
Preschool ADHD, n = 262

Typically developing, n = 
78 Weighted

b
, n =340

Median or N
IQR or 

(%)
Median or 

N
IQR or 

(%)
Median or 

N
IQR or 

(%)

Age at childbirth (years) 30 27–33 30 28–35 30 27–34

Missing 1

Marital status

Single/other 15 (5.7) 3 (3.8) (3.4)

Cohabitating 132 (51) 33 (42) (45)

Married 114 (44) 42 (54) (51)

Missing 1

Education

Less than college completed 92 (35) 19 (24) (25)

College completed 110 (42) 34 (44) (47)

More than college 56 (22) 22 (28) (24)

Other 3 (1.1) 3 (3.8) (3.1)

Missing 1

Financial problems in last 12 months, yes vs. 
no 66 (26) 20 (26) (29)

Missing 7 1

Pre-pregnancy BMI (kg/m2) 23.4 21.1–26.0 23.5 20.8–25.7 23.7 20.9–26.0

Missing 8 1

Nulliparous, yes vs. no 157 (60) 43 (56) (57)

Missing 1

Self-reported depression before pregnancy, yes 
vs. no 28 (11) 7 (9.0) (8.7)

Maternal ADHD score
c

1 0–3 1 0–2 1 0–2

Missing 3 1

Smoking in first trimester, any vs. none 61 (23) 16 (20) (25)

Missing 1 1

Alcohol consumption in first trimester, any vs. 
none 32 (13) 8 (11) (10)

` Missing 21 5

Fish consumption during pregnancy (g/day) 24 14–36 27 17–36 26 17–37

Missing 4 3

Factors associated with OPP exposure

Contact with plant care substances
d
, yes vs. no 15 (5.9) 3 (3.9) (4.6)

Missing 14 2
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Maternal characteristics
a

Above/subthreshold 
Preschool ADHD, n = 262

Typically developing, n = 
78 Weighted

b
, n =340

Median or N
IQR or 

(%)
Median or 

N
IQR or 

(%)
Median or 

N
IQR or 

(%)

Paternal contact with plant care substances
e
, 

yes vs. no 12 (5.3) 10 (14) (12)

Missing 36 7

Living on a farm (vs. other residence type) 7 (2.7) 2 (2.6) (2.2)

Missing 2

Fruit consumption during pregnancy (servings/
day) 2.5 1.0 –2.5 2.5 1.0 –2.5 2.5 1.0 –2.5

Missing 6 4

Raw vegetable consumption during pregnancy 
(servings/day) 0.5 0.2–0.8 0.5 0.2–1.0 0.5 0.2–1.0

Missing 6 4

Use of ecologically-grown fruits during 
pregnancy (seldom/never vs. sometimes/often/
usually)) 69 (27) 25 (33) (31)

Missing 9 3

Use of ecologically-grown vegetables during 
pregnancy (seldom/never vs. sometimes/often/
usually) 93 (37) 27 (36) (33)

Missing 10 3

Season of urine collection

Summer 68 (26) 15 (19) (22)

Fall 56 (21) 12 (15) (14)

Winter 73 (28) 25 (32) (32)

Spring 65 (25) 26 (33) (32)

Child characteristics

Child age (month) 41.7 40.7–42.4 41.6 40.6–42.4 41.5 40.6–42.4

Missing 2 1

Child sex

Boy 116 (44) 36 (46) (43)

Girls 146 (56) 42 (54) (57)

Child birth year

2004 26 (9.9) 20 (26) (22)

2005 63 (24) 30 (38) (36)

2006 90 (34) 23 (29) (33)

2007 83 (32) 5 (6.4) (8.7)

N; number Med; Median; ADHD, attention-deficit/hyperactive disorder; BMI, body mass index; IQR, interquartile range, OPP, organophosphorus 
pesticide

a.
Maternal characteristics are at the time of enrollment (~15 weeks gestation) unless otherwise stated

b.
To account for the sampling procedures, we performed analysis weighted to the population eligible for the ADHD substudy using sampling 

fractions. Proportions based on the weighted population.
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c.
Maternal ADHD score was from the ADHD Self-Report Scale in the MoBa questionnaire completed when the child was 3 years old.

d.
Mothers were asked about contact weedkiller, insecticides, and fungicides during the six months since enrollment.

e.
Fathers were asked about contact with weedkiller, insecticides, and fungicides in the six months before wife became pregnant.
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