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Abstract

Analyzing radiology reports is a time-consuming and error-prone task, which raises the need for 

an efficient automated radiology report analysis system to alleviate the workloads of radiologists 

and encourage precise diagnosis. In this work, we present RadText, a high-performance open-

source Python radiology text analysis system. RadText offers an easy-to-use text analysis 

pipeline, including de-identification, section segmentation, sentence split and word tokenization, 

named entity recognition, parsing, and negation detection. Superior to existing widely used 

toolkits, RadText features a hybrid text processing schema, supports raw text processing and 

local processing, which enables higher accuracy, better usability and improved data privacy. 

RadText adopts BioC as the unified interface, and also standardizes the output into a structured 

representation that is compatible with Observational Medical Outcomes Partnership (OMOP) 

Common Data Model (CDM), which allows for a more systematic approach to observational 

research across multiple, disparate data sources. We evaluated RadText on the MIMIC-CXR 

dataset, with five new disease labels that we annotated for this work. RadText demonstrates highly 

accurate classification performances, with a 0.91 average precision, 0.94 average recall and 0.92 

average F-1 score. We also annotated a test set for the five new disease labels to facilitate future 

research or applications. We have made our code, documentations, examples and the test set 

available at https://github.com/bionlplab/radtext.
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I. Introduction

Radiology report analysis has long been a labor-some and error-prone process [1], which 

raises the need for accurate analysis tools to alleviate the workloads of radiologists and 

enhance accurate diagnosis. Though existing natural language processing (NLP) toolkits 

such as cTAKES [2], scispaCy [3], MedTagger [4], and CLAMP [5] have been widely used 

in text mining of clinical narratives in electronic health record (EHR), none of these tools on 

the use of NLP in EHRs is specific to radiology domain.

One recognized challenge is the requirement of proper radiology domain knowledge, 

without which the process of analyzing the structure of radiology text and interpreting the 

underlying meaning would be highly error-prone. For example, standardized terminology for 

each concept is important for NLP applications. Existing clinical NLP systems frequently 

use UMLS Methathesaurus as the medical lexicon [6]. However, few support RadLex, 

which offers radiology-specific terms such as devices and imaging techniques [7]. As a 

result, ambiguous terms (e.g., acronyms) can be interpreted differently. Another example 

is negation detection, which is also essential in radiology because diagnostic imagining is 

often used to rule out a condition. Systems in the clinical domain frequently implement this 

functionality by combining manually crafted rules with key terms based on the syntactic 

analysis [8], [9]. While they usually achieve good results in the general clinical domain, 

most cannot be directly applied to radiology reports mostly because sentences in radiology 

reports are usually telegraphic, with missing subjects and verbs. In addition, sentences in 

the radiology reports also contain long, complicated noun phrases. These obstacles pose a 

challenge to existing parsers that are modeled over well-formed sentences [10]. Therefore, 

the performance of negation detection algorithms significantly drops [11] in the case of 

radiology reports. In such cases, filling in the gaps requires additional rules to handle 

ill-formed sentences.

Another challenge is that every software intends to perform tasks on data in various formats. 

It thus remains challenging to seamlessly interchange data in and between different NLP 

tools. Such a bottleneck prevents combining these tools into a larger, more powerful, and 

more capable system in the clinical domain. To bridge this gap, the OMOP Common Data 

Model (CDM) is proposed to harmonize disparate observational databases of EHR [12]. 

The goal is to transform data contained within those databases into a common format (data 

model) and representation (terminologies, vocabularies, coding schemes) so that systematic 

analyses can be conducted in the common format. While OMOP CDM is an excellent 

schema to store structured data and provides a NOTE_NLP table to store NLP final results, 

it does not support representing complex, messy data between different NLP modules, 

such as hierarchical note structure (section, passage, sentence, token). Furthermore, it is 

almost impossible to store the parsing trees of each sentence in NOTE_NLP table. However, 

such text-preprocessing information is frequently reused in NLP algorithms and should be 

interchangeable and reusable. In addition, OMOP CDM must be realized in a relational 

database, which most of the common NLP tools do not support. These limitations result 

in the main barrier to the reuse of tools and modules and the development of text mining 

pipelines customized for different workflows. One alternative solution is the BioC format 

[13], an XML-based simple format to share text data and annotations. Unlike OMOP 
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CDM, BioC emphasizes simplicity, interoperability, broad use and reuse of data interchange. 

It is thus suitable to represent, store and exchange the NLP results, especially complex 

intermediate results, in a simple manner. However, as initially designed for sharing different 

annotations relevant for biomedical research, BioC cannot be directly used for clinical 

notes. To overcome this issue, we propose to extend the BioC format with the OMOP 

CDM schema, called BioC-CDM, to store the results generated in the annotation process of 

clinical NLP that can be easily converted and imported into OMOP CDM.

In this work, we present RadText, an open-source Python radiology text analysis system. 

Unlike previous methods, RadText features a hybrid text analysis pipeline that utilizes high-

performance third-party implementations, including machine learning-based methods and 

rule-based methods. As shown in Table I, compared to existing widely-used NLP toolkits, 

RadText has the following advantages:

• Unified Interface. RadText uses BioC-CDM format as the unified interface 

throughout the system pipeline. BioC format simplifies data representation and 

data exchange and satisfies all the NLP tasks requirements in RadText.

• Compatible with OMOP CDM. RadText standardizes its outputs into a 

structured representation compatible with OMOP CDM. This allows for 

transforming data into a common representation and further enables a systematic 

analysis of disparate observational data sources.

• Easy to Use. RadText provides a user-friendly interface. RadText sequentially 

runs de-identification, section segmentation, sentence split and word 

tokenization, named entity recognition, parsing, and negation detection. Modular 

choice of design greatly improves flexibility, which enables users to adjust any 

module according to their specific use case, and to re-run each module if needed.

• Raw Text Processing. RadText takes raw text as input, which means no text 

preprocessing (e.g., tokenization, annotation) is needed. This greatly enhances 

the usability and generalizability of RadText.

• Local Machine. The entire system pipeline of RadText is running locally. 

Therefore no data will be uploaded to remote servers, greatly preserving user 

data privacy.

• Open Source. To facilitate and drive future clinical NLP research and 

applications, RadText is fully open source and we make the source code, 

documentation, examples, and human-annotated test sets publicly available.

II. Related Work

Various NLP toolkits have been introduced to the clinical NLP community [14] and have 

been successfully applied to the information extraction task from clinical text. MetaMap 

[15] uses a knowledge-intensive approach based on symbolic, NLP, and computational-

linguistic techniques to map the biomedical text into the Unified Medical Language System 

(UMLS) Metathesaurus [16]. Apache Clinical Text Analysis and Knowledge Extraction 

System (cTAKES) focuses on extracting clinical information from electronic health record 
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free text, including processing clinical notes, and identifying clinical named entities [2]. 

Different from MetaMap and Apache cTAKES, which utilize machine learning methods 

to map words to medical concepts, MedTagger for indexing is built upon a fast string 

matching algorithm leveraging lexical normalization [4]. It thus requires rules designing 

and expert knowledge engineering. Instead of conducting sole information extraction, 

medspaCy [17] and Clinical Language Annotation, Modeling and Procssing (CLAMP) [5] 

are designed to be modularized so that users can choose from various choices of modular 

components for their individual applications. Medspacy features performing clinical NLP 

and text processing tasks with the popular spaCy [18] framework, which provides a 

robust architecture for building and sharing custom, high-performance NLP pipelines [17]. 

CLAMP also highlights enabling users to quickly build customized NLP pipelines for their 

clinical NLP tasks. Distinguished from these previous work, RadText aims to provide a 

high-performance clinical NLP toolkit in Python that focuses on radiology text analysis. 

RadText hence adopts a hybrid radiology text processing pipeline, bringing together a 

number of third-party analysis tools in the radiology domain, with each tool implementing 

one or more components of RadText’s working pipeline.

III. System Design and Architecture

A. BioC-CDM: BioC format compatible with OMOP CDM

We propose BioC-CDM to store the results generated in the annotation process of clinical 

NLP in the BioC format that can be easily converted and imported into OMOP CDM. A 

BioC-format file is an XML document as the basis of data class representation and data 

exchange, which can satisfy the needs of RadText’s NLP tasks throughout the entire pipeline 

[13]. OMOP CDM harmonizes disparate coding systems to a standardized vocabulary with 

minimal information loss. As a result, adopting BioC-CDM as RadText’s unified interface 

and using it as a common format representing all modular components’ output, eliminates 

the barrier of integration and greatly enhances RadText’s interoperability. Table II shows the 

current and our proposed mappings between OMOP CDM and BioC. Section IV-B1 shows 

how RadText can be used to implement mutual conversion between BioC format and OMOP 

CDM.

B. Pipeline

The implementation of RadText is highly modular, where the modules range from de-

identification to negation detection (see Figure 1). We highlight the details of each module in 

this section.

1) De-Identification: Radiology reports often contain protected health information 

(PHI), such as patient and provider names, addresses, and numbers [19]. Removal of PHI is 

important; otherwise, radiology reports remain largely unused for research. To address this 

issue, RadText uses Philter [19] for de-identification. It uses both rule-based and statistical 

approaches to remove identifiers defined in the HIPAA Safe Harbor guidelines [20].
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The following code snippet shows an example of RadText’s de-identification output. The 

mentions of patient’s name, provider’s name, and dates belong to PHI. They are replaced 

with a sequence of “X”s respectively for de-identification purpose.

2) Section Segmentation: Although radiology reports are in the form of free text, 

they are often structured in terms of sections, such as INDICATION, FINDINGS, and 

IMPRESSION. Identifying section types and section boundaries can help various successive 

processing steps to use a subset of sections or assign specific weights to the content 

of different sections [21]. For example, effusion and edema were mentioned in the 

INDICATION section of the sample report below. But we should not identify them as 

positive because the radiologist ruled them out in the FINDINGS section. Therefore, a 
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named entity recognition tool that does not differentiate between sections will likely make 

errors.

In a preprocessing step, RadText splits each report into sections and provides two 

options: NegBio or MedSpaCy. Both approaches rely on hand-coded heuristics for section 

segmentation (boundary detection) and achieve good performances.

• NegBio. The heuristics in NegBio are based on conventions like the 

capitalization of headers and the presence of colon and blank lines between 

headers and text. The set of heuristics was collected from the NIH Chest X-ray 

dataset [22] and the MIMIC-CXR dataset [23].

• MedspaCy. MedspaCy includes an implementation of clinical section detection 

based on rule-based matching of the section titles with the default rules adapted 

from SecTag [24] and expanded through practice. The default rules were 

collected from different resources such as the Logical Observation Identifiers 

Names and Codes (LOINC) headers [25] and Quick Medical Reference (QMR) 

Findings Hierarchy [26] and were further revised based on the actual clinical 

notes from Vanderbilt EHR.

The following code snippet shows an example of the section segmentation output for the 

sample report above.

3) Sentence Split and Word Tokenization: RadText tokenizes the input raw text and 

groups tokens into sentences as one part of preprocessing. RadText offers three options to 

tokenize and split reports into sentences, including NLTK [27], spaCy [18], and Stanza [28].
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• NLTK. The sentence tokenizer in NLTK uses an unsupervised algorithm to build 

a model for abbreviation words, collocations, and words that start sentences. It 

then uses that model to find the sentence boundaries [27].

• spaCy. Sentence segmentation is part of spaCy’s English pipeline. It uses a 

variant of the non-monotonic arc-eager transition-system [29] with the addition 

of a “break” transition for sentence segmentation [18].

• Stanza. Stanza combines tokenization and sentence segmentation from raw text 

as one single module in its pipeline. Stanza models it as a tagging task over 

character sequences, where the model predicts whether a given character is the 

end of a token, end of a sentence, or end of a multi-word token.

The following code snippet gives an example of RadText’s sentence split output. The input 

paragraph is split into three Sentence instances.

4) Named Entity Recognition: Named entity recognition (NER) aims to determine 

and identify the words or phrases in text into predefined labels that describe the concepts 

of interest in a given domain [30]. To recognize the radiology-domain named entities 

(e.g., thoracic disorders) in each input sentence, RadText offers two options, spaCy-enabled 

rule-based method and MetaMap.

• Rule-based Regular Expression. Rule-based NER methods use regular 

expressions that combine information from terminological resources and 

characteristics of the entities of interest manually constructed from report 

corpus. RadText adopts spaCy’s PhraseMatcher as part of this component. Rules 

defining concepts specify the text regular patterns to be matched and additional 

information about a concept, such as its unique id in the terminology.

• MetaMap. UMLS is the most comprehensive standard terminology that is 

typically used as the basis for clinical concept extraction. Enabled by MetaMap, 

RadText is able to detect all the concepts in UMLS and map them to Concept 

Unique Identifier (CUI). In general, MetaMap is much more comprehensive than 
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vocabulary-based patterns. But at the same time, MetaMap could be noisy and 

less accurate.

The following code snippet shows an example of RadText’s NER output, where 

“Pneumonia” and “Pneumothorax” are correctly recognized and their corresponding UMLS 

concept IDs are also identified.

5) Parsing: RadText utilizes the universal dependency graph (UDG) to describe the 

grammatical relationships within a sentence in a way that can be understood by non-linguists 

and effectively used by downstream processing tasks [11]. UDG is a directed graph, which 

represents all universal dependency information within a sentence. The vertices in a UDG 

represent the information such as the word, part-of-speech and the word lemma. The edges 

in a UDG represent the typed dependencies from the governor to its dependent and are 

labeled with the corresponding dependency type. UDG effectively represents the syntactic 

head of each word in a sentence and the dependency relations between words. Figure 2 

shows a UDG example of the sentence “There is no pleural effusion or pneumothorax” 

generated by Stanza [28]. In this example, “pleural” is the adjectival modifier of “effusion” 

and “effusion” and “pneumothorax” are coordinated findings.

To obtain the UDG of a sentence, RadText provides two options, Stanza or Bllip Parser with 

the Stanford dependencies converter [31].

• Stanza. Stanza’s dependency parsing module builds a tree structure of words 

from the input sentence, representing the syntactic dependency relations between 

words. After tokenization, multi-word token (MWT) expansion, part-of-speech 
(POS) and morphological features tagging, and lemmatization, each sentence 

would have been directly parsed into the universal dependencies structure [28].

• Bllip Parser with Stanford dependencies converter. RadText first parses each 

sentence to obtain the parse tree using the Bllip parser, which was trained 

with the biomedical model [31], [32]. It then applies the Stanford dependencies 
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converter on the resulting parse tree with the CCProcessed and Universal option 

[33], [34] to derive the universal dependencies.

The following code snippet shows an example of RadText’s parsing result. In the sample 

sentence, “effusion” and “pneumothorax” are respectively assigned with node id of “T31” 

and “T33”. Derived from the universal dependency result, there is a conjunction relation 

between “T31” and “T33”.

6) Negation Detection: Negative and uncertain medical findings are frequent in 

radiology reports [35]. Since they may indicate the absence of findings mentioned within 

the radiology report, identifying them is as important as identifying positive findings. For 

negation and uncertainty detection, RadText employs NegBio [11], [22], which utilizes 

universal dependencies for pattern definition and subgraph matching for graph traversal 

search so that the scope for negation/uncertainty is not limited to the fixed word distance 

[33].

The following code snippet shows an example of RadText’s negation detection output. 

In this sample sentence, “pneumothorax” is identified as negative according to NegBio’s 

internal negation rule of ID “nn180”.
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IV. System Usage

RadText is designed to have a user-friendly interface and allow quick out-of-the-box usage 

for radiology text analysis. To achieve this, RadText provides automated pipeline usage and 

step-by-step modular choice of design. Therefore, Users can run RadText directly through 

the command line interface or import RadText as a Python library to use any functionality 

through RadText’s API.

A. Command Line Usage

The following command runs RadText’s entire pipeline in the sequential order of de-

identification, section segmentation, sentence split and word tokenization, NER, parsing, 

and negation detection. The default section title vocabulary for the section segmentation 

module and concept vocabulary for the NER module are designed to be configurable. 

All intermediate result files will be generated and saved for use and reuse purpose. The 

automatic pipeline execution enables users to use RadText as an out-of-the-box toolkit 

without the need and efforts to figure out how each module of RadText works.

In addition to running RadText’s pipeline as a whole, users can also choose to run every 

single module of RadText by configuring the argument of the command above (see Table 

III). This enables users to re-run each single modular component to reproduce the result in 

case of any error, without the need of re-running RadText’s entire pipeline. All intermediate 

results are saved so that users can easily check the output of each module, which we believe 

will greatly facilitate error analysis and enhance RadText’s flexibility. The following code 

snippet shows a part of RadText’s pipeline.
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B. Python API Usage

RadText can be directly imported as a Python library. Users can access all the functionalities 

of RadText through Python API.

1) BioC-CDM Conversion: RadText’s Python API supports the mutual conversion 

between BioC format and OMOP CDM. The following code snippet shows an example 

of converting BioC format to CDM and then converting CDM back to BioC format.
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2) Pipeline Usage: The following code snippet shows a minimal usage of RadText’s 

entire pipeline through Python API, which annotates a sample report and printing out all 

annotation results.

After running all modules, RadText returns a Collection instance that stores the final 

annotation results. Within a Collection instance, the annotations are stored in either Passage 

or Sentence classes. The following code snippet shows how we can access the detected 

disease findings and the corresponding negation status after obtaining the Collection 

instance.

RadText’s Python API also allows partial pipeline execution. Therefore, users can pause 

after any module of RadText to access the intermediate NLP results. Since each module 

requires the output of the previous module, RadText’s API will automatically run every 

module until it finishes running the specified module.

The following code snippet shows an example of the partial execution of RadText. By 

specifying the annotator to be split_section, RadText will run de-identification and section 

segmentation sequentially. The output Collection instance will have the annotation results of 

section segmentation.
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V. Evaluation

A. Dataset

We evaluated RadText on the MIMIC-CXR dataset [23]. MIMIC-CXR is a large publicly 

available dataset of radiographic studies performed at the Beth Israel Deaconess Medical 

Center. This dataset contains 227,827 radiology reports in total.

B. Experiments and Results

We evaluated RadText’s performance on five new disease findings that were not 

covered by previous works, including Calcification of the Aorta, Pneumomediastinum, 

Pneumoperitoneum, Subcutaneous Emphysema, Tortuous Aorta. We randomly selected 200 

test reports from the MIMIC-CXR dataset and manually annotated the five new disease 

findings. We evaluated RadText by comparing the results of RadText with the manually-

annotated gold standard. Precision, recall, and F1-score were computed accordingly based 

on the number of true positives, false positives and false negatives (see Table IV). The 

average precision score is 0.91, with the highest precision being 1.0 for Calcification of the 

Aorta and Tortuous Aorta; the average recall score is 0.94, with the highest recall being 1.0 

for Pneumomediastinum and Pneumoperitoneum; and the average F-1 score is 0.92, with the 

highest F-1 score being 0.97 for Tortuous Aorta. RadText achieves an average precision of 

0.91, an average recall of 0.94, and an average F-1 score of 0.92.

VI. Conclusion and Future Work

In this work, we presented RadText, a high-performance Python radiology text analysis 

system. We highlighted that RadText features hybrid neural analysis, raw text processing 

and local processing, bringing higher accuracy, better usability and improved data privacy. 

RadText’s user-friendly user interface, easy-to-use command line usage and Python API 

allow users to have great flexibility on the radiology text analysis task. We evaluated 

RadText on the MIMIC-CXR dataset, especially on five new disease findings that were not 

covered by previous work, and the results demonstrated RadText’s superior performances 

on radiology report analysis. RadText employs BioC-CDM, which stores the results in the 

extended BioC format that is compatible with OMOP CDM. RadText’ compatibility with 

OMOP CDM supports collaborative research across disparate data sources.

In the future, RadText is going to be continuously maintained and expanded as 

new resources become available. For example, the NER module can be improved by 

incorporating scispaCy, developed for processing biomedical, scientific or clinical text [3]. 
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By making RadText publicly available, we envision it can facilitate future research and 

applications in the healthcare informatics community.
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Fig. 1. 
Overview of RadText’s NLP pipeline, main components and implementations.
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Fig. 2. 
The obtained dependency graph of “There is no pleural effusion or pneumothorax” using 

Stanza [28].
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TABLE I

Feature comparisons of RadText against other widely used NLP toolkits. Fully Neural: full neural network 

pipeline.

System Language Raw-Text Processing Locally Process Fully Neural Open Source

MetaMap Prolog/Java ✓ Hybrid ✗ ✓

cTakes Java ✓ ✓ ✗ ✓

MedSpaCy Python ✓ ✓ ✗ ✓

MedTagger Java/C ✓ ✓ ✗ ✓

CLAMP Java ✓ ✓ Hybrid ✗

RadText Python ✓ ✓ Hybrid ✓

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2022 September 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

TA
B

L
E

 II

M
ap

pi
ng

 r
ad

io
lo

gy
 n

ot
es

 to
 th

e 
O

M
O

P 
C

D
M

 a
nd

 B
io

C
 u

si
ng

 R
ad

Te
xt

.

O
M

O
P

 C
D

M
 fi

el
d

B
io

C
 fi

el
d

B
io

C
 c

la
ss

D
es

cr
ip

ti
on

no
te

_n
lp

_i
d

id
an

no
ta

tio
n

A
 u

ni
qu

e 
id

en
tif

ie
r 

fo
r 

ea
ch

 te
rm

 e
xt

ra
ct

ed
 f

ro
m

 a
 n

ot
e.

no
te

_i
d

do
c

do
cu

m
en

t
A

 f
or

ei
gn

 k
ey

 to
 th

e 
N

ot
e 

ta
bl

e,
 u

ni
qu

el
y 

id
en

tif
yi

ng
 th

e 
no

te
.

se
ct

io
n_

co
nc

ep
t_

id
se

ct
io

n_
co

nc
ep

t_
id

pa
ss

ag
e

A
 f

or
ei

gn
 k

ey
 to

 th
e 

pr
ed

ef
in

ed
 C

on
ce

pt
 in

 th
e 

St
an

da
rd

iz
ed

 V
oc

ab
ul

ar
ie

s 
re

pr
es

en
tin

g 
th

e 
se

ct
io

n 
of

 th
e 

ex
tr

ac
te

d 
te

rm
.

sn
ip

pe
t

-
-

A
 s

m
al

l w
in

do
w

 o
f 

te
xt

 s
ur

ro
un

di
ng

 th
e 

te
rm

.

of
fs

et
of

fs
et

Pa
ss

ag
e 

se
nt

en
ce

 
an

no
ta

tio
n

C
ha

ra
ct

er
 o

ff
se

t o
f 

th
e 

ex
tr

ac
te

d 
te

rm
 in

 th
e 

in
pu

t n
ot

e.

le
xi

ca
l_

va
ri

an
t

te
xt

an
no

ta
tio

n
R

aw
 te

xt
 e

xt
ra

ct
ed

 b
y 

th
e 

N
L

P 
to

ol
.

no
te

_n
lp

_c
on

ce
pt

_i
d

le
m

m
a

an
no

ta
tio

n
A

 f
or

ei
gn

 k
ey

 to
 a

 C
on

ce
pt

 ta
bl

e,
 r

ep
re

se
nt

in
g 

th
e 

no
rm

al
iz

ed
 c

on
ce

pt
 o

f 
th

e 
ex

tr
ac

te
d 

te
rm

.

no
te

_n
lp

_s
ou

rc
e_

co
nc

ep
t_

id
so

ur
ce

_c
on

ce
pt

_i
d

an
no

ta
tio

n
A

 f
or

ei
gn

 k
ey

 to
 a

 C
on

ce
pt

 ta
bl

e 
th

at
 r

ef
er

s 
to

 th
e 

co
de

 in
 th

e 
so

ur
ce

 v
oc

ab
ul

ar
y 

us
ed

 b
y 

th
e 

N
L

P 
sy

st
em

.

nl
p_

sy
st

em
nl

p_
sy

st
em

co
lle

ct
io

n
N

am
e 

an
d 

ve
rs

io
n 

of
 th

e 
N

L
P 

sy
st

em
 th

at
 e

xt
ra

ct
ed

 th
e 

te
rm

.

nl
p_

da
te

,n
lp

_d
at

e_
tim

e
da

te
co

lle
ct

io
n

T
he

 d
at

e 
of

 th
e 

no
te

 p
ro

ce
ss

in
g.

te
rm

_e
xi

st
s

ex
is

ts
1

an
no

ta
tio

n
If

 th
e 

pa
tie

nt
 a

ct
ua

lly
 h

as
 o

r 
ha

d 
th

e 
co

nd
iti

on
.

te
rm

_t
em

po
ra

l
te

m
po

ra
l

an
no

ta
tio

n
If

 a
 c

on
di

tio
n 

is
 “

pr
es

en
t”

 o
r 

ju
st

 in
 th

e 
“p

as
t”

.

te
rm

_m
od

if
ie

rs
m

od
if

ie
rs

an
no

ta
tio

n
D

es
cr

ib
es

 c
om

pa
ct

ly
 a

ll 
th

e 
m

od
if

ie
rs

 e
xt

ra
ct

ed
 b

y 
th

e 
N

L
P 

sy
st

em
.

1 cu
rr

en
tly

 c
al

le
d 

“n
eg

at
io

n”

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2022 September 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 21

TABLE III

Command line arguments.

Argument Description

csv2bio Transforms .csv text file into a BioC-format XML file.

deid De-identifies all the reports.

split_section Segments sections.

preprocess Splits sentences and tokenizes words.

ner Recognizes named entities.

parse Parses to obtain the universal dependency graph.

neg Detects negations.

collect_label Collects and merges labels.
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TABLE IV

RadText performances on five new disease findings.

Disease Finding Precision Recall F-1

Calcification of the Aorta 1.00 0.87 0.93

Pneumomediastinum 0.70 1.00 0.82

Pneumoperitoneum 0.88 1.00 0.94

Subcutaneous Emphysema 0.95 0.91 0.93

Tortuous Aorta 1.00 0.94 0.97

Macro Average 0.91 0.94 0.92

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2022 September 19.


	Abstract
	Introduction
	Related Work
	System Design and Architecture
	BioC-CDM: BioC format compatible with OMOP CDM
	Pipeline
	De-Identification:
	Section Segmentation:
	Sentence Split and Word Tokenization:
	Named Entity Recognition:
	Parsing:
	Negation Detection:


	System Usage
	Command Line Usage
	Python API Usage
	BioC-CDM Conversion:
	Pipeline Usage:


	Evaluation
	Dataset
	Experiments and Results

	Conclusion and Future Work
	References
	Fig. 1.
	Fig. 2.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV

