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Abstract

There have been dramatic changes worldwide in the attitudes and consumption of recreational and 

medical cannabis. Cannabinoid receptors, which mediate the actions of cannabis, are abundantly 

expressed in brain regions known to mediate neural processes underlying reward, cognition, 

emotional regulation and stress responsivity relevant to addiction vulnerability. Despite debates 

regarding potential pathological consequences of cannabis use, cannabis use disorder is a clinical 

diagnosis with high prevalence in the population and that often has its genesis in adolescence 

and in vulnerable populations associated with psychiatric comorbidity, genetic and environmental 

factors. Integrated information from human and animal studies are beginning to expand insights 

regarding neurobiological systems associated with cannabis use disorder which often share 

common neural characteristics as other substance use disorders that could inform prevention and 

treatment strategies.

Editorial summary

The increasing use of cannabis has brought significant attention to cannabis use disorder (CUD) 

and its neurobiological underpinnings. Here Ferland and Hurd discuss risk factors related to the 

development of CUD its neurobiological characteristics.

Marijuana (Cannabis) is one of the most popular recreational drugs worldwide, with 

between 128 and 238 million people reporting use1. Over the past 30 years there has 

been a dramatic shift in attitudes toward the use of cannabis, steered in large part by 

rapidly changing sociopolitical perceptions and laws regarding this divisive drug. Over 30 

states in the USA and 22 countries have legalized some form of marijuana, either for 

medical use and/or recreational consumption, and these numbers are growing. The dramatic 

pendulum shift in the broad societal use of cannabis has now prompted vigorous research 
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efforts focused on cannabis to obtain more in-depth biological insights about its potential 

risk and/or health benefits. Significant knowledge exists regarding the pharmacological 

actions of prominent cannabinoids in the cannabis plant, but scientific attention specifically 

focused on neurobiological underpinnings of cannabis addiction has been somewhat limited. 

Indeed, there remains contention as to whether it is even possible to develop an addiction 

to cannabis, though based on clinical diagnostic criteria, it is estimated that past-year 

diagnosis of cannabis use disorder (CUD) amongst cannabis users is approximately 30%2. 

This number is similar to drugs such as heroin (25%)3 and cocaine (36.5%)4. However, the 

relatively high percentage of CUD diagnosis relates to the greater prevalence of cannabis 

use in the general population2 and not to enhanced addiction liability, which is low for 

cannabis5. Additionally, cannabis use does not lead to fatal overdoses as those other drugs 

can, but as with most substance use disorders (SUDs), CUD carries a significant psychiatric 

burden6.

CUD develops as a consequence of chronic neuroadaptations that occur over time to the 

repeated use of cannabis. The primary psychoactive component of cannabis contributing 

to its euphorigenic effects is delta-9-tetrahydrocannabinol (Δ9-THC), which is one of ~140 

cannabinoids identified in the cannabis plant, along with over 440 additional compounds 

including terpenoids that make up the complex effects of the plant7. THC concentrations in 

common recreational plants have increased 700–2,000% over recent decades8, with current 

strains containing up to 29% THC9. As with all drugs of abuse, as the concentration 

of the psychoactive component increases, so does the risk for developing a SUD, thus 

prompting current concerns of increased CUD risk. The consumption of cannabis directly 

targets the body’s natural endogenous endocannabinoid (eCB) system, which comprises the 

receptors that mediate the direct actions of cannabinoids, as well as the eCB lipid ligands 

(arachidonoyl ethanolamide, also called anandamide; and 2-arachidonoylglycerol, also 

called 2-AG) and the associated enzymes responsible for their synthesis and degradation10. 

The stimulation of cannabinoid receptors by THC initiates a cascade of broad biological 

events due to their abundant expression throughout the brain and body10,11. The Gi/Go-

protein-coupled cannabinoid receptor subtype 1 (CB1R) is the predominant form in the 

brain that mediates the psychoactive effects of cannabis10,11, and it is expressed in multiple 

brain areas including in the cerebral cortex, basal ganglia, hippocampus, cerebellum, 

amygdala, brainstem and hypothalamus12,13. CB2 receptors, though very low in abundance 

in the brain, are implicated in neurobiological actions of THC relevant to addiction14, but are 

predominantly in immune cells in the periphery. Activation of cannabinoid receptors impacts 

multiple physiological functions and behaviors that extend beyond the acute intoxication 

effects of cannabis and that can promote the development of CUD via alterations of neural 

systems regulating cognition, memory, reward, mood and stress sensitivity.

In this review, we provide an overview of CUD, focusing on different aspects of its 

risk, and explore neurobiological adaptations (neural activity, morphology, neurochemical 

and molecular events) relevant to CUD on the basis of human studies and animal 

models. Altogether, the accruing evidence reflects neurobiological signatures mirroring key 

components of addiction pathology.
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Deconstructing the vulnerability to cannabis use disorder

Similarly to other SUDs, a diagnosis of CUD is characterized by problematic use that 

includes escalation with loss of control over use, repeated failures to reduce use or quit, and 

continued use despite negative consequences15. Additionally, the Diagnostic and Statistical 
Manual of Mental Disorders (DSM)-5 includes the diagnostic criteria of “craving” and 

“withdrawal” among the symptoms15. Both symptoms are common in CUD, with ~60% of 

CUD individuals experiencing craving for the drug and 32% undergoing withdrawal6. These 

and other negative features of CUD appear to contribute to high relapse (~67%)16. While the 

high prevalence of CUD is partially attributed to a greater number of people consuming the 

drug due to its wide availability2, emerging research has begun to identify factors that may 

contribute to vulnerability and thus could provide insights about neurobiological processes 

relevant to CUD sensitivity. The complex and interrelated etiological factors that appear to 

contribute to risk range from genetics to psychiatric and psychological susceptibility and 

environmental factors.

Heredity estimates for a diagnosis of cannabis abus and dependence (DSM-III, DSM-IV) 

range from 21–78%17,18. This wide range may relate to distinct vulnerabilities relevant to 

different stages of drug use and/or prevalence of the disorder depending on the incidence 

of other factors (for example, drug availability, as shown in twin studies that cannabis 

availability explains most of the shared environmental risk of cannabis initiation and 

abuse19). Attempts to identify biological contributions underlying the genetic etiology 

of CUD have historically used candidate gene association strategies based on specific 

a priori neurobiological hypotheses, but current efforts have prioritized hypothesis-free 

genome-wide association study (GWAS) approaches. Early GWAS studies of cannabis 

abuse and dependence failed to achieve genome-wide significance, but more recent 

large GWAS investigations have identified risk loci associated with cannabis pathology. 

Unfortunately, none of the risk loci overlap across studies. Agrawal and colleagues identified 

a cluster of correlated single-nucleotide polymorphisms (SNPs) within chromosome 10 

(spanning multiple genes) associated with cannabis dependence20. Demontis and colleagues 

identified one genome-wide significant intergenic risk locus on chromosome 8 (index variant 

rs56372821) associated with CUD. rs56372821 is an expression quantitative trait locus 

(eQTL) for the gene encoding cholinergic receptor nicotinic alpha-2 subunit (CHRNA2)21. 

CHRNA2 is implicated in cigarette smoking-related phenotypes22, and individuals with 

CUD are highly comorbid for nicotine use (~70–90% report smoking cigarettes). 

However, rs56372821 does not meet genome-wide significance for nicotine phenotypes23, 

indicating a potential specific relationship to CUD. Another large meta-analysis GWAS—

the International Cannabis Consortium study—focusing on lifetime cannabis use24, not 

CUD, revealed eight independent SNP associations in multiple chromosome regions. The 

majority of these were located in or near genes that encode cell adhesion proteins: 

CADM2 (cell adhesion molecule 2; rs2875907 top SNP hit), NCAM1 (neural cell adhesion 

molecule; rs9919557) and SDK1 (sidekick cell adhesion molecule; rs10085617). The lack 

of replication even with GWAS strategies can be due to factors similar to candidate gene 

approaches, such as heterogeneity of environment (prenatal and/or postnatal), psychiatric 

comorbidity and behavioral traits, and the cannabis-related phenotype being studied since, 
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for example, lifetime cannabis use and CUD diagnosis represent different aspects of 

cannabis use pathology including severity of use. Importantly, CUD is a polygenic disorder 

with multiple contributing genes. Furthermore, comparison control groups often differ 

between studies and may or may not include individuals who have ever experimented with 

the drug. Interestingly, excluding control subjects with no cannabis exposure enhanced 

the strength of genetic association with cannabis dependence observed by Sherva et 

al.; nevertheless, the top SNP identified (rs143244591; in RP11–206M11.7, an antisense 

transcript) still did not match other GWAS findings25.

In addition to genetics, multiple factors contribute to addiction vulnerability, such as the 

high comorbidity with other psychiatric conditions. An extensive literature documents 

a strong relationship between cannabis use and the development of psychosis and 

schizophrenia, particularly with increasing THC content26 and in individuals with certain 

genetic risks27. There is also a spectrum of other pathologies comorbid with CUD6. Aside 

from other substances of abuse (mainly nicotine and alcohol), the most common psychiatric 

comorbidities with CUD are mood disorders (primarily bipolar I), post-traumatic stress 

disorder, personality disorders (in particular borderline and schizotypal) and generalized 

anxiety disorder (Fig. 1). The strongest associations are in individuals with severe CUD, 

where there is a six- to ten-fold increase in the chance of such co-occurrence6. It is still 

unclear whether comorbid disorders, which also have strong genetic correlates, predate 

or are a consequence of cannabis use. Monitoring individuals longitudinally suggest that 

frequent cannabis use and its abuse are associated with increased risk of a subsequent 

mental health disorder28,29. Conversely, having any mood, anxiety or other substance-use 

pathology at baseline also predicts future cannabis use and dependence28. Behavioral and 

neurocognitive traits are also an important feature of CUD. As with other drugs of abuse, 

sensation-seeking and reward sensitivity have been implicated with the initiation of use 

and severity of the CUD30. The recent International International Cannabis Consortium 

GWAS also revealed a genetic correlation between lifetime cannabis use and traits such 

as risk-taking behavior24, highlighting the contribution of genetic variants to phenotypes 

associated with drug use.

Consistent with the characteristics of a complex psychiatric disorder, environmental factors 

also modulate predisposition and the course of cannabis use and CUD. For example, 

increased incidence of traumatic or challenging experiences (including childhood trauma 

or family or neighborhood adverse events17,31) strongly influences CUD risk. Studies 

incorporating genetic, environmental and behavioral characteristics have also demonstrated 

complex interactions between genes and environment32,33, emphasizing multiple intrinsic 

and extrinsic factors that collectively mediate CUD susceptibility. Irrespective of other 

factors, age of onset is a strong predictive variable, with significant correlations evident 

between younger age of cannabis use initiation and CUD liability. Importantly, the risk for 

CUD onset normally peaks in late adolescence and the early twenties34, when the brain has 

not achieved full adult maturity; this is a sensitive developmental window for psychiatric 

vulnerability. Sex also has important implications for CUD. Men have higher rates of CUD 

than women, a pattern that is present from childhood, when more boys than girls develop 

CUD2,35. Despite the high prevalence of cannabis-dependent males, the escalation of use 

and severity of CUD is greater in females, as with many substances of abuse36.
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Deconstructing the neural underpinnings of cannabis use disorder

The neurobiology underlying CUD can be explored at multiple in vivo and postmortem 

levels of assessments, based on diverse experimental strategies that have been employed 

investigating cannabis use. While results are not always equivocal, due to various confounds

—including issues of the frequency or severity of cannabis use, duration of use and 

abstinence, comorbid disorders, co-use of other psychoactive drugs, sex and genetics—

several consistent patterns have begun to emerge that begins to establish a neurobiological 

framework for CUD.

Neurochemical signature of CUD

The eCB system, being the prime site for THC’s action, has been the focus for positron 

emission tomography (PET) neuroimaging studies, which consistently demonstrate that 

CB1Rs37–39 are dynamically altered depending on the phase of chronic cannabis use (Fig. 

2). CB1Rs are generally downregulated in cannabis users, with strongest alteration evident 

shortly after cannabis use. These changes are predominantly localized to the neocortex 

and limbic cortices37,38, which regulate cognition and emotional processing, as well as 

the ventral striatum38, which is critically involved in reward and goal-directed behavior40. 

Longer duration of use associates with lower CB1R densities37. Postmortem brain analysis 

substantiates downregulation of CB1R binding in cannabis abusers as well as reduced 

mRNA expression of the gene (CNR1) encoding CB1R41. However, reduction of CB1R in 

cannabis dependent subjects is not permanent, and it normalizes ~2 to 28 days after drug use 

ceases39. The return to apparent normal levels after protracted abstinence might, however, 

not be paralleled by normalization of receptor function, based on animal studies (see below), 

suggesting that CB1R may remain functionally altered during abstinence. Nevertheless, 

reduced CB1R during early stages of the disorder is expected to impact the cascade of 

downstream neurobiological systems that can maintain persistent changes underling the 

behaviors characteristic of CUD. Aside from that for CB1R, little in vivo evidence exists for 

other components of the eCB system, but preliminary data indicate reduced binding of fatty 

acid amide hydrolase (FAAH), the enzyme that metabolizes anandamide, suggesting altered 

anandamide levels within corticolimbic brain regions in CUD individuals42.

Of the neurotransmitter systems linked with addiction, dopamine has received most 

attention, given its strong role in reward, motivation and goal-directed behavior. Similarly to 

other substances of abuse, acute THC increases dopamine release in the striatum of healthy 

subjects43 (Fig. 2). Following chronic use, there is a reduction of stimulated dopamine levels 

in CUD44, as in other SUDs (e.g., psychostimulants, nicotine, alcohol and opioids; Fig. 2). 

Early age of onset or longer duration of cannabis use correlates with reduced stimulated 

striatal dopamine release (evoked by psychostimulant administration)45. The lower striatal 

dopamine release apparent in heavy cannabis users relates to inattention and greater negative 

symptoms46, and it inversely correlates with negative emotionality and addiction severity47. 

Reduced release also corresponds with decreased dopamine synthesis in cannabis-dependent 

individuals48, an effect associated with greater apathy49. PET measures of dopamine 

transporters (necessary for presynaptic dopamine reuptake) also reveal reduced availability 

in multiple brain areas, including the striatum, in cannabis-dependent people50. Altogether, 
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the presynaptic hypodopaminergic state evident with CUD would be consistent with the 

classic ‘amotivational syndrome’ and negative affect characteristic of this disorder. However, 

a feature of many SUDs that often accompanies blunted dopamine release is reduced striatal 

dopamine D2/D3 receptor availability51, but this is relatively normal in CUD individuals44, 

suggesting potentially unique aspects of dopaminergic transmission with CUD.

The compulsive perpetuation of the addiction cycle is also characterized by alterations 

of glutamate, which plays a major role in mediating inhibitory control and drug-seeking 

behaviors52. Glutamatergic transmission is highly regulated by eCB signaling53 (through 

presynaptic terminal CB1Rs that reduce glutamate release) and thus sensitive to THC54. 

Proton magnetic resonance spectroscopy reveals increased glutamate levels with acute THC 

use55, but following chronic use, steady-state glutamate levels are reduced in various brain 

regions in both adults and teens56,57 (Fig. 1). Hypoglutamatergic transmission is also evident 

in other SUDs58,59, particularly during drug abstinence, and is considered to underlie the 

impaired decision-making that in turn contributes to continued drug-seeking52,60.

Morphological characteristics of CUD

Human structural MRI (sMRI) studies consistently document architectural alterations 

particularly within corticolimbic structures such as the prefrontal cortex (PFC), 

hippocampus and amygdala with CUD (Fig. 3). The integrity of the orbitofrontal cortex 

(OFC; localized within the PFC), which contributes to cognitive flexibility, valuation and 

decision-making61, is commonly impaired in SUD62 and strongly relates to problematic 

cannabis use. Overall, greater disease severity, regularity of use and duration of cannabis 

use are associated with reduced volume of the medial OFC63,64. Reduced OFC volume 

in young teens predicts initiation of cannabis use in later adolescence, suggestive of a 

preexisting neurobiological risk factor65. A similar sensitivity is evident in the hippocampus, 

a region central to learning and memory63,66, in which hippocampal gray matter is inversely 

associated with the amount of THC consumed, emphasizing the direct contribution of 

CB1R stimulation. Interestingly, a functional variant of the CNR1 gene (rs2023239 G 

allele) linked with higher cortical CB1R is associated with smaller hippocampal volume 

in chronic cannabis users, but not healthy controls, indicating a potential gene × drug 

interaction67. Likewise, reduced cortical thickness evident in some teens appears to relate to 

genetics—for example, the negative impact of cannabis use in early adolescence on cortical 

maturation is only in individuals with a high genetic risk of schizophrenia68. Cannabis 

use and CUD severity also associate, in a graded manner, with deficits of amygdala gray 

matter volume, with gray matter volume inversely related to CUD severity69,70. Given the 

involvement of the amygdala in emotional regulation, craving and drug-seeking behavior40, 

these morphological alterations may relate to the prominent mood and anxiety comorbid 

characteristics of CUD (Fig. 3). However, the significance of these morphological changes is 

debated, since twins of cannabis users who themselves do not use cannabis can have lower 

amygdala volume, suggesting that decreased amygdala volume may be predispositional71. 

Nevertheless, animal models have established a direct causal relationship between THC and 

changes in cortical structure72,73 (see below). Overall, preexisting morphological differences 

in brain regions regulating cognition and emotion may enhance the risk for cannabis use, 

and they are also impacted by the severity and duration of subsequent cannabis exposure.
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The deficits in gray matter volume observed in CUD are mirrored in many SUDs74–76. 

One major difference is the cerebellum, which has increased gray matter volume in CUD 

subjects63,69, an effect maintained even a month of abstinence in adolescent cannabis users 

and which is associated with poor executive functioning63,69,77. Although the cerebellum is 

not typically linked with SUD pathophysiology, a significant body of evidence emphasizes 

cerebellar involvement in cognition, impulsivity and emotional processing in line with 

its strong anatomical projections to frontal cortical regions78. In contrast to consistent 

cerebellar findings, the striatum, though critical to reward and habit formation40, shows 

no clear pattern of gray matter structural alterations related to CUD79. Overall, the CUD 

neuronal architecture, at least that visible with MRI spatial resolution, primarily indicates 

sensitivity of structures linked to cognition and emotional processing (Fig. 3 and Table 1).

Functional brain activity of CUD

In addition to morphological changes, various lines of functional MRI evidence reveal 

specific brain activity signatures with cannabis use relevant to CUD, both during resting 

conditions and when individuals are engaged in specific tasks (Fig. 4). One of the most 

common patterns of resting state brain activity identified in chronic cannabis users, as with 

other SUDs80, is increased functional connectivity associated with the default mode network 

(which primarily includes the posterior cingulate cortex, adjacent medial PFC (mPFC) and 

portions of the parietal cortex, the precuneus and angular gyri) and insula networks81,82. 

The default mode and insula networks are highly interconnected and are primarily activated 

during self-referential and introspective thought83. Importantly, resting-state alterations in 

frontal and sensory systems persist even following a month of abstinence, but with blunting 

of the changes81,84, suggesting the potential of the brain to reverse some of the effects of 

prior chronic cannabis use.

Functional MRI studies also document differential brain activity during neurocognitive tasks 

in CUD individuals (Table 1). For example, cost–benefit decision-making conditions in 

heavy cannabis users associate with reduced activity of the OFC and dorsolateral PFC, 

but also with increased cerebellar activity (Fig. 4), an effect that tracks tightly with 

impaired choice outcome60. Compromised attentional control is also a feature of SUDs, 

and multiple brain areas are underactive during cognitive interference conditions (for 

example, the Stroop task) in cannabis-dependent individuals, including the PFC, striatum, 

amygdala–parahippocampal gyrus, cerebellum and midbrain85–87 (Fig. 4). However, the 

under-recruitment of these circuits during attentional processes often occurs even with no 

outward deficits in attention85,86. Interestingly, the hypoactivity in these neural circuits 

appear to be mutable, as the pattern reverses after a year of abstinence, with increased 

activation within many of these areas85; this could also suggest a link between enhanced 

activation during attentional processes with the ability to abstain from drug. For working 

memory, despite the well-documented negative cognitive impact of acute THC in drug-

naïve individuals and infrequent cannabis users, cannabis-experienced users often have 

normal working memory performance88,89. However, neural networks associated with such 

cognitive function are not normal: chronic and heavy cannabis use is associated with 

hyperactivation of frontal regions and networks underlying working memory90. Similar 

alterations are also evident in abstinent adolescent cannabis users91,92. Collectively, these 
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modifications suggest an overcompensation of neural networks in individuals with CUD to 

achieve apparent normal executive function when cognitive demand is required.

Heightened sensitivity to drug cues is a hallmark of addiction that often contributes 

to craving and relapse, and, consistent with other SUDs, greater activation of the 

mesocorticolimbic reward pathway (ventral tegmental area, striatum, OFC, anterior 

cingulate gyrus) to drug cues is observed with CUD93,94. Higher response to cannabis cues 

is associated with greater cannabis-related problems94,95. The activity within these reward-

related structures in response to cannabis cues has been associated with genetic variants of 

CNR1 (rs2023239) and FAAH (rs324420), where the heightened response to cues increases 

as the number of eCB risk alleles increases96, again suggesting genetic contributions to 

neural processes relevant to CUD.

Alterations in neurobiological systems associated with emotional processing are also 

common with cannabis use pathology, influencing the responsivity to anxiety, threat, 

depression, and maladaptive coping with stress that are associated with relapse risk. Both 

the PFC and amygdala are particularly reactive to negative stimuli in CUD; stronger medial 

OFC activity is associated with negative, but not positive, emotional stimuli after nearly 

a month of abstinence97. In contrast, the cognitive appraisal of affective stimuli in heavy 

cannabis abusers is associated with decreased activity in the mPFC (anterior cingulate 

and ventromedial PFC)98. The greater OFC and amygdala activation in CUD for negative 

stimuli, concomitant with decreased PFC activation for cognitive evaluation, would suggest 

an overactive affective neural loop with attenuation of appraisal networks. Combined with 

heightened sensitivity to drug cues and reward anticipation, these changes would classically 

reflect an addiction neurobiological signature of relapse vulnerability.

Translational insights from animal studies

While significant neurobiological insights have been garnered about the human brain 

from in vivo imaging strategies related to CUD, debates continue as to the direct role 

of cannabis to these apparent perturbations, considering complex issues such as genetic 

and environmental factors that might account for neurobiological differences predating 

cannabis use. THC animal models corroborate CB1R alterations observed in humans, 

establishing a causal impact of THC on CB1R fluctuations across time with proof of 

receptor desensitization (reflecting attenuated receptor coupling)99,100. Such studies also 

demonstrate that female rats exhibit greater attenuation of CB1R function in most brain 

regions than males, especially when chronic THC is administered during adolescence rather 

than in adulthood100,101, potentially relevant to the greater escalation and severity of CUD 

in human females than males. As in humans, there is (over time) a recovery to normal 

levels of CB1R following cessation of THC administration102. However, even at time points 

when apparent receptor binding or the number of CB1R returns to normal, there remain 

persistent perturbations of intracellular signaling and downstream molecular processes. For 

example, downstream effectors such as cAMP response element binding (CREB) protein are 

reduced in the hippocampus103 following chronic THC administration, an effect that persists 

weeks after drug exposure. An interesting downstream target of cAMP and CREB are cell 

adhesion molecules known to play key roles in long-term potentiation (LTP) and synaptic 
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plasticity104,105. Concomitant with disturbances of genes related to synaptic plasticity, rats 

with chronic THC administration exhibiting impaired learning and memory have reduced 

hippocampal neuronal cell adhesion molecule, NCAM106. Importantly, reduced NCAM 

is well documented in different THC treatment regimens107,108. Moreover, chronic THC 

exposure in animals with genetic deficiency of polysialylated NCAM exacerbates the 

genetically induced memory deficits into adulthood109, supporting a gene × environmental 

interaction in line with the recent GWAS identifying genetic variants of genes encoding cell 

adhesion molecules, including NCAM, with lifetime cannabis use110. Overall, THC-induced 

alterations of CB1R, CREB and NCAM (Fig. 5) strongly suggest significant modification of 

synaptic plasticity consistent with the critical role of the eCB system in regulating synaptic 

transmission.

In addition to providing neurochemical and molecular insights, animal models confirm 

a direct impact of repeated THC exposure to alter neuronal architecture. For instance, 

long-term (90 days) exposure to high dose THC strongly reduces neuronal number, as 

well as the number of synapses and the dendritic length of hippocampal neurons, even 

months after the last THC dose72. Moreover, adolescent THC administration of a dose 

comparable to low-to-moderate cannabis use reduces the spine number and complexity 

of branching of PFC pyramidal neurons in adulthood73. These morphological changes 

are accompanied by marked disturbances of genes linked to dendritic development and 

cytoskeleton organization, as well as reprogramming of the epigenetic transcriptome73. 

Thus, the animal literature largely lends support to the idea of structural alterations 

being prominent within the cortex and hippocampus following repeated cannabis or THC 

exposure, emphasizing the cortical sensitivity of chronic use.

Animal models also reveal, at cellular-level resolution, responses relevant to alteration 

of neural activity detected in individuals with CUD. Notably, chronic THC exposure in 

most electrophysiological animal studies confirms indices of persistently reduced cortical 

neuronal activity similar to deficits in neural oscillations reported in humans with CUD111. 

For example, adult rats with adolescent THC exposure exhibit long-term reduction of 

cortical oscillations in the rostral mPFC specifically mediated by CB1R mechanisms112. 

CB1R-mediated disruption of neural oscillations are linked to reduced transmission of 

GABAergic interneurons in cortical circuits113. Chronic THC exposure also depresses 

glutamatergic synaptic responsiveness, as evident in the hippocampus where parallel 

downregulation of NMDA and AMPA glutamate receptor expression could contribute 

to reduced LTP103. Fig. 5 provides an overview of the neurochemical cortical changes 

generally observed in chronic THC animal models. These alterations are not, however, 

mirrored in all brain areas, and cell-type- and synapse-specific differences are actively 

being explored regarding the long-term subregional effects of THC. Such complexity is 

exemplified by recent evidence demonstrating that long-term THC exposure weakens mPFC 

inputs to the ventral striatum but strengthens those from the hippocampus and amygdala114, 

in line with reduced prefrontal cognitive control but enhanced emotional lability in cannabis 

users.

The use of animal models to inform neurobiological underpinnings associated with 

phenotypes relevant to CUD-comorbid disorders, such as addiction to other substances, 
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have firmly established that adolescent THC exposure increases the sensitivity in adulthood 

to opioid reward115–118. There remains, however, a surprising paucity of animal studies 

evaluating the interaction of THC with other drugs, despite the high comorbidity of CUD 

with alcohol and nicotine addiction119. Of the few existing studies found that short-term 

THC exposure increased the likelihood of rats to acquire nicotine self-administration120. 

Unfortunately, study of chronic THC animal models focused on psychiatric-related 

phenotypes such as anxiety-like behavior is also limited, despite the tight link between 

the eCB and stress systems121. In the published behavioral data, the effects of THC 

exposure are variable, but might reflect important aspects of dose, neurodevelopmental 

sensitivity and sex that are also evident in humans. For instance, high THC doses increase 

anxiety-like behaviors, whereas low doses lead to a decrease122. Additionally, females 

appear more sensitive to the anxiogenic properties of THC than males, even during THC-

abstinent periods122. Moreover, chronic cannabinoid administration during adolescence, but 

not adulthood, increases anxiety behavior weeks after exposure123.

Although THC animal models substantiate a number of alterations detected in humans, 

there remains a significant gap of in-depth knowledge critical to advance fundamental 

mechanistic underpinnings of CUD. A major challenge for translational efforts is that the 

prevalent short-term and often excessive THC doses used in many animal models do not 

reflect the human condition, thus lacking face validity for CUD. Moreover, the gold standard 

self-administration animal models normally used in the addiction field are challenging for 

cannabis because rodents experience THC as aversive and thus do not readily acquire 

or maintain stable self-administration behavior124. To circumvent such challenges, most 

animal research has mainly used passive parenteral THC administration routes. New animal 

inhalation self-administration models for THC125 and cannabis cigarette126 will help bridge 

the translational gap to advance molecular and cellular knowledge relevant to CUD.

Treatment: reconstructing neurobiological systems impacted by cannabis

Despite the millions of people diagnosed with CUD there are presently no approved 

FDA pharmacotherapies. Psychosocial interventions, which are normally the first line of 

treatment, have the potential to modify gray matter volume as well as to increase the 

functional and structural connectivity between frontal and limbic cortices127,128 as well as 

cerebellar cognitive-related circuits129. However, no studies to date have examined whether 

cognitive–behavioral strategies can improve the neural alterations and behavioral outcomes 

in individuals with CUD.

The majority of pharmacological interventions being explored for CUD are substitution 

therapies with cannabinoid agonists as well as agents targeting neurotransmitter systems 

known to be aberrant in addiction. Table 2 provides a summary of these agents. In 

addition, recent attention has focused on cannabidiol (CBD), a non-intoxicating cannabinoid 

which has anxiolytic properties130–132 and appears to reverse behaviors and neural 

systems relevant to the effects of cannabis. For instance, cognitive and anxiety-like 

behaviors induced by chronic THC administration during adolescence in rodent models 

are prevented by the co-administration of CBD133. Additionally in humans, CBD blocks 

THC-induced anxiety134 and reduces wanting and liking of cannabis-related stimuli in 
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cannabis users130. On a neurobiological level, animal studies demonstrate that CBD 

normalizes glutamatergic systems135, known to be dysregulated in SUDs including CUD. 

Moreover, CBD activates corticolimbic structures and circuits that are reduced during 

attentional processing in individuals with CUD136. Concomitant to reducing anxiety, CBD 

also reduces stress-induced activation of the hippocampus and other cortical areas132 and 

restores hippocampal volume in current cannabis users, particularly those with greater 

lifetime cannabis exposure137. However, acute administration of CBD does not impact 

the reinforcing or physiological effects of smoked cannabis in cannabis users138. Thus, 

CBD’s potential therapeutic value might relate more to alleviating craving and stress-related 

responses that contribute to relapse in CUD6 rather than blocking the acute rewarding effects 

of THC. Overall, the current medications are still in relatively early phases of exploration as 

potential CUD pharmacotherapeutics, but the list is expected to grow as greater insights are 

gleaned about the underlying pathophysiology of CUD.

Summary and future directions

CUD is a multifactorial complex disorder in which there is interaction among genetic and 

environmental factors that, in combination with psychiatric comorbidity and the continued 

use of cannabis, contribute to neurobiological alterations that underlie the addiction 

phenotype (Fig. 6). There is still much to learn about the neurobiology of CUD, but contrary 

to the growing nonchalance regarding cannabis use by many in society, the neurobiological 

evidence demonstrates multilevel divergent patterns in neurochemistry, morphology and 

neural activity in brain regions that are highly implicated in other SUDs. The shared 

neurobiological signature may underlie common addiction behavioral phenotypes, such 

as compromised decision-making and attentional processing, marked drug craving and 

sensitivity to drug cues, as well as anxiety and negative affect particularly associated with 

drug withdrawal.

Definitive conclusions about specific neurobiological features of CUD still remain elusive 

due to complex heterogeneous factors, such as genetics, environment and sex, evaluated 

across studies. While the ‘chicken or egg’ pre-existing or direct cannabis cause of such 

factors can continue to be debated, it is clear that individuals with and without pre-existing 

neurobiological risk are being exposed more than ever to high THC doses. This is of 

particular concern for the vulnerable neurodevelopmental periods—prenatal, childhood and 

adolescence. Longitudinal projects, such as the Adolescent Brain Cognitive Development 

(ABCD) Study and new trans-NIH baby Brain Cognitive Development (bBCD) project 

to monitor normative and drug-exposed neurodevelopmental trajectories starting from 

adolescent and prenatal stages, respectively, are important steps to identify specific early 

risk factors and expand knowledge about the long-term impact of cannabis (and other 

drug) exposure. Data from the Dutch Generation R Study, a population-based prospective 

cohort study from fetal life until young adulthood, is already being leveraged to understand 

the influence of the prenatal environment on brain maturation and childhood behavior139. 

Moreover, accrued data has established that the adolescent brain is not impervious to 

cannabis effects, with early onset of use often associated with greater changes in brain 

structure and activity.
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What is nevertheless also apparent is the potential for some neurobiological alterations 

to be reversed during extended abstinence. This emphasizes the adaptive and continued 

dynamic nature of the brain when drug-free. However, animal models overwhelmingly 

demonstrate protracted molecular alterations subsequent to THC use, suggesting that 

underlying molecular and cellular processes may remain sensitive to subsequent drug 

use later in life even if general neurobiological features appear relatively normal. The 

neurobiological mechanisms that maintain these protracted effects are likely epigenetic 

processes140, which means that they are malleable. As such, the drug-abstinence window 

may be a critical period for targeting these molecular processes to improve long-term 

outcomes.

Despite significant insights gleaned about the in vivo neurobiological patterns of CUD, there 

still remains a surprising large gap of knowledge from animal studies. In-depth preclinical 

molecular interrogations based on the human brain findings are limited. For instance, 

the cerebellum is not well studied in animals, though individuals with CUD have clear 

differences in this region. Moreover, despite the growing animal literature on THC, dosing 

regimen and treatment strategies more reflective of the human condition are lacking in the 

field. Enhanced integration of human and preclinical animal research would significantly 

expand neurobiological knowledge important to guiding prevention and treatment strategies.

Finally, the ability to expedite scientific understandings of CUD is unfortunately hindered 

today in a sociopolitical quagmire in the US, where the public perceives little risk of 

cannabis use, while governmental regulations still consider it a Schedule I drug, which 

impedes critical research necessary to provide guidance about cannabis risk–benefit and 

potential treatments. Reducing such impediments will greatly advance scientific and clinical 

discoveries toward treatment development and to promote evidence-based policies.
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Fig. 1 |. 
Odds ratios of psychiatric conditions associated with CUD. Data based on the National 

Epidemiologic Survey on Alcohol and Related Conditions (NESARC) study6. Figures: 

Debbie Maizels/Springer Nature.
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Fig. 2 |. 
Overview of the dynamic patterns of the in vivo neurochemical-related alterations (based on 

PET, functional MRI, and H-MRS studies) associated with CUD. a, Line graphs indicate 

specific alterations during acute use as compared to neurobiological state in individuals 

with CUD, including during periods of abstinence. b, Dots indicate brain regions in which 

neurochemical marks reflective of CB1R, dopamine transporter (DAT) and dopamine (DA) 

synthesis have been detected in individuals with CUD. ACC, anterior cingulate cortex; 

DS, dorsal striatum; PCC, posterior cingulate cortex; VS, ventral striatum. Figures: Debbie 

Maizels/Springer Nature.
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Fig. 3 |. 
Alterations of gray matter volume (based on MRI studies) detected in individuals with CUD. 

Colors denote decreased (red) and increased (blue) gray matter volume. Figures: Debbie 

Maizels/Springer Nature.
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Fig. 4 |. 
Differences in functional activity (based on functional MRI and electroencephalogram 

studies) detected in the brain of abstinent individuals with CUD during exposure to specific 

tasks and stimuli. Increased activation in specific regions is indicated in the left panel in 

red, and reduced activation is depicted in the right panel in blue. The specific task- or 

stimulus-driven alteration in activity is indicated in each region and circuit. Amy, amygdala; 

hipp, hippocampus; MCN, mesocorticolimbic network; FC, frontal cortex; NAc, nucleus 

accumbens; Str, striatum; MB, midbrain. Figures: Debbie Maizels/Springer Nature.
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Fig. 5 |. 
Synaptic perturbations based on animal models associated with chronic THC exposure 

(right) as compared to control condition (left) in glutamate and GABA synapses in the 

cortex. THC is known to have a greater effect on the interneuronal GABA microcircuit, 

most likely due to the greater (~20-fold) number of CB1R on cortical GABAergic 

interneuron axon terminals compared to glutamatergic terminals141. AMDAR, AMDA 

receptor; GABAR, GABA receptor; NCAM, neural cell adhesion molecule; NMDAR, 

NMDA receptor. Figures: Debbie Maizels/Springer Nature.
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Fig. 6 |. 
Factors contributing to CUD. Schematic summary of multiple factors that contribute to the 

neurobiological patterns documented in relation to cannabis use and eventual CUD, where 

the more pronounced neurobiological alterations are associated with greater severity of the 

disorder and behavioral consequences. FAAH, fatty acid amide hydrolase; Glut, glutamate; 

Vol, volume. Figures: Debbie Maizels/Springer Nature.
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Table 1 |

Alterations detected in specific brain regions of in vivo measures of gray matter volume and functional 

activity, associated with certain tasks and stimuli, in abstinent individuals with CUD.

Region / circuit Morphology Neural activity Association with function- or task-based 
activation

Frontal cortex/
prefrontal cortex

Decrease in volume 
(OFC)63,64,142

Decrease60,86,98,143 or 
increase90–92,97 in activity based on 

task and absinence85

Decreased in decision-making60; decreased activity 
with uncertain reward143; decreased during 
cognitive appraisal of emotional stimuli98; 

decreased activity on attention task85,86, but 
increased activity after 1 year of abstinence 

is associated with better treatment outcome85; 
increased activity on working memory tasks90–92 

and responsivity to negative emotional stimuli97

Ventral striatum * 79 
Decrease85,# or increase in 

activity144, based on task and 
abstinence

Decreased activity on an attentional task85; 
increased activity during reward anticipation144

Dorsal striatum * 79 
Decrease in activity85,# Decreased activity during attentional processing85

Hippocampus/
temporal lobe

Decrease in 
volume63,66 Decrease in activity (hipp)85,# Attentional processing85

Amygdala Decrease in 
volume69,70,145 Decrease85,# or increase97 in activity 

based on task

Decreased functionality associated with attentional 
performance85, increased activation in response to 

negative emotional stimuli97

Cerebellum Increase in 
volume63,69 Decrease86,# or increase60,# in 

activity based on task

Increased activation during decision-making60, 
decreased activity associated with attentional 

processing86

Mesocorticolimbic 
pathway

Increase in activity93,94,146,147 Cannabis cue reactivity93,94,146,147

The majority of individuals with CUD were studied during periods of short abstinence from ~12 h to 4–5 days.

#,
longer periods of abstinence, from ~1 to 36 months;

*,
inconsistent observations.
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Table 2 |

Putative pharmacotherapeutics that have been investigated for CUD.

Pharmacotherapy 
(market name(s))

Formulation Mechanism of 
action

Mitigates 
intoxication

Mitigates 
withdrawal 
symptoms

Mitigates 
relapse Citation

Dronabinol (Marinol, 
Syndros)

Extracted Δ9-THC in 
capsule

CB1 agonist Yes, at high 
doses Yes No 148 

Nabilone (Cesamet) Synthetic Δ9-THC 
mimetic in capsule

CB1 agonist - Yes Yes 148 

Nabiximols (Sativex) Δ9-THC + CBD in 
nasal spray

CB1 agonist - Yes No 148 

CBD Cannabis extract in 
capsule No Yes, but limited - 138,149

PF-04457845 Capsule FAAH inhibitor - Yes Yes 150 

Gabapentin (Neurontin) Capsule
GABA analog, 

voltage-gated Ca2+ 

antagonist
- Yes Yes 148 

N-acetylcysteine Capsule Glutamate agonist - - Yes, in 
adolescents

148 

Topiramate (Topamax) Capsule
GABA agonist, 

glutamate 
antagonist

Decreased 
amount smoked, 
but not overall 

relapse, and 
poorly tolerated

148 

Guanfacine (Tenex) Capsule Alpha-2a 
adrenergic agonist - Yes - 148 
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