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Tumor immune evasion is a lineament of cancer. Endothelial monocyte activating polypeptide-II (EMAP II) has been
assumed to impact tumor immune escape significantly. EMAP II was first reported in the murine methylcholanthrene A-
induced fibrosarcoma supernatant and identified as a tumor-derived cytokine. This study evaluated EMAP II expression in
peripheral blood cells and its association with treatment outcome, lactate dehydrogenase (LDH) levels, and clinical criteria
in non-Hodgkin’s lymphoma (NHL) patients. EMAP II expression on different blood cells obtained from the peripheral
blood of 80 NHL patients was evaluated by two-color flow cytometry. The study reported that EMAP II expression was
significantly increased in peripheral blood cells in patients with NHL compared to normal volunteers (P <0.001).
Additionally, EMAP II expression levels on blood cells decreased in complete remission (CR) while they increased in
relapse. This study showed coexpression of EMAP II and CD36 on peripheral lymphocytes in NHL patients but not in
healthy controls (P <0.001). EMAP II expression on blood cells was associated with increased serum LDH levels.
Furthermore, the percentages of EMAP II+/CD36+ peripheral lymphocytes were significantly higher in relapse than in CR
and healthy controls. Analyses revealed that higher percentages of EMAP II+CD36+ cells were positively correlated with
hepatomegaly, splenomegaly, and an advanced (intermediate and high risk) NHL stage. The results assume that EMAP II
might be involved in NHL development and pathogenesis.

1. Introduction

Non-Hodgkin’s lymphomas (NHL) are malignant lympho-
proliferative diseases characterized by heterogeneous clinical
and histological criteria [1, 2]. NHL is manifested by the
abnormal accumulation or proliferation of B, T, and natural
killer (NK) cells that infiltrate hematopoietic and lymphoid
tissues and extend to different organs [3, 4]. Follicular lym-
phoma (about 10%) and diffuse large B-cell lymphoma
(approximately 30%) are the most frequent NHL subtypes,
while the frequency of all other NHL subtypes is less than
10% [5]. For the treatment of NHL patients, a slew of new
therapeutic protocols based on a cocktail of multidrug che-
motherapy has been developed [6]. In aggressive NHL, mul-
tidrug treatment results in a five-year overall survival rate of
50-60% [7]. However, many patients relapsed, either due to
failure after lengthy treatment, referred to as a refractory dis-

ease, or due to relapse after an initial response, referred to as
relapsing disease [8]. Thus, the search for reliable markers in
NHL might usher in a new era of cancer immunotherapy.
Endothelial monocyte activating polypeptide-II (EMAP
II), which is produced from its precursor aminoacyl-tRNA
synthetase-interacting multifunctional protein 1 (AIMPI1),
is expressed as a 34kDa intracellular peptide [9]. EMAP II
mRNA and the corresponding precursor protein, proEMAP,
have been found in normal and malignant tissue [10-15].
Full-length ¢cDNAs encoding human and murine EMAP II
were isolated from normal peripheral blood cells [12].
AIMP1 enhanced normal macrophages and dendritic cells
to release IL-12 and initiate Th1 responses [16, 17]. On the
cell surface, the C terminus of pro-EMAP II undergoes
proteolytic cleavage by apoptosis and protease inhibitors
[18-20] to generate the extracellular 22 kDa C-terminal pep-
tide [21-23] that acts as an antiangiogenic protein [9, 24].
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EMAP II is classified as a part of the aminoacyl-tRNA
synthetase (ARS) family due to a high degree of similarity
between it and ARS p43 [20]. EMAP II and p43 have a high
degree of similarity in amino acid sequence, and the human
homologs of p43 and EMAP II are congruent. p43’s extracel-
lular function is identical to that of EMAP II in terms of its
angiogenic properties [25].

EMAP II was first reported in the murine methylcholan-
threne A-induced fibrosarcoma supernatant and identified
as a tumor-derived cytokine based on its propensity to
enhance procoagulant activity in the cultured endothelial
cells [21]. It has various activities against neutrophils, mac-
rophages, and endothelial cells [26, 27]. As a result, EMAP
IT has antiangiogenic and proinflammatory properties [28,
29]. EMAP II is a 169-amino-acid cytokine that plays a role
in inflammation, apoptosis, and angiogenesis [30, 31]. Endo-
thelial apoptosis, hypoxia, and cellular stress were observed
to induce the processing and release of EMAP II [14, 32-34].

EMAP 1II not only promotes cancer formation by
increasing tumor autophagy, sensitizing tumor cells to
tumor necrosis factor- (TNF-) alpha, blocking angiogenesis,
and increasing brain tumor barrier permeability [35-44], but
also promotes cancer formation by causing lymphocyte
death [31, 45-47]. EMAP II expression induced lymphocyte
apoptosis, suggesting an immunosuppressive role in cancer
[48]. Previous data indicated that serum EMAP II might be
a potential biomarker in patients with NHL and lung cancer
[49, 50]. Some reports have examined EMAP II expression in
tumors and its correlation with prognosis [33, 50, 51].

CD36 (cluster of differentiation 36), a scavenger recep-
tor, is a protein encoded by the CD36 gene and expressed
in different human immune cells [52]. CD36 promotes the
association of lipid rafts with receptors, adapter molecules,
and signaling [53]. It is expressed in tumor cells, where it
binds, initiates internalization, and regulates long-chain
FAS transport [54, 55]. CD36 has a significant role in cancer
progression, spread, and metastasis [56-58]. CD36 expres-
sion has been explored in different types of NHL [59, 60].

Different immune checkpoint molecules regulate immu-
nity against cancer. EMAP II is one of the molecules
expressed on tumor cells and provides a negative signal by
inducing lymphocyte apoptosis in cancer. Some reports have
examined EMAP II expression in tumors and its correlation
with prognosis. However, EMAP II expression on peripheral
blood cells of cancer patients, especially in NHL, has not
been studied. This paper analyzed EMAP II expression on
peripheral blood cells in NHL patients and revealed some
association with prognosis in NHL.

2. Subjects and Methods

2.1. Subjects. The study was done at the Oncology Depart-
ment, Minia Oncology Centre, Minia, Egypt, and at the
Clinical Pathology Department, Minia University, Faculty
of Medicine, Egypt, Minia. Thirty healthy controls were
involved in this study and 80 NHL patients. Blood was with-
drawn from healthy volunteers without autoimmunity,
immunosuppression, or malignancy. NHL subjects were
divided into three groups: group I: newly diagnosed NHL
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subjects and not started therapy, group II: NHL subjects
who achieved complete remission (CR), and group III:
NHL subjects with relapse. NHL diagnosis was confirmed
by histopathology and immunophenotyping. The responses
of NHL patients have been evaluated regarding the response
criteria of Cheson et al. [61]. CR is recognised by free labo-
ratory data and the absence of radiographic symptoms and
signs of the disease. Relapse was identified as disease return
within five months of complete remission, lymphoma pro-
gression during the first treatment, and failure to have com-
plete or partial remission after therapy [61]. NHL patients
and normal controls gave informed written consent.

2.2. Clinical Characteristics and Samples Collection. Clinical
examination, lymph node biopsy, and bone marrow aspira-
tion defined NHL’s stage, type, and clinical evaluation.
Three experienced pathologists performed the validation
of the pathological specimens according to WHO classifica-
tions [62]. A flow cytometer was used to perform immuno-
phenotyping for NHL patients. The individuals were also
subjected to an X-ray and a pelviabdominal ultrasound.
The status of NHL was evaluated on the Eastern Coopera-
tive Oncology Group scale [63]. The Ann Arbor system was
used to determine the NHL stage [64]. NHL subjects with
incomplete pathological or clinical information did not par-
ticipate in this study. The controls with chronic infections
or autoimmune diseases were excluded from the study.
For flow cytometric analysis, 2mL of blood was placed in
a sterile K3EDTA tube. In addition, 3 mL of blood was cen-
trifuged in a plain tube, and the produced serum was used
to measure lactate dehydrogenase (LDH) levels using an
automated clinical chemistry analyzer (Schiapparelli Biosys-
tems, Inc.).

2.3. NHL Treatment. Twenty newly diagnosed NHL patients
have not received treatment yet. 60 NHL patients received
CHOP (cyclophosphamide, hydroxydaunorubicin, oncovin,
prednisone) therapy [65].

2.4. Antibodies. Flow cytometry analysis with a verified
EMAP II antibody was used to examine EMAP II expression
in peripheral blood cells: 546-2, monoclonal antibody (Santa
Cruz; catalog no. 32723); CD3 antibody, UCHT1, monoclo-
nal antibody (BioLegend; catalog no. 300406); CD4 anti-
body, RPA-T4, monoclonal antibody (BioLegend; catalog
no. 300506); CD4 Antibody; RPA-T4, monoclonal antibody
(BioLegend; catalog no. 300530); CD8 antibody, SK1, mono-
clonal antibody (BioLegend; catalog no. 344704); CD16 anti-
body, 3G8, monoclonal antibody (BioLegend; catalog no.
302006); CD20 antibody, 2H7, monoclonal antibody (BioLe-
gend; catalog no. 302304); CD22 antibody, S-HCL-1, mono-
clonal antibody (BioLegend; catalog no. 363508); HLA-DR
antibody, 1243, monoclonal antibody (BioLegend; catalog
no. 980402); and CD36 antibody, 5-271, monoclonal anti-
body (BioLegend; catalog No. 336204). For the negative con-
trols is PE mouse IgG2b (k) antibody, 27-35, isotype control
antibody (BioLegend; catalog no. 402203). Blocking, immu-
noprecipitation, and immunohistochemistry (IHC) were
used to confirm each antibody for flow cytometric analysis.
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2.5. Flow Cytometry Analysis. Flow cytometry analysis was
assessed by having the following antibodies: CD4-FITC,
CD4-PerCP-Cy5.5, CD3-FITC, CD8-FITC, CD16-FITC,
CD20-FITC, CD22-FITC, CD5-FITC, CD7-FITC, CD36-
FITC, HLA-DR-FITC, EMAP II-PE, and PE isotype control.
Antibodies’ staining was assessed according to the instruc-
tions of the manufacturer. 5uL of fluorescently conjugated
antibodies were mixed with 100 uL of blood and incubated
at room temperature for fifteen minutes in the dark. Subse-
quently, 2mL red cell lysis buffer was added (BD FACS lys-
ing solution), vortexed, and then was made to sit for fifteen
minutes at room temperature in the dark. Sample centrifuga-
tion was performed for about 5min at 1200 rpm. The super-
natant was taken out, and 1 mL of phosphate-buffered saline
(PBS) solution was put into each tube and mixed thoroughly.
The tubes were centrifuged for five minutes at 1200 rpm, and
the supernatant was taken out. To resuspend the cells for flow
cytometry analysis, 300 uL PBS was added.

A minimum of ten thousand total events were collected
and analyzed [66-68]. Two-color immunofluorescence anal-
ysis was performed on BD FACSCanto II (Becton Dickin-
son, San Diego, CA, USA). The analysis of the data was
performed by FACSDiva. To exclude cell aggregates and
debris, lymphocytes were gated using the scatter forward
(size) vs. side scatter (granularity) technique (FSC/SSC)
[69-74]. The percentage of cells stained with antibodies
was used to represent the results. The percentages of positive
cells were assessed from the lymphocyte gate. According to
the isotypic controls, the percentage of positive cells was
determined. An isotype-matched control was used to assess
background fluorescence. For each subject, unstained cells
were used as a negative control.

2.6. Statistical Analyses. All statistical analyses were con-
ducted using IBM SPSS Statistics, version 24 (IBM; Armonk,
New York, USA). The Shapiro-Wilk test checks normality.
Continuous variables were expressed as the mean and stan-
dard deviation (SD) if normally distributed or the median
and interquartile range (IQR) if not normally distributed.
Numbers and percentages were used to present categorical
variables. Student’s ¢-test or Mann-Whitney U test was used
to compare two independent groups’ variables, as applicable.
Kruskal-Wallis was used to compare independent groups for
nonparametric data, followed by Dunn’s test with Bonfer-
roni correction to assess intergroup differences. The strength
of the linear link between two continuous variables was esti-
mated using Spearman’s correlation. A P value of less than
0.05 was considered significant, and values less than 0.001
were regarded as highly significant.

3. Results

3.1. Patients’ Criteria. NHL patients’ criteria are illustrated
in Table 1. For 20 NHL patients, peripheral blood samples
were taken at early NHL diagnosis. Thirty NHL patients
had complete remission of the disease. Thirty patients
experienced a relapse. The mean age of NHL subjects was
45.3 +15.7 years, while it was 44.5 + 15 for healthy controls.
80 NHL patients (38 female, 42 male) and 30 normal controls

TaBLe 1: Clinical characteristics of non-Hodgkin’s lymphoma
(NHL) patients.

N (%)

Group

20 (25.0%)
30 (37.5%)
30 (37.5%)

Group I (newly diagnosed)
Group II (complete remission)
Group III (relapse)

Subtype

DLBCL 59 (73.8%)
CLL 10 (12.5%)
FCL 7 (8.8%)

SCL 1(1.2%)

MALT 2 (2.5%)

Missing 1 (1.2%)

B/T

B 74 (92.5%)
T 3 (3.8%)

Mixed 2 (2.5%)

Plasma cell differentiation 1 (1.2%)

Hepatomegaly

Positive 39 (48.8%)
Negative 41 (51.2%)
Splenomegaly

Positive 49 (61.2%)
Negative 31 (38.8%)
Stage

I 9 (11.3%)
II 26 (32.5%)
111 21 (26.2%)
v 24 (30.0%)

N: number; DLBCL: diftuse large B-cell lymphoma; SCL: small lymphocytic
lymphoma; CLL: chronic lymphocytic leukemia; FCL: follicular cell
lymphoma; MALT: mucosa-associated lymphoid tissue lymphoma.

(12 female, 18 male) were involved. Regarding gender and
age, healthy individuals and NHL subjects did not reveal
any difference (P > 0.05) (Supplementary Table 1).

3.2. EMAP II Expression on Peripheral Blood Cells from NHL
Subjects. High differences were identified between all NHL
subjects and normal controls regarding the percentage of
EMAP II+CD4+, EMAP II+CD16+, EMAP I1+CD20+, and
EMAP II+CD22+ (P < 0.001). However, no differences were
found between NHL subjects and normal volunteers regard-
ing EMAP II+CD8+ percentages (P =0.911) (Supplemen-
tary Table 2).

EMAP 1II expression was examined in blood cells
obtained from patients before and after therapy. In NHL,
EMAP II was expressed dimly by peripheral blood cells.
Newly diagnosed NHL subjects had a higher EMAP II+
CD4+% than patients with CR [median: 7.4% (range 6.8-
8.1) vs. 2.3% (range 1.5-2.7); P=0.001] as well as a higher
percentage of EMAP II+CD8+ [median: 4% (range 4-5) vs.
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Ficure 1: EMAP II is expressed on peripheral blood cells in NHL patients and normal controls. The cells were stained with FITC-labeled,
PE-labeled and PerCP-Cy5.5-1abeled antibodies. (a) Newly diagnosed NHL patients. (b) Patients with CR. (c) Patients with recurrence. (d)
Flow cytometric dot plots of normal control.
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TaBLE 2: Percentage of EMAP II in peripheral blood cells in non-Hodgkin’s lymphoma (NHL) patients.
Group I Group II
(newly diagnosed) (complete remission) Group I (relapse) P value
(n=20) (n=30) (n=30)
<0.001**
EMAP II+CD4+%
Median (I0R) 7.4 (6.8-8.1) 2.3 (1.5-2.7) 0.7 (0.6-1) Lvs. II I vs. III I vs. III
0.001* 0.001* 0.004*
<0.001**
EMAP II+CD8+%
Median (IQR) 4 (4-5) 0.6 (0.4-0.7) 0.2 (0.1-0.3) Tvs. II Ivs. III I vs. III
0.001* 0.001* 0.005*
<0.001**
EMAP II+CD16+%
Median (IQR) 2.8 (2.5-3) 1.1 (1-1.4) 8 (6.2-8.8) Tvs. II Ivs III II vs. 11T
0.023* 0.003* <0.001**
<0.001**
EMAP II+CD20+%
Median (IQR) 6 (5-6) 1(0.8-1.2) 1.1 (1-1.3) Ivs. II Ivs. III I vs. III
0.001* 0.001* 0.786
<0.001**
EMAP II+CD22+%
Median (IQR) 6.1 (5.9-6.6) 2.4 (2-3.5) 6.8 (6-7.3) Tvs. II Ivs III II vs. 11T
0.001" >0.99 <0.001**

N: number; IQR: interquartile range. Significance (P < 0.05) is identified with *. High statistical significance (P < 0.001) is identified with **. Total events are
10,000 events. The percentages of positive cells were assessed from the lymphocyte gate. Kruskal-Wallis test was used, followed by Dunn’s test with Bonferroni

correction.

0.6 (range 0.4-0.7); P=0.001]. The median percentage of
EMAP II+CD16+ cells in newly diagnosed patients was
2.8% (range: 2.5-3.0) vs. 1.1% (range: 1.0-1.4) in patients
with complete remission, P =0.023. Measuring EMAP II
expression in peripheral blood cells showed that EMAP II+
CD20+% was higher in newly diagnosed patients than in
patients with CR [median: 6% (range 5-6) vs. 1% (range
0.8-1.2%); P = 0.001]. Similarly, EMAP I1+CD22+% was also
increased in newly diagnosed patients compared to patients
with CR [median 6.1: (5.9-6.6%) vs. 2.4: (2-3.5%); P = 0.001]
(Figure 1 and Table 2). Gating of peripheral immune cells
was shown in Supplementary Figure 1.

In relapse, patients had a higher percentage of EMAP II+
CD16+ cells compared to pretherapy patients [median: 8%
(range 6.2-8) vs. 2.8% (range: 2.5-3.0); P=0.003]. Also,
there was an increase in EMAP II+CD22+% within relapse
group III compared to newly diagnosed group I but without
significance (P >0.05). Furthermore, when compared to
pretherapy NHL subjects, EMAP II+CD4+%, EMAP II+
CD8+%, and EMAP II+CD20+% were lower in NHL
patients with recurrence (P =0.001) (Figure 1 and Table 2).

EMAP 1II expression was examined in blood cells
obtained from patients with relapse and CR. NHL subjects
with relapse had a lower EMAP II+CD4+% than patients
with CR [median: 0.7% (range 0.6-1.0) vs. 2.3% (range
1.5-2.7); P =0.004] as well as a lower percentage of EMAP
II+CD8+ in patients with disease recurrence than in CR
[median: 0.2% (range 0.1-0.3) vs. 0.6 (range 0.4-0.7); P =
0.005]. The median percentage of EMAP II+CD16+ cells
in relapsed patients was 8% (range: 6.2-8.8) compared to
1.1% in complete remission patients (range: 1.0-1.4), P <

0.001. Furthermore, the proportion of EMAP II+CD22+
was higher in patients with disease relapse than in patients
with CR [median: 6.8% (range 6-7.3%) vs. 2.4% (range 2.0-
3.5%); P<0.001]. No differences were identified between
NHL subjects with recurrence and patients with CR with
regard to EMAP II+CD20+% (P>0.05) (Table 2 and
Figure 1).

EMAP II expression on CD3, CD5+, CD7+, and HLA-
DR+ cells in 5 T-NHL patients was investigated. EMAP II
was dimly positive in T-NHL, with a percentage of EMAP
II+CD3+ positive cells above 20%. A high increase in
EMAP+CD3+% was observed in newly diagnosed NHL
patients compared to healthy volunteers [median: 24.3%
(range: 24-26) and 1.3% (range: 1.3-1.4); P < 0.001, respec-
tively]. The percentages of EMAP+CD5+ and EMAP II+
CD7+ cells were higher in new T-NHL patients than in
healthy controls (median=2.9% vs. 0.2%; 3.5% vs. 0.3%;
P <0.001). However, no statistical significance was observed
regarding EMAP II+HLADR+ percentages in this small group
when compared to normal controls [median = 0.3% (range:
0.3-0.4) vs. 0.2% (range: 0.2-0.3); P> 0.05] (Figure 2, Sup-
plementary Table 3).

3.3. EMAP II- and CD36-Coexpressing Cells in NHL. The
coexpression of EMAP II+ and CD36+ on peripheral
lymphocytes was analyzed in patients with NHL and
peripheral lymphocytes from healthy controls. In newly
diagnosed patients, nearly all peripheral EMAP II+ lympho-
cytes coexpressed CD36, whereas in healthy controls, EMAP
II+CD36+ expression was minimal [median 28.4% (range:
26.7-29.3) vs. 0.5% (range: 0.4-0.6); P < 0.001]. In complete
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remission, the median EMAP II+CD36+% was 2.2% (range:
2-2.47). Coexpression of CD36 and EMAP II was also higher
in NHL subjects with relapse compared with patients with
CR and healthy controls [median: 28.5% (range: 21.5-
30.25); P < 0.001] (Figure 3).

3.4. EMAP II Expression Status (%) and LDH. All patients
had their serum LDH levels checked, which is an important
traditional prognostic sign for NHL. Regarding LDH levels,
there was a high increase in LDH levels in NHL patients
compared to healthy controls (P <0.001). Contrary, there
was a significant decrease in LDH among patients with CR
compared to newly diagnosed NHL patients (P =0.03).
However, there were nonsignificant differences between
NHL patients with relapse compared to newly diagnosed
patients and patients with CR. The comparison of LDH
levels between NHL subgroups is shown in Supplementary
Table 4.

Table 3 shows that the percentage of EMAP II+CD16+,
EMAP II+CD20+, and EMAP II+CD22+ cells was associ-
ated with LDH levels (P =0.007, P=0.025, and P =0.042,
respectively).

3.5. EMAP II Expression Status (%) and Clinical Criteria.
Hepatomegaly and splenomegaly were associated with an
increase in EMAP II+CD16+% (P=0.002 and P=0.003,
respectively). Subjects with advanced high-risk disease
(stages III and IV) had a higher EMAP II+CD16+% of cells
than subjects with intermediate-risk disease (stage I-II)
[median: 3.4% (range: 2-8) vs. 1.6% (range: 1.1-3.2); P=
0.004] Table 4. The results revealed that EMAP II+CD22
+% cells in NHL subjects with advanced stage (stages III
and IV) were higher compared with patients with
intermediate-risk disease but with no significance [median:
6.3% (range: 3.6-7) % vs. 5.5% (range: 2.2-7) %; P =0.218]
(Table 4).

The correlation between EMAP 11+ cells in NHL patients
(Figure 4) was further investigated. EMAP II+CD4+% was
positively associated with EMAP I1+CD8+% and EMAP 1II
+CD20+% of cells (r=0.659, P<0.001; r=0.510, P<
0.001) but negatively associated with EMAP II levels on
CD16+ and CD22+ cells (r=10.445, P<0.001; r=0.284,
P=0.011). EMAP II+CD8+ percentages also had a nega-
tive relationship with EMAP II+CD16+ (r=0.026, P=
0.02) and a positive relationship with EMAP II+CD20
(r=0.453, P<0.001). EMAP II+CD16+% had a significant
positive association with EMAP II+CD22+ cell percentages
(P <0.001) (Figure 4).

3.6. Diagnostic Efficacy of EMAP II for NHL. Receiver oper-
ating characteristic (ROC) curve analysis was performed for
discriminating patients with recurrence, as shown in
(Figure 5(a)). ROC curve analysis showed that the area
under the ROC curve (AUC) of EMAP I1+CD4+%, EMAP
[1+CD8+%, EMAP II1+CD16+%, EMAP II1+CD20+%, and
EMAP II+CD22+% in peripheral blood was 0.980, 0.649,
0.964, 0.521, and 0.947 with cut-off value of <I.1, <0.3,
>3.9, >1, and >4.8 being the most approximate index,
respectively. In addition, based on the cut-off values, the

specificity and sensitivity of EMAP II+CD4+% were 91.2%
and 100%, respectively, while EMAP II+CD16+% were
100% and 96.2%, respectively. The specificity and sensitivity
of EMAP II+CD22+% were 94.1% and 96.2%, respectively
(Figure 5(b)).

Furthermore, ROC curves for differentiating patients
with complete remission were determined. EMAP II+
CD4+% AUC was 0.789 (P<0.001). In addition, EMAP
II+CD8+% showed an AUC of 0.855 (P <0.001). EMAP
[I+CD16+% AUC was 0.921, while EMAP+CD22+%
AUC was 0.854 (P<0.001) (Figure 6(a)). These ROC
curves indicated that EMAP II+CD16+% value of <1.3
and EMAP II+CD22+% value of <2.5 yielded a specificity
and sensitivity of 100% and 73%, respectively, for discrimi-
nating patients with CR. For EMAP I1+CD4+%, the cut-oft
with the maximum specificity and sensitivity for identifying
CR was >1.1. Additionally, the specificity and sensitivity of
EMAP II+CD8+% were 80% and 90%, respectively, while
applying a cut-off level of >0.3 (Figure 6(b)).

4. Discussion

EMAP II expression has been demonstrated to affect tumor
immune suppression and regulation [33, 46-48]. Serum
EMAP II levels were elevated in NHL, suggesting EMAP
I’s role in NHL [49]. However, EMAP II expression on
peripheral lymphocytes in tumors has not been evaluated,
and its predictive and prognostic values are still not thor-
oughly investigated. The study assessed EMAP II expression
on peripheral blood cells in NHL and further explored its
association with disease outcomes and clinical data. The data
revealed direct evidence that EMAP II was involved in the
progression and development of NHL.

The results concur that newly diagnosed NHL patients
had dim EMAP II expression in peripheral blood cells in
NHL patients using flow cytometry. Flow cytometry analysis,
especially when utilizing a strong fluorochrome like phycoer-
ythrin, is a very sensitive approach for detecting dim antigen
expression than immunohistochemistry. Using unstained
cells and isotype controls clarified that the dim expression
and low frequency of EMAP II might not be an artifact. Neg-
ligible EMAP II expression was detected in healthy controls,
thus assuming a significant role for EMAP II in NHL patho-
genesis. This study expanded the results of the previous study
[49]. Overexpression of EMAP II/P43 was confirmed in
patients with mantle cell lymphoma compared to normal
cells [75]. Thus, EMAP II could potentially play a role in
NHL pathogenesis.

EMAP IPs role in cancer is not known. Some reports
have shown that EMAP II is a tumor suppressor [27, 30,
76-78]. On the other hand, previous studies have indicated
that EMAP II protein expression was identified in tumor
cells [32, 33, 45, 47]. EMAP 1I transcripts have been found
in a variety of human tissues as well as normal and malig-
nant cell lines [11, 25]. However, there was no information
regarding EMAP II expression in peripheral blood cells in
tumors.

Subsequently, the results demonstrated EMAP II expres-
sion in peripheral blood cells in NHL subjects and normal



Journal of Immunology Research

44% 26% 44% 1.8%
10° 4 10° 4
[
T ' N
< <
O .
= =
[25] 2]
O O
o o
a
S, ®
. 1.7% 2.3%
o © Q4
2| St et
1074 1 .'
., A
: T T T - - - - -
102 103 10* 10° 102 103 104 10°
EMAP PE-A EMAPPE-A
() (b)
51% 16% 6% 0.2%
10° 4 10° 4
10* 4
< <
) O
= =
= e . Q
O el
a : é . .
RARTIEN BRI 10° 42
: 1.3% '. Q4 0.6%
L] Q4
T I . 107§
o Rk ;
T - T T T |'T - T T T
102 10° 10t 105 10 10% 10* 10°
EMAPPE-A EMAPPE-A
(0 (d)

FIGURE 3: Flow cytometric detection of CD36 in EMAP+ lymphocytes. (a) NHL patient has not received treatment yet. (b) NHL patients
achieved CR. (c) Patients with disease relapse. (d) Normal control.

volunteers. This is in line with the theory that all human
normal and malignant cells express the intracellular 34kDa
form of EMAP II as a multisynthetase complex part in p43

form [12, 15]. EMAP II is released and processed under dif-
ferent circumstances, one of which is malignant transforma-
tion [11, 32, 33].
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TaBLE 3: Correlation of EMAP II expression in different blood cells
and LDH levels in NHL patients.

LDH (U/L)
Rho P
EMAP II+CD4+% -0.03 0.793
EMAP II+CD8+% -0.026 0.818
EMAP II+CD16+% 0.299 0.007*
EMAP II+CD20+% 0.250 0.025*
EMAP II+CD22+% 0.227 0.042*

NHL: non-Hodgkin’s lymphoma; LDH: lactate dehydrogenase. Statistically,
significance (P < 0.05) is identified with *.

The mechanism by which EMAP II is subsequently pres-
ent in peripheral blood cells is poorly understood. A previ-
ous report implied high serum EMAP II levels in subjects
with NHL [49]. It is, therefore, possible that lymphoma cells
express and release EMAP II and are subsequently found in
the blood of NHL patients. EMAP II might act against nor-
mal lymphocytes. In Jurkat cells and peripheral blood
mononuclear cells (PBMCs), EMAP II inhibited cell prolif-
eration and DNA synthesis, inducing cell death. Native
EMAP II expressed activated caspase 8 in Jurkats, causing
cell apoptosis [45, 46]. It is presumed that lymphoma cells
released EMAP I, facilitating EMAP II-induced apoptosis
of lymphocytes. Future experiments are needed to confirm
this theory.

Another scenario of increased EMAP II expression in
blood cells is due to membrane translocation rather than
increased EMAP II synthesis. EMAP II is translocated from
inside the cell to the cell membrane through an unknown
mechanism. The EMAP II 34kDa form lacks a signal pep-
tide required for translocation nor is it subjected to being
glycosyl phosphatidyl inositol-anchored. Hypoxia increased
EMAP 1II expression on the cell surface. The expression
and release of plasminogen activator-1 and matrix metallo-
proteinases from tumor cells were upregulated by hypoxia
[79, 80]. These enzymes might be engaged in EMAP II pro-
cessing at the cell surface. Future experiments are needed to
detect EMAP II expression in lymphoma cells and to explain
these theories.

The previous study had shown that serum EMAP II
could be positively associated with NHL progression [49].
This study demonstrated high EMAP II expression was
observed in peripheral cells before treatment and decreased
significantly after therapy. EMAP II may suppress antitumor
immunity in newly diagnosed NHL, while treatment could
induce a disruption in EMAP II signaling and expression.
Another possibility is that the therapy induced the recruit-
ment of EMAP II+ lymphocytes into the tumor area, leading
to a decrease in the percentage of peripheral EMAP II+ cells.
These results could be explained by the fact that EMAP II
might have a part in the pathogenesis and progression of
NHL. Future studies are required to describe the dysfunction
of these cells.

EMAP II expression on CD16 and CD22 cells was signif-
icantly higher in a relapse in the current subject. NHL
patients with relapse had lower EMAP II expression on

CD4, CD8, and CD20 cells. Previous reports have demon-
strated the correlation between high EMAP II expression
and poor clinical outcomes or tumor metastasis [50]. This
is concluded by using EMAP II to detect relapse, assuming
longer endurance and earlier therapy.

This study analyzed EMAP II expression on peripheral
CD3+, CD5+, CD7+, and HLA-DR+ in 5 T-NHL patients.
EMAP II was identified on CD3+ cells in NHL patients.
The high EMAP II expression on CD3+ cells in newly diag-
nosed NHL patients has clinically significant implications as
it might provide a potential biomarker for NHL patients.
Moreover, EMAP II was also present on CD5+ and CD7+
cells. EMAP was frequently expressed on CD3+ cells but
was weak on CD5+ and CD7+ cells. Aberrant lack or dim
expression of one or more pan-T antigens is required for T
cell tumor diagnosis [81-86]. Previous studies reported the
lack of CD5 and CD7 expression in T-NHL [85, 87]. In addi-
tion, the patients had decreased expression of HLA-DR on
EMAP II+ cells compared to results in normal controls. Pre-
viously, it was shown that reduced HLA-DR expression is a
powerful tool for tumor immune evasion [88]. It is possible
that EMAP II could participate in suppressing host immu-
nity in cancer. However, the group is too small to represent
valuable statistical data.

CD36 is upregulated in patients with NHL [59, 60].
Studies of the EMAP II gene illustrated that EMAP II was
associated with immune suppression in tumors [45, 47,
48]. However, no direct results were found to show whether
EMAP II was upregulated on immune cells in NHL or
whether EMAP II expression was related to CD36 expres-
sion. The results suggested that both CD36 and EMAP II
were upregulated on peripheral blood cells in NHL patients
and that more than 90% of EMAP II+ peripheral lympho-
cytes were CD36+, while there was no expression compared
to peripheral lymphocytes from healthy controls. CD36 was
found on less than 2% of normal CD8+ and CD4+ cells, 3%
of normal CD19+ cells, and 4% of normal NK cells [61]. Cir-
culating lymphocytes might express low levels of CD36
mRNA [89].

CD36 has a crucial role in immune suppression in can-
cer by enhancing T cell dysfunction and cancer progression
[90, 91]. CD36 is found in various cell types and is thought
to play a role in lipid transport in malignancies [92]. The
differentiation and functioning of different types of T cells
and the maintenance of immunological tolerance are all
influenced by lipid metabolism [93]. Interestingly, a preced-
ing study revealed that CD36-mediated cell death impairs
CD8+ T antitumor activity and inhibits its functions [94].
Moreover, cell apoptosis was observed in CD8+ T cells with
high CD36 expression. High CD36 expression in Treg cells
initiates their survival and disables CD8+ T cell antitumor
response [95]. EMAP II and CD36, which function as
inhibitory molecules in T cell proliferation, could be linked
to NHL pathogenesis. The roles of EMAP II and CD36 in
the pathogenesis of NHL need further evaluation.

The study investigated an association between the per-
centages of EMAP II+ cells in NHL patients. Data revealed
a significantly positive association of EMAP II expression
on different cells, suggesting that EMAP II regulation was
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TaBLE 4: Correlation between percentages of EMAP II+CD4+, EMAP II+CD8+, EMAP II+CD16+, EMAP II+CD20+, and EMAP II+CD22
+ and clinical characteristics of NHL patients.

N EMAP II+CD4+%  EMAP II+CD8+%  EMAP II+CD16+%  EMAP II+CD20+%  EMAP II+CD22+%

Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Hepatomegaly

Positive 39 1.6 (0.7-7.3) 0.5 (0.1-4) 3.4 (2.4-8) 1.3 (1-5) 6.3 (4.5-7)

Negative 41 2.4 (1.1-3.9) 0.6 (0.4-1) 1.5 (1.1-3.2) 1.1 (0.9-1.3) 3.7 (2.2-7)

P value 0.689 0.615 0.002* 0.062 0.067
Splenomegaly

Positive 49 2 (0.8-6.4) 0.5 (0.2-3) 3.1 (2-8) 1.2 (1-1.5) 6.1 (3.5-7)

Negative 31 2.5 (1.4-6.1) 0.6 (0.4-3) 1.6 (1.1-3.2) 1.2 (0.9-5) 5 (2.4-6.7)

P value 0.335 0.264 0.003* 0.662 0.201
Stage

Stage /1T 35 2.5 (1.4-6.1) 0.7 (0.4-3) 1.6 (1.1-3.2) 1.2 (0.9-5) 5.5 (2.2-7)

Stage II/IV 45 1.8 (0.7-6.4) 0.4 (0.1-3) 34 (2-8) 1.2 (1-1.5) 6.3 (3.6-7)

P value 0.098 0.076 0.004" 0.438 0.218

NHL: non-Hodgkin’s lymphoma; IQR: interquartile range. Significant statistical differences (P < 0.05) are identified with asterisks (*).
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FIGURE 5: Diagnostic performances of percentages of EMAP II+CD4, EMAP I1+CD8+, EMAP II+CD16+, EMAP I1+CD20+, and EMAP II
+CD22+ for identifying NHL patients with recurrence. (a) ROC curves were gained by curves at different cut-offs for NHL patients. (b)
AUC (area under the curve) with cut-offs, sensitivity, and specificity for the markers. Significance (P < 0.05) is identified with *. High

statistical significance (P < 0.001) is identified with **.

had a significant positive association with elevated LDH levels,
which implies the value of EMAP II expression on peripheral
blood cells in NHL as a potential biomarker. The reported
associations in these data support the correlation between
higher levels of EMAP II expression and bad prognosis as ele-
vated LDH levels, which are considered risk factors for poor
performance and inferior overall survival [96].

The study also examined EMAP II expression on periph-
eral blood cells and the prognosis of NHL by evaluating
EMAP II expression clinical data and identified that percent-
ages of EMAP II+CD16+ were elevated in NHL patients
with hepatomegaly or splenomegaly. Increased percentages
of EMAP+CD16+ cells are linked to NHL stages 3 and 4,
implying that EMAP II may play an important role in
advanced tumor stages. High EMAP II levels were correlated
with a worse prognosis in tumors [33, 49-51]. These find-
ings suggest a potential poor prognostic influence of EMAP
IT in NHL and that high EMAP II expression might be asso-
ciated with more aggressive or advanced disease. However, it
is unknown how EMAP II might influence NHL progression

and development. EMAP II might inhibit the activation and
proliferation of lymphocytes. Future studies are required.

To the best of our knowledge, no previous reports ana-
lyzed ROC curves to assess EMAP II diagnostic performance
in different peripheral blood cells in NHL. Previous reports
investigated the diagnostic performance of different markers
other than EMAP II in NHL [97]. According to the data,
EMAP II+ cell percentages could be a valuable diagnostic
for diagnosing NHL-related relapse and identifying individ-
uals in complete remission. Hence, future studies with many
patients might be helpful for the investigation of EMAP II
expression.

The data revealed that the AUC of percentages of EMAP
II+CD4+ cells for distinguishing NHL patients with recur-
rence was 0.98, and a cut-off for EMAPII + CD4 + % < 1.1.
The specificity and sensitivity of EMAP II+CD4+% for
differentiating relapse in NHL were 91.2% and 100%,
respectively. The AUC value of EMAP II+CD16+% for
detecting patients with relapse was 0.964, which was
higher than EMAP II+CD22+% (AUC=0.947) and with
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a cut-off for EMAPII + CD16 + % > 3.9 and for EMAPII +
CD122 + % > 4.8. The specificity and sensitivity of EMAP
IT+CDI16 + % for differentiating relapse were 100% and
96.2%, respectively, while 94.1% and 96.2%, respectively,
for EMAP II+CD22+%. These findings assume that EMAP
II+CD16+% diagnostic performance might be superior to
EMAP II+CD22+% in identifying NHL patients with
recurrence.

In this study, the AUC of EMAP II+CD16+% for dis-
tinguishing NHL patients with complete remission from
normal individuals was 0.921. It was higher than the
EMAP II+CD22+% (AUC=0.854) percentage, with a
cut-off for EMAP II+CD16+% = 1.3%. The specificity
and sensitivity of EMAP II+CD16+% and EMAP II+CD22
+% for differentiating this subgroup were 100% and 73%,
respectively. The AUC of EMAP II+CD4+% for identifying
NHL with complete remission was higher than EMAP II
+CD8+ (AUC =0.855 and 0.789, respectively). Percentages
of EMAP II+CD16+ had the best diagnostic performance
for diagnosing complete remission in NHL.

Several limitations should be noted. The overall sample
size of NHL cases, especially T-NHL cases, is relatively small;
thus, further larger prospective longitudinal studies are
required. Another limitation is the lack of EMAP II assess-
ment on lymphoma cells. Future experiments are required
to assess tumoral EMAP II expression in patients with lym-
phoma. Further studies are required to investigate the mech-
anistic insights of EMAP II expression in peripheral blood
cells. Two-color staining might be considered a limitation
of the study. Multicolor protocols will be followed in future
experiments.

5. Conclusion

In conclusion, this study provides the first evidence of
EMAP II expression on peripheral blood cells and highlights
its prognostic value in NHL. Peripheral CD36 and EMAP II
coexpression in NHL patients suggests that EMAP II expres-
sion might regulate tumor dissemination and identify NHL



Journal of Immunology Research

patients with more aggressive diseases. The data highlight
and inform about the pathogenesis of NHL.
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