Skip to main content
. 2022 Sep 20;82(9):13855–13880. doi: 10.1007/s11042-022-13843-7

Table 3.

CDC_Net Model Summary

No. of Layers Layers Shape Parameters
0 chest_input_1 (InputImage) (299, 299, 3) 0
1 block1_conv1 (Conv2D) (297, 297, 64) 1882
2 block1_conv1 (Conv2D) (295, 295, 64) 37,828
3 block1_pool1 (MaxPooling2D) (147, 147, 64) 0
4 dropout_1 (Dropout) (147, 147, 64) 0
5 block2_conv2 (Conv2D) (145, 145, 128) 74,956
6 block2_conv2 (Conv2D) (143, 143, 128) 158,584
7 block2_pool2 (MaxPooling2D) (71, 71, 128) 0
8 dropout_2 (Dropout) (71, 71, 128) 0
9 block3_conv3 (Conv2D) (69, 69, 256) 306,278
10 block3_conv3 (Conv2D) (67, 67, 256) 600,080
11 block3_pool3 (MaxPooling2D) (33, 33, 256) 0
12 dropout_3 (Dropout) (33, 33, 256) 0
13 block4_conv4 (Conv2D) (31, 31, 512) 1,191,160
14 block4_conv4 (Conv2D) (29, 29, 512) 2,359,809
15 block4_conv4 (Conv2D) (27, 27, 512) 2,469,809
16 block4_pool4 (MaxPooling2D) (13, 13, 512) 0
17 dropout_4 (Dropout) (13, 13, 512) 0
18 reshape_layer (ReshapeLayer) (13,13,32) 9349
19 residual_layer1 (Conv2D) (11, 11, 128) 9349
20 residual_layer2 (Conv2D) (9, 9, 128) 9549
21 dilated_conv1 (Conv2D) (7, 7, 256) 18,496
22 dilated_conv2 (Conv2D) (5, 5, 128) 20,596
23 dilated_conv2 (BatchNormalization) (5, 5, 128) 22,846
24 dilated_pool5 (MaxPooling2D) (2,2128) 0
25 dropout_5 (Dropout) (2,2128) 0
26 flatten_1 (Flatten) 64 0
27 dense_1 (Dense) 512 34,390
28 dropout_6 (Dropout) 512 0
29 dense_2 (Dense) 6 1127