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Biosynthesis of plant hemostatic dencichine
in Escherichia coli

Wenna Li1, Zhao Zhou 1, Xianglai Li 1, LinMa1, QingyuanGuan1, Guojun Zheng1,
Hao Liang1, Yajun Yan 2, Xiaolin Shen 1, Jia Wang 1, Xinxiao Sun 1 &
Qipeng Yuan 1

Dencichine is a plant-derived nature product that has found various pharma-
cological applications. Currently, its natural biosynthetic pathway is still elu-
sive, posing challenge to its heterologous biosynthesis. In this work, we design
artificial pathways through retro-biosynthesis approaches and achieve de
novoproduction of dencichine. First, biosynthesis of the twodirect precursors
L−2, 3-diaminopropionate and oxalyl-CoA is achieved by screening and inte-
grating microbial enzymes. Second, the solubility of dencichine synthase,
which is the last and only plant-derived pathway enzyme, is significantly
improved by introducing 28 synonymous rare codons into the codon-
optimized gene to slow down its translation rate. Last, the metabolic network
is systematically engineered to direct the carbon flux to dencichine produc-
tion, and the final titer reaches 1.29 g L−1 with a yield of 0.28 g g−1 glycerol. This
work lays the foundation for sustainable production of dencichine and
represents an example of how synthetic biology can be harnessed to generate
unnatural pathways to produce a desired molecule.

Dencichine, or β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), is a
plant active ingredient. It was first isolated from the seeds of Lathyrus
sativus, and later was also found in Panax notoginseng, Panax ginseng
and other plants1. β-ODAP can promote aggregation of platelets, and is
the main hemostatic component of the famous Chinese medicine
Yunnan Baiyao2,3. It is also effective in treatment of type II diabetic
nephropathy, which is one of the most serious chronic complications
of diabetes mellitus4–6. However, it is suspected to cause neuro-
lathyrism that occurs upon prolonged over-ingestion of L. sativus
seeds7.

Currently, the supply of β-ODAPmainly relies on extraction from
the root of P. notoginseng. However, its long growth cycle (3–5 years),
requirement for special planting conditions (climate and soli), and
low β-ODAP content limit the feasibility of this method for commer-
cial application3. Chemical methods have been developed to synthe-
size β-ODAP from dimethyl oxalate and L−2, 3-diaminopropionate
(L-DAP)8, where L-DAP is prepared from the expensive carbobenzoxy-

L-asparagine. The use of concentrated acid/alkalis and toxic hydrogen
sulfide makes the process environmentally unfriendly.

Biosynthesis has emerged as a promising alternative for sustain-
able production of chemicals, and an increasing number of plant sec-
ondary metabolites such as opioids9, cannabinoids10, breviscapine11,
icaritin12, and scopolamine13 have been successfully synthesized using
metabolically engineered microorganisms. A major challenge to the
heterologous production of β-ODAP is that its natural biosynthetic
pathway has not been fully characterized yet. It was indicated that β-
ODAP is formed by the condensation of L-DAP and oxalyl-CoA14. Only
recently, the enzyme catalyzing this reaction (acyl transferase LsBAHD)
has been identified by transcriptome sequencing and analysis of L.
sativus15. However, the biosynthetic pathways for the two direct pre-
cursors (L-DAP and oxalyl-CoA) remain elusive in plants. Further elu-
cidation of the natural pathways requires extensive high-throughput
sequencing and multi-omics analysis. Alternatively, the continuous
expansion of genetic databases and the in-depth understanding of
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enzyme catalytic mechanisms enable the design and assembly of arti-
ficial pathways for a desired compound.

In plants, L-DAP is synthesized via a complex intermediate β-
(isoxazolin-5-on-2-yl)-L-alanine (BIA)16, but the exact route is still
unclear. Inmicroorganisms, L-DAP is a precursor ofmultiple secondary
metabolites such as siderophore staphyloferrin B17, antituberculosis
drugs viomycin and capreomycin18,19, and broad-spectrum antibiotic
zwittermicin A20. In Staphylococcus aureus, L-DAP is synthesized from
O-phospho-L-serine, and the reactions are sequentially catalyzed by
SbnA and SbnB17. The other precursor oxalyl-CoA is an intermediate in
oxalate degradation, and the conversion of oxalyl-CoA from oxalate is
catalyzed by oxalyl-CoA synthetase (AAE)21,22. Oxalate is a common
metabolite in plants and microorganisms with multiple physiological
roles suchasmetal detoxification anddeterrence to insect feeding23. In
most plants, oxalate is formed via ascorbate degradation, but the
relevant enzymes are unidentified yet24. By contrast, oxalate can be
synthesized from glyoxylate catalyzed by glyoxylate dehydrogenase
(Gloxdh) or from oxaloacetate by oxaloacetate hydrolase (Oah) in
microorganisms25.

Heterologous gene expression in E. coli often encounters the
problem of low protein solubility, which could lead to waste of cell
resources and formation of metabolic bottlenecks. LsBAHD is the only
known dencichine synthase. We observed that the classic strategies
including co-expression of molecular chaperones and fusion expres-
sion with solubilizing tags are ineffective in improving its solubility. In

recent years, modulating the translation rate by selective introduction
of synonymous rare codons (SRCs) to codon-optimized genes has
become a promising strategy to facilitate functional protein
folding26–29. Usually, special gene regions such as the first few codons26

and the beginning of a β-strand27 were selected for introduction of
the SRCs.

In this study, by integrating the above genetic and enzymatic
information,wedesign artificial biosyntheticpathways forβ-ODAP and
achieve its de novo production (Fig. 1a). The solubility issues are lar-
gely avoided by enzyme mining. To improve the solubility of LsBAHD,
we simultaneously replace all the 28 isoleucine codons in the codon-
optimized LsBAHD gene with the SRC AUA. Further, efficient bio-
synthesis of β-ODAP is achieved by deletion of the endogenous
precursor-consuming pathways and synergy of two oxalate-producing
pathways. This work represents an example of designingmicrobial cell
factories for sustainable production of valuable compounds with
unknown natural pathways.

Results
De novo biosynthesis of L-DAP
The β-ODAP pathway was divided into three modules: Module I, L-DAP
biosynthesis; Module II, oxalyl-CoA biosynthesis; and Module III, β-
ODAP biosynthesis (Fig. 1a). In S. aureus, L-DAP is a precursor of the
siderophore staphyloferrin B. The genes related to staphyloferrin B
biosynthesis form an operon sbnABCDEFGHI, among which sbnA and
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Fig. 1 | Engineered biosynthetic pathways for synthesis of β-ODAP in E. coli.
a Pathways for β-ODAP biosynthesis. b Three pathways for oxalyl-CoA biosynthesis
in Module II. Endogenous enzymes are shown in blue and exogenous enzymes are
shown in red. The blocked pathways are labeled with red crosses. Enzymes: AAE,
acyl-activating enzyme 3; AceA, isocitrate lyase; AceB, malate synthase A; BAHD,
dencichine synthase; Gcl, glyoxylate carboligase; GlcB, malate synthase G; Gloxdh,
glyoxylate dehydrogenase; Oah, oxaloacetate hydrolase; PanE, oxalyl-CoA reduc-
tase; SbnA, N-(2 S)-2-amino-2-carboxyethyl-L-glutamate synthase; SbnB, N-(2 S)-2-

amino-2-carboxyethyl-L-glutamate dehydrogenase; SerA, 3-phosphoglycerate
dehydrogenase; SerB, phosphoserine phosphatase; SerC, phosphoserine amino-
transferase; YcdW/GhrB, glyoxylate reductase. Metabolites: 2-PG, 2-phospho-D-
glycerate; 3-PG, 3-phospho-D-glycerate; 3-PHP, 3-phosphooxypyruvate; ACEGA, N-
(2 S)-2-amino-2-carboxyethyl-L-glutamate; ICA, isocitrate; L-DAP, L-2,3-diamino-
propionate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; β-
ODAP, dencichine/β-N-oxalyl-L-α,β-diaminopropionic acid.
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sbnB are responsible for L-DAP biosynthesis17. SbnA catalyzes the
condensation of glutamate and O-phospho-L-serine to form N-(2 S)−
2-amino-2-carboxyethyl-L-glutamate (ACEGA) and SbnB is an
NAD+-dependent dehydrogenase that hydrolyzes ACEGA to form
2-oxoglutarate and L-DAP. Strain BW1 (BW25113/pZE-sbnAB) over-
expressing sbnA and sbnB accumulated 316.3 ± 12.6mgL−1 L-DAP in the
M9Y medium at 48 h (Fig. 2a and Supplementary Fig. 1).

The phosphoserine phosphatase SerB is a key enzyme in L-serine
biosynthesis and competes with SbnA forO-phospho-L-serine (Fig. 1a).
Knockout of serB could reduce the shunt of O-phospho-L-serine and
prevent the feedback inhibition of L-serine on serA. Indeed, compared
with that of strain BW1, the L-DAP titer of strain BW2 (BWΔserB/pZE-
sbnAB) was increased by 166% to 842.5 ± 11.5mg L−1, although the cell
growth was negatively affected and the cell density (OD600) reached
only 2.32 ± 0.03 at 48 h (Supplementary Fig. 1).

Enzyme mining for Module II
After achieving L-DAP biosynthesis, we next started to establish effi-
cient routes to oxalyl-CoA (Module II) (Fig. 1b). Oxalyl-CoA is an
intermediate in oxalate degradation and is converted from oxalate by
acyl-activating enzymes (AAEs). Foster21,22 identified AAE from Sac-
charomyces cerevisiae (ScAAE) and Arabidopsis thaliana (AtAAE). The
two enzymes show strict substrate specificity to oxalate, and ScAAE
has better catalytic activity than AtAAE. In addition, there exists an
acetyl-CoA: oxalate CoA-transferase YfdE in E. coli. However, the
reaction is reversible and the enzyme has a high Km value for oxalate
(22mM)30. Therefore, ScAAE was selected for the synthesis of oxalyl-
CoA from oxalate.

In microorganisms, two oxalate biosynthetic pathways have been
reported, namely the glyoxylate oxidation pathway and the oxaloa-
cetate cleavage pathway. In the former, glyoxylate is oxidized to oxa-
late by cytochrome c dependent glyoxylate dehydrogenase (Gloxdh)
while in the latter oxaloacetate is cleaved into oxalate and acetate by
oxaloacetate hydrolase (Oah). So far, only one Gloxdh has been char-
acterized from the wood-rotting fungus Fomitopsis palustris25. We
synthesized the codon-optimized gene Fpgloxdh and overexpressed it
in E. coli BL21 Star (DE3). However, the protein existed mostly in the
inclusion body (Supplementary Fig. 2a). To solve this problem, we
searched the database for homologous proteins. A protein named
Cyb2p from S. cerevisiae showed moderate sequence similarity with
Fpgloxdh (50.3%). Cyb2p was previously identified as a L-lactate
cytochrome c oxidoreductase that converts L-lactate to pyruvate31. To
test its activity on glyoxylate, the 6×His-taggedCyb2pwas purified and
subjected to in vitro assay. Interestingly, the result showed that Cyb2p
exhibits aldehyde dehydrogenase activity besides alcohol dehy-
drogenase activity and catalyzes oxidation of glyoxylate to oxalate.
Although the Vmax/Km value of Cyb2p (0.15 × 10−4 s−1 mg−1 protein) is
slightly lower than that of Fpgloxdh (0.17 × 10−4 s−1 mg−1 protein), the
solubility of Cyb2p is much better than that of Fpgloxdh (Table 1 and
Supplementary Fig. 2). Cyb2p was thus renamed as Scgloxdh and used
for pathway assembly.

To obtain an efficient Oah, four candidates, namely Anoah from
Aspergillus niger32, Pcoah from Penicillium chrysogenum33, Fpoah
from F. palustris25, Ssoah from Sclerotinia sclerotiorum34 were selec-
ted and tested. The codon-optimized genes were successfully
expressed in E. coli, and the corresponding proteins showed obvious
differences in expression level and solubility (Supplementary
Fig. 3a–d). Anoah and Ssoah existed mostly as inclusion bodies
whereas Pcoah and Fpoah showed clear bands in the supernatants. As
a result, only Pcoah and Fpoah were successfully purified and their
catalytic activities were determined by in vitro assays. Compared
with Pcoah, Fpoah showed lower Km value (0.42 versus 0.75mM−1)
and similar Vmax/Km value (9.05 versus 9.41 × 10−4 s−1 mg−1 protein;
Table 1 and Supplementary Fig. 3e, f), and was thus selected for
further pathway assembly.

Besides the above two pathways, we also used the glyoxylate
acylation pathway to synthesize oxalyl-CoA. In Methylobacterium
extorquens AM1, oxalyl-CoA reductase PanE is involved in the degra-
dation of oxalate and catalyzes the reversible reaction between
glyoxylate and oxalyl-CoA35. PanE was expressed and purified, and the
results of invitro assays showed that theVmax andKmvaluesofPanE are
14.98 × 10−4 mM s−1 mg−1 protein and 0.36mM, respectively (Table 1
and Supplementary Fig. 4). Taken together, a total of three pathways
for oxalyl-CoA synthesiswere selected for further comparison (Fig. 1b).

Activity analysis and solubility improvement of LsBAHD
Acylation is widely involved in the structural modification of natural
products to improve their structural diversity, stability, and
bioavailability36–38. There are two known acyltransferase families. The
BAHD acyltransferases (BAHDs) use acyl-CoA thioesters as donor
molecules whereas the Serine Carboxypeptidase-Like (SCPL) acyl-
transferases use 1-O-β-glucose esters instead36. LsBAHDwas previously
identified from L. sativus and its function has been confirmed by
transient expression in Nicotiana benthamiana15. It contains the con-
served HXXXD (residues 162–166) and DFGWG (residues 381–385)
motifs of BAHD family. To the best of our knowledge, it is the only
oxalyl-CoA transferase reported so far and has not been expressed in
prokaryotic hosts.We performed phylogenetic analysis of BAHDs, and
a total of 81 plant-derived proteins were selected, all having >50%
sequence identity with LsBAHD. The result showed that the BAHDs are
categorized into three groups (Clade I to III), and LsBAHD (QYL33117.1)
has the closest relationship with that from Medicago truncatula
(XP_013442394.1) with 64.35% sequence identity (Supplemen-
tary Fig. 5).

We synthesized the codon-optimized LsBAHD gene and over-
expressed it in E. coli BL21 (DE3). The protein had poor solubility and
was expressed mainly as the inclusion body (Supplementary Fig. 6a).
The catalytic parameters of the purified enzyme were determined
using a PanE-LsBAHD coupled assay, as the substrate oxalyl-CoA was
not commercially available. The results showed that LsBAHD could
effectively catalyze the condensation of oxalyl-CoA and L-DAP to form
β-ODAP, and the Km and Vmax/Km values for L-DAP are 0.52mM and
0.92 × 10−4 s−1 mg−1 protein, respectively (Table 1 and Supplementary
Fig. 6b, c). In addition, we also tested two other substrate combina-
tions acetyl-CoA/L-DAP and oxalyl-CoA/L−2, 4-diaminobutyrate.
LsBAHD was unable to catalyze these reactions, indicating that it has
narrow substrate specificity.

After mining suitable enzymes, the oxalyl-CoA-forming pathways
(Module II) and LsBAHD (Module III) were combined and their con-
version capacities were evaluated by feeding experiments. Specifically,
the genes required for module II and module III were cloned into
plasmid pCS27 and transferred into strain BW25113 (BW, for short),
generating strains BW3 (BW/pCS-LsBAHD-panE), BW4 (BW/pCS-
LsBAHD-ScAAE-Scgloxdh) and BW5 (BW/pCS-LsBAHD-ScAAE-Fpoah),
respectively.When fedwith glyoxylate and L-DAP, BW3 produced non-
detectable β-ODAP while BW4 produced 115.8 ± 17.3mgL−1 of β-ODAP
at 48h (Figs. 3a, b and 2b). The failure in β-ODAP production by strain
BW3 may be attributed to the reversible reaction catalyzed by PanE,
which is uncompetitive with the native enzymes for glyoxylate. When
fed with oxaloacetate and L-DAP, BW5 produced 21.7 ± 3.3mg L−1 of β-
ODAP at 48h (Figs. 3c and 2b). Although β-ODAP was successfully
produced, the titers were still low. Thus, we aimed to improve the
production efficiency by removing the pathway bottlenecks.

First, LsBAHD was targeted as a rate-limiting step due to the poor
solubility. To tackle this problem, we tried several conventional stra-
tegies such as co-expression with molecular chaperones (DnaKJ/
GroSL/IbpAB) and fusion expression with soluble tags (maltose-bind-
ing protein/glutathione S-transferase). However, neither showed
obvious effect (Supplementary Fig. 7). As aforementioned, the LsBAHD
gene was codon-optimized to exclude E. coli rare codons. Codon
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Fig. 2 | Schematic of engineering strategies to optimize β-ODAP production in
E. coli. a Optimization of L-DAP production (Module I). b Comparison of the effi-
ciency of different combinations in oxalyl-CoA (Module II) and β-ODAP (Module III)
biosynthesis by feeding experiments. c Enhancing β-ODAP production by
improving LsBAHD solubility. d Enhancing β-ODAP production by deleting glyox-
ylate degradation pathways (aceB, glcB, ycdW, ghrB, gcl). eDe novo biosynthesis of
β-ODAP by three different artificial pathways. f Enhancing β-ODAP production by

synergy of the glyoxylate oxidation pathway and the oxaloacetate cleavage path-
way. g Enhancing β-ODAP production by deleting serB. h Enhancing β-ODAP pro-
duction by overexpressing aceA. The blocked pathways are labeled with red
crosses. Solid arrows indicate single-step reactions, and dashed arrows indicate
multi-step reactions. The area of the circles for L-DAP and β-ODAP is proportional
to their titer.
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optimization hasbecomea common strategy to improve heterologous
gene expression. However, it may also cause protein misfolding and
insolubilization due to the increase of translation rate and the elim-
ination of proper translation pauses39,40. Studies have shown that
selective introduction of SRCs could coordinate the co-translational
folding of peptide chains, thereby enhancing functional protein
expression27,41,42. In this study, we introduced SRCs of a certain amino
acid throughout the protein instead of at certain locations. Isoleucine,
which has the highest hydrophobicity among the 20 amino acids, was
selected for codon replacement. Isoleucine is encoded by three
synonymous codons AUU, AUC, and AUA, among which AUA is a rare
codon in E. coli. The 28 isoleucine codons in LsBAHD-encoding gene
were all replaced with AUA. As shown in Fig. 3d, the synonymous
substituted gene (LsBAHD*) resulted in approximately seven-fold
increase in protein solubility compared with the original gene
LsBAHD. This indicates that properly reducing protein translation rate
by introducing SRCs is beneficial to promote protein folding and
solubility. We replaced LsBAHD with LsBAHD* in strain BW3, BW4 and
BW5, generating strains BW6, BW7 and BW8. As a result, β-ODAP

production was significantly increased to 6.9 ± 0.3, 156.5 ± 4.8, and
55.2 ± 3.6mgL−1, respectively (Figs. 3 and 2c).

Deleting glyoxylate degradation pathways enhances β-ODAP
production
Glyoxylate is an intermediate in the glyoxylate cycle and can be
metabolized by multiple native enzymes including malate synthases
(encoded by aceB and glcB)43, glyoxylate reductases (encoded by ycdW
and ghrB)44 and the glyoxylate carboligase (encoded by gcl)45. We
stepwise knocked out the five genes in strain BW, leading to gradual
decrease in the degradation rate without affecting the cell growth. The
penta-knockout strain BWΔ5 completely consumed 1 g L−1 of glyox-
ylate in 24h while the wild type strain BW did in 8 h (Supplemen-
tary Fig. 8).

Plasmids pCS-LsBAHD*-panE and pCS-LsBAHD*-ScAAE-Scgloxdh
were transferred into strain BWΔ5, generating strains BW9 and BW10,
respectively. In the feeding experiments, the β-ODAP titers by the two
strains reached 171.5 ± 5.4mg L−1 and 888.7 ± 9.9mg L−1, respectively,
which are 24.88 and 5.68 times that of strain BW6 and BW7 (Figs. 3a, b

M LsBAHD LsBAHD*Oxaloacetate cleavage pathway

Glyoxylate acylation pathway Glyoxylate oxidation pathway

kDa
120
100

70

50

40

30

a b

c d

Fig. 3 | Production and optimization of β-ODAP by feeding experiments.
a glyoxylate acylation pathway; b glyoxylate oxidation pathway; c oxaloacetate
cleavage pathway. The bars indicate the titer of β-ODAP and the lines indicate
biomass at OD600. Data shown are mean± SD (n = 3 independent experiments).

d The solubility levels of LsBAHD and LsBAHD* were identified through SDS-PAGE
analysis. Red arrows indicate the bands of LsBAHD and LsBAHD*. This experiment
was repeated independently twice with similar results. Source data are provided as
a Source Data file.

Table 1 | Kinetic parameters of exogenous enzymes in β-ODAP pathway

Enzyme Organism Substrate Km (mM)a Vmax (×10−4mMs−1 mg−1 protein) Vmax/Km (×10−4 s−1 mg−1 protein)

Fpgloxdh Fomitopsis palustris Glyoxylate 0.23 0.04 0.17

Scgloxdh (Cyb2p) Saccharomyces. cerevisiae Glyoxylate 0.74 0.11 0.15

Pcoah Penicillium chrysogenum Oxaloacetate 0.75 7.06 9.41

Fpoah F. palustris Oxaloacetate 0.42 3.80 9.05

PanE Methylobacterium extorquens AM1 Glyoxylate 0.36 14.98 41.61

LsBAHD Lathyrus sativus L−2, 3-Diaminopropionate 0.52 0.48 0.92
aThe experiment was carried out in duplicate. The protein gels and fitting curves are shown in Supplementary Fig. 2, 3, 4, and 6.
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and 2d). The results demonstrate that reducing glyoxylate degradation
is beneficial to β-ODAP biosynthesis.

Pathway synergy enhances de novo biosynthesis of β-ODAP
To explore de novo biosynthesis of β-ODAP, plasmid pZE-sbnAB was
transferred into strain BW9, BW10, and BW8, generating strains BW11,
BW12 and BW13, respectively. In shake flasks, the strains produced
141.5 ± 6.2, 154.8 ± 4.6, and 109.7 ± 1.9mgL−1 of β-ODAP with the
accumulation of 584.8 ± 18.6, 174.2 ± 9.9, and 317.7 ± 4.1mg L−1 of L-
DAP at 48 h, respectively (Figs. 4a and 2e). We further investigated the
synergetic effect of the glyoxylate oxidation pathway and the oxaloa-
cetate cleavage pathway on β-ODAP production. For this, strain BW14
(BWΔ5/pZE-sbnAB, pCS-LsBAHD*-ScAAE-Fpoah-Scgloxdh) was con-
structed, and as expected the β-ODAP titer was increased to
229.5 ± 9.3mgL−1 with the accumulation of 386.3 ± 23.7mg L−1 L-DAP.
(Figs. 4a and 2f). This result demonstrates that oxalyl-CoA is the lim-
iting precursor andpathway synergy is an effective strategy to increase
its supply and β-ODAP production.

Enhancing β-ODAP production by boosting the supply of
glyoxylate and L-DAP
As shown above, inactivation of serB significantly improved L-DAP pro-
duction. Accordingly, serB of BW14 was inactivated to construct BW15.
Like the L-DAP producing strain BW2, the growth of BW15 was also
negatively affected and the cell density (OD600) reachedonly 2.85 ±0.07
at 48h. Compared with that of BW14, although the titer of β-ODAP by
strain BW15 did not increase significantly at 48h (223.3 ± 23.2mgL−1), it
continued to increase and reached 387.9 ± 24.9mgL−1 at 96 hwithout L-
DAP accumulation (Figs. 4b and 2g). As a result, the yield was increased
from 0.02 to 0.12 g g−1 glycerol.

Glyoxylate is a key precursor for the synthesis of oxalyl-CoA.
In addition to reducing its degradation, increasing its supply may
also be beneficial to β-ODAP biosynthesis. Isocitrate lyase enco-
ded by aceA catalyzes the cleavage of isocitrate into succinate
and glyoxylate. Gene aceA was overexpressed in strain BW15,
generating strain BW16 (BW15 with pSA-aceA). The titer of β-
ODAP produced by BW16 reached 1289.7 ± 88.8 mg L−1 at 96 h with
the accumulation of 23.4 ± 2.0mg L−1 L-DAP, which was 3.32 times
that of BW15. The yield was further improved to 0.28 g g−1 glycerol
(Figs. 4b and 2h). The product of β-ODAP in the engineered strain
BW16 was analyzed by HPLC and ESI-MS, and its retention time
(Fig. 4c) and molecular weight (Fig. 4d and Supplementary Data 1)
were accordance with that of the β-ODAP standard The results
demonstrated that boosting glyoxylate and L-DAP supply could
increase the production of β-ODAP.

Discussion
Biosynthesis has become a promising strategy for sustainable
production of chemicals. A major obstacle to its broad applica-
tion is the unavailability of the biosynthetic pathway for a target
compound. So far, for numerous valuable natural metabolites,
their biosynthetic pathways are still partially or completely
uncharacterized. On one hand, many efforts have been devoted
to elucidating the natural pathways with the help of multi-omics
and bioinformatics analysis. On the other hand, the expansion of
gene and enzyme databases enables the design of artificial path-
ways. This is usually achieved by establishing the cascaded
transformation relationship between a target compound with an
endogenous metabolite. In recent years, in silico approaches have
been developed to accelerate and simplify this process46,47. In this

a b

c d
[M−H]−: β-ODAP standard
m/ztheoretical: 175.0360
m/zobserved: 175.0353
Accuracy: 4.0 ppm

[M−H]−: β-ODAP sample
m/ztheoretical: 175.0360
m/zobserved: 175.0368
Accuracy: 4.6 ppm

β-ODAP standard

L-DAP standard

Control

BW 1

BW 16

Fig. 4 | De novo biosynthesis of β-ODAP. a Comparison of β-ODAP production by
three artificial pathways and synergy pathway. b Effect of knocking out of serB and
overexpressing of aceA on β-ODAP production. The bars indicate the titer of β-
ODAP and the lines indicate biomass at OD600. c High-performance liquid chro-
matography (HPLC) analysis of the β-ODAP standard, L-DAP standard, the negative
control strain (BW harboring empty vectors pZE12-luc and pCS27), the fermented

product of the L-DAP-producing strain BW1 and the β-ODAP-producing strain
BW16. d ESI-MS results of β-ODAP standard and sample (blue color). The
m/ztheoretical and m/zobserved values noted are for the parent ions [M −H]−. Data
shownaremean ± SD (n = 3 independent experiments). Source data are provided as
a Source Data file.
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study, we achieved de novo biosynthesis of β-ODAP by designing
artificial pathways. Noteworthy, we integrated the diversity in
oxalate metabolism to direct more carbon flux to β-ODAP.

In a heterologous expression system, enzymes often encounter
the problem of low solubility. For this, we adopted the strategies of
enzymemining andmodulationof the translation rate by introducing
SRCs. As indicated from Gloxdhs and Oahs, homologous enzymes
from different species can exhibit dramatic different solubility. The
underlying reason may be explained by sequence and structure
comparison, which can provide useful guidance for further
improvement. For LsBAHD, the SRC substituted gene resulted in
significant increase in protein solubility and β-ODAPproduction. This
whole-gene rare-codon substitution strategy may have potential
application to improve solubility of other proteins.

Methods
Experimental materials
Strains and plasmids used in this study are listed in Supplementary
Tables 1 and 2, respectively. Primers designed are listed in Supple-
mentary Data 2. E. coli XL-1 Blue was used as the host for plasmid
construction. E. coli BW25113 and its derived strains were used for
feeding experiments and de novo production. E. coli strain BL21 Star
(DE3) was used for protein expression and purification. Plasmids
pZE12-luc, pCS27, and pSA74 were used for pathway construction.
Plasmid pETDuet-1 was used as the vector for protein expression and
purification. Plasmids were constructed by standard enzyme digestion
and ligation. The knockout strains were constructed by λ-RED
recombination following the standard protocols48.

Culture media and conditions
Lysogeny broth (LB) medium containing yeast extract (5 g L−1), tryp-
tone (10 g L−1), and NaCl (10 g L−1) was used for inoculant preparation
and cell propagation. Modified M9Y medium containing glycerol
(20 g L−1), yeast extract (2 g L−1), NH4Cl (4 g L−1), Na2HPO4 (6.78 g L−1),
KH2PO4 (3 g L−1), MOPS (morpholinepropanesulfonic acid, 2 g L−1),
NaCl (0.5 g L−1), MgSO4 (1mM), and CaCl2 (0.1mM) was used for shake
flask cultivations.

For shake flask experiments, single fresh colonies were inoculated
into 4mL of LB media with appropriate antibiotics and grown over-
night at 37 °C. Subsequently, overnight cultures (1mL) were trans-
ferred to 250mL shaking-flask containing 50mL of fresh M9Y media,
grown at 37 °C and 200 rpm for 2 h and then induced with 0.5mM
isopropyl-β-D-thiogalactoside (IPTG). The induced cultures continued
to grow at 30 °C and 200 rpm. For the feeding experiments, L-DAP and
glyoxylate/oxaloacetate were added together with IPTG, of which the
strain BW10 was feed with 1 g L−1, respectively, and the others were
0.5 g L−1. Ampicillin, kanamycin, and chloramphenicol were added to
the medium when necessary at final concentrations of 100, 50, and
34μgmL−1, respectively.

Samples were taken at regular time intervals for analysis of cell
growth and product accumulation. The cell growth was monitored by
measuring the optical density at 600nm (OD600) and the supernatants
was subjected to HPLC analysis.

In vitro enzyme assays
Plasmids pET-Fpgloxdh, pET-Scgloxdh, pET-Anoah, pET-Pcoah, pET-
Fpoah, pET-Ssoah, pET-panE, pET-LsBAHD, and pET-LsBAHD* were
transformed into E. coli BL21 Star (DE3), separately. The recombinant
strainswere cultured to anOD600 of 0.6 and inducedwith0.5mMIPTG
for 12 h at 25 °C. Cells were harvested and re-suspended in lysis buffer
(50mMTris-HCl, 300mM sodium chloride, 10mM imidazole, pH 8.0).
The His-tagged proteins were purified using Ni+-affinity chromato-
graphy and protein concentration were determined using the
bicinchoninic acid (BCA)method. The relative soluble protein levels of

LsBAHD and LsBAHD* were quantified by grayscale scanning using the
gel electropherogram analysis software Quantity One. Vmax and Km

were determined by non-linear regression to the Michaelis–Menten
equation.

The enzyme activity ofGloxdhwasassayedwith cytochrome c as a
natural electron acceptor as follows. For Scgloxdh assay, the reaction
system contains 2mM cytochrome c and 0.062μM of purified
Scgloxdh in 100mMNa2HPO4- NaH2PO4 buffer (pH= 7.5) with the final
volume 0.5mL. A gradient of glyoxylate concentrations (0.05–4mM)
was used to determine the Km and Vmax. For Fpgloxdh assay, the
reaction system contains 2mM cytochrome c and 0.175μMof purified
Fpgloxdh in 100mMNa2HPO4- NaH2PO4 buffer (pH = 7.5)with the final
volume 0.5mL. A gradient of glyoxylate concentrations (0.05–2mM)
was used to determine the Km and Vmax. The activity of Scgloxdh and
Fpgloxdh were determined by measuring the production of cyto-
chrome c reduced at 550nm from 0 to 100 s (εcytochrome c reduced =
27.7 × 103M−1 cm−1).

For Oah assay, the reaction system contains 0.18mM MnCl2 and
0.040μM of purified Pcoah in 100mM Tris-HCl buffer (pH = 8.0) with
the final volume 0.5mL. A gradient of oxaloacetate concentrations
(0.05–2mM) was used to determine the Km and Vmax. For Fpoah assay,
the reaction system contains 0.18mMMnCl2 and 0.053μMof purified
Fpoah in 100mM Tris-HCl buffer (pH = 8.0) with the final volume
0.5mL. A gradient of oxaloacetate concentrations (0.1–3mM) was
used to determine the Km and Vmax. The activity of Pcoah and Fpoah
were determined by measuring the consumption of oxaloacetate at
255 nm from 0 to 80 s (εketo-oxaloacetate = 1.1 × 103M−1 cm−1).

For PanE assay, the reaction system contains 0.5mMCoA, 0.5mM
NADP+ and 0.006μM of purified PanE in 50mM Tris-HCl buffer
(pH = 7.5) with the final volume 0.5mL. A gradient of glyoxylate con-
centrations (0.025–2mM)was used to determine theKm and Vmax. The
activity of PanE was determined by measuring the production of
NADPH at 340nm from 0 to 80 s (εNADPH = 6.22 × 103M−1 cm−1).

Since the chemical oxalyl-CoA is not commercially available, a
PanE-LsBAHD coupled assay was used to estimate the activity of
LsBAHD. The reaction system contains 1mM CoA, 1mM NADP+, 1mM
glyoxylate, and excess of purified PanE in 50mM Tris-HCl buffer
(pH = 7.5),which allow the glyoxylate converted to oxalyl-CoA in 30 °C.
After 5min, a gradient of L-DAP concentrations (0.125 - 1mM) and
0.15μMof purified LsBAHD were added to determine the Km and Vmax

with the final volume 375μL. The activity of LsBAHD was determined
by measuring the production of NADPH at 340nm from 0 to 200 s.

HPLC analysis of product and intermediates
L-DAP and β-ODAP were analyzed by HPLC equipped with a reverse-
phase Diamonsil C18 column (Diamonsil 5 μm, 250 × 4.6mm) and
UV–VIS detector. Cell culture samples were centrifuged at 7700 × g for
10min. The supernatant was reacted with 1-fluoro−2, 4-dini-
trobenzene, filtered through 0.22μm film and used for HPLC analysis.
Solvent Awas acetonitrile and solvent Bwas0.5MAcetic acid–Sodium
Acatate buffer (pH = 4.5). The column temperature was set at 40 °C.
The total flow rate was 1mLmin−1, and the ratio of solvent A and sol-
vent Bwas 17:83.Quantificationwasbased on the peak areas at specific
wavelengths (360 nm).

The analysis of glyoxylate and glycerol was performed by HPLC
equipped with an Organic Acid Analysis Column (Amine HPX-87H Ion
Exclusion Column, 300mm×7.8mm) and refractive index detector.
The mobile phase was 5mM H2SO4 at a flow rate of 0.5mLmin−1 and
the oven temperature was set at 55 °C. The data of fermentation and
enzyme assays were analyzed by the software OriginPro 9.0.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
Data supporting the findings of thiswork are availablewithin the paper
and its Supplementary Information files. A reporting summary for this
Article is available as a Supplementary Informationfile. Source data are
provided with this paper.
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