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Abstract
Algorithms that automatically identify nodular patterns in chest X-ray (CXR) images could benefit radiologists by reducing 
reading time and improving accuracy. A promising approach is to use deep learning, where a deep neural network (DNN) is 
trained to classify and localize nodular patterns (including mass) in CXR images. Such algorithms, however, require enough 
abnormal cases to learn representations of nodular patterns arising in practical clinical settings. Obtaining large amounts of 
high-quality data is impractical in medical imaging where (1) acquiring labeled images is extremely expensive, (2) annota-
tions are subject to inaccuracies due to the inherent difficulty in interpreting images, and (3) normal cases occur far more 
frequently than abnormal cases. In this work, we devise a framework to generate realistic nodules and demonstrate how they 
can be used to train a DNN identify and localize nodular patterns in CXR images. While most previous research applying 
generative models to medical imaging are limited to generating visually plausible abnormalities and using these patterns 
for augmentation, we go a step further to show how the training algorithm can be adjusted accordingly to maximally benefit 
from synthetic abnormal patterns. A high-precision detection model was first developed and tested on internal and external 
datasets, and the proposed method was shown to enhance the model’s recall while retaining the low level of false positives.
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Introduction

Chest X-rays (CXRs) are widely used to screen and diag-
nose pulmonary abnormalities. Among the various abnor-
malities that can be identified from CXRs, nodules appear 
as increased attenuation (opacification) patterns and are dif-
ficult to interpret, causing high reader variation [1]. With 
the success of deep learning (DL), interest has surged in 
developing algorithms to detect nodular patterns from CXRs 
[2, 3]. However, annotated radiographs are hard to collect: 
only expert radiologists can label the data, and deep neural 
networks (DNNs) that require large amounts of labeled data 

are either expensive to develop or, having been trained on a 
small training set, perform subpar to human experts.

Strong and large quantities of appropriate augmentation 
schemes directly translate to better performance as long as 
the underlying classes are not perturbed [4, 5]. To preserve 
objects present in an image, most augmentations transform 
or distort the background and control the level of noise to 
the extent that contents are unaffected. In classifying natural  
images, more sophisticated techniques involving the use of  
generative algorithms [6] have been devised to augment the  
training set with synthetic samples [7]. When there is a 
shortage of certain classes, however, these techniques do not 
suffice, because of either a lack of diversity of the particu-
lar object or class-imbalance. Both issues are prevalent in 
medical imaging, but additional domain-specific knowledge 
authorizes the use of targeted augmentation.

In this work, we build upon the above motivations and 
devise a training scheme to augment the dataset to better 
localize nodular patterns in CXRs. By incorporating the 
knowledge that nodule lesions manifest as increased opac-
ity patterns with sizes less than 3cm and are positioned in 
the interior of lung parenchyma, we develop a synthetic 
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nodular generation algorithm to augment the training set 
online. While this work is not the first to apply generative 
algorithms to medical imaging [8–15], prior works focus 
on the visual plausibility of abnormalities and have not 
gone the extra step to investigate how training schemes 
can be modified accordingly. Our augmentation algorithm 
is developed without sacrificing the visual plausibility of 
synthetically generated patterns (see Fig. 1), and we sys-
tematically analyze how synthetic nodules can be used to 
maximize detection performance.

We first developed a standard nodule detection model 
that achieves high recall at false positives per image 
(FPPI) comparable to general radiologists when tested on 
the Japanese Society of Radiological Technology (JSRT) 
[16] dataset. Other learning-based algorithms yield 25× 
more FPPI when tested on the same dataset. Then, we 
show that the augmentation scheme consistently enhances 
the performance of a detection network across different 
dataset sizes, as well as levels of class-imbalance within 
each batch. The latter observation sheds light into how 
to perform batch sampling for datasets with high class-
imbalance. The augmentation scheme developed in this 
work is then shown to improve recall while maintaining 
the same level of false positives.

Materials and Method

Chest X‑ray Images

The institutional review board for human investigation at the 
anonymized hospital approved the study protocol, removed 
all patient identifiers, and waived informed consent require-
ments because of the retrospective design of this study. Pos-
teroanterior chest X-rays identified with pulmonary nodules 
and without lesions were retrospectively collected between 
January 2010 and November 2016 at anonymized hospitals 
for a total of 1958 nodular and 16, 531 non-nodular images. 
The dataset was split to obtain an internal validation set with 
175 nodular and 2065 non-nodular images without patient 
overlap with the training set. One-hundred fifty-four nodular 
and 93 normal high-resolution, digitized film CXR images 
in the Japanese Society of Radiological Technology (JSRT) 
dataset [16] were used for external validation. Images in this 
dataset were collected across 13 medical centers in Japan 
and one institution in the USA, and every abnormal image 
contains one nodule object. All images were resized to 
1024 × 1024 using bi-linear interpolation unless stated oth-
erwise, and normalized after applying windowing to remove 
irrelevant, outlier piexels.

Fig. 1   Examples of synthetically generated nodular patterns: (Top) normal image templates, (middle) masks extracted from real nodular pat-
terns, and (bottom) synthetically generated nodular cases
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Nodule Synthesizer

Overview

Nodular patterns can be diverse, and the goal is to present a 
real-time augmentation strategy to generate diverse yet real-
istic patterns across regions where nodules occur. This sec-
tion presents our development of a nodule synthesis model 
that can produce synthetic images in real time, and describes 
how the network is used to augment the training set online 
while training, i.e., without inferring and saving synthetic 
images prior to training.

A lung segmentation model S was first trained to segment 
the lung parenchyma in CXR images on a linear combination 
of cross-entropy and dice losses. Its predictions sN = S(IN) 
on normal images were eroded sN ↦ s̃N to serve as back-
ground templates on which the generator’s outputs lie. We 
denote a crop centered at a point in p ∈

{
p ∶ s̃N(p) = 1

}
 

as x, and sample a mask M ∼ Ψ from all nodule masks Ψ 
corresponding to abnormal images in the training set. The 
crop is masked x ↦ xM which is then processed through the 
nodule generator to obtain a synthesized patch G(xM) before 
reverting to a synthesized image. The overall procedure of 
generating nodular patterns from normal images and real 
nodular masks is pictorially summarized in Fig. 2.

Generator Network

The nodule generator architecture operates in two steps, 
a coarse synthesizer with a ResNet-34 backbone followed 
by a refine synthesizer. Synthesizing nodular patterns in 
normal CXR images is extremely difficult because fine 

details may be key factors in distinguishing nodular pat-
terns from morphological features in the lung. Nodular 
patterns including mass in CXR images might be non-
local, where features may have large spatial dependencies. 
Therefore, a generator must be able to capture distant pat-
terns, but traditional convolution layers encode only local 
dependencies and do not suffice. Furthermore, the masking 
operation x ↦ xM loses information, for example vein and 
bone locations.

The former issue was resolved using contextual attention 
modules known to capture long-range spatial dependencies 
dedicated to refine coarse outputs [17]. Contextual attention 
is computed over the input feature and its masked loca-
tion as the foreground object, and can therefore incorporate 
global pathological features in generating nodular patterns. 
This has been used when capturing non-local background 
features is pivotal in generating fine-detailed contents. We 
handled the latter issue by replacing all convolutional layers 
with gated convolution [18]. Gated convolution mitigates 
uniform weighting due to binary masks by adaptively updat-
ing masks with soft targets and was originally proposed to 
handle random occlusions. This module was used to realize 
arbitrary nodular patterns. The resulting nodule synthesizer 
G ∶ M◦x ↦ x� training diagram is visualized in Fig. 3.

Lung segments sN are extracted from a normal image and 
eroded, denoted as s̃N . A nodule synthesizer was then trained 
to generate synthetic nodular patterns G(xM) on the desired 
position indicated by a mask M on the LS-GAN loss [19]. 
The nodule synthesizer architecture consists of an encoder 
and two decoders, with feature encoding at convolutional 
layers of ResNet-34 and decoder being nearest-neighbor up-
sampling layers for fast inference.

Fig. 2   Nodular pattern 
generation schematic diagram. 
After eroding the lung 
templates extracted from a lung 
segmentation model S , the 
nodule synthesizer G produces 
artificial nodular patterns on 
a masked input x

M
 . Masks 

retrieved from real nodular 
patterns are randomly placed to 
fit the lung template
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Online Nodule Augmentation

Synthetic nodular patterns are to be generated to augment 
the dataset while training. Offline generation of synthetic 
patterns limits the diversity of patterns and locations of 
synthetic nodular patterns because the number of synthetic 
nodules that help train the detection network must be known 
in advance. This reduces the flexibility of modifying sam-
pling ratios among normal or real and synthetic nodules. 
An overview of the algorithm is presented in Algorithm 1.

Fig. 3   Nodule synthesizer network G and its training procedure

At every SGD step, a batch B� = {In, Iab} of normal In 
and abnormal images Iab are sampled and synthetic nod-
ules are generated on top of background images within the 
batch to obtain an augmented batch Bsyn = {In, Iab, Isyn} . 
The number of objects K ∼ Geom(1∕�) to be generated on a 
template In ∈ B� is first randomly sampled for each candidate 
synthetic image. Masks M = {Mk}

K
k=1

 are then drawn from 
the set of real nodular masks Ψ uniformly at random with 
each mask centered at pk randomly drawn within the lung 
such that masks do not overlap. Lung regions S ∶ In ↦ s̃ 
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extracted from a reference template In (image) are eroded 
E ∶

(
s̃, |Mk|

)
↦ xM recursively using the mask’s size |Mk| to 

obtain the masked nodule patch xM with objects y =
∑

k Mk . 
The nodule synthesizer then generates the synthetic image 
(s̃, xM) ↦ G(xM) . Together, synthetic patterns are guaranteed 
to be in actual locations where nodular patterns occur and 
are diverse enough to help the detection network generalize 
unseen patterns.

Experiments

Implementation Details

RetinaNet [20] with a ResNet-50 backbone detection net-
work was trained on the focal loss to localize nodular (abnor-
mal) lesions in patches. When training both standard and 
synthetic augmentation models, rotation ±10 , (0.9, 1.1), 
blurring, and sharpening augmentations were applied. 
Nodule synthesizer and critic networks were trained using 
alternating descent with the Adam optimizer with learning 
rates 10−4 and 4 ⋅ 10−4 , respectively, decayed by a factor of 
2 every 10 epochs.

When training the synthesizer, we rescaled the images 
by a factor of 2 on both width and height, applying zero-
padding whenever the patterns’ centers were located near 
image boundaries. The training objective for each sample X 
was a combination of reconstruction, perceptual, and adver-
sarial losses to solve

with coefficients �r = 1, �p = 10 , and �a = 0.01 , respec-
tively. Here, � is a normalized feature extraction network 

G = argmin
G

max
D∶I→[0,1]

�r||G(M◦I) − X||2 + �p||�(G(M◦I)) − �(I)||2
2

+ �a𝔼I∼ℙreal
[D(G(M◦I)) + (1 − D(I))]

as in [21–23]. This discriminative network was trained 
using the Adam optimizer with learning rate 10−5 to mini-
mize focal and L1 loss for the classification and regression 
heads respectively. The mean number of objects in synthetic 
images was set as � = 1.25.

Results

Here, we compare the detection model we developed with-
out and with synthetic augmentation to several data-driven 
algorithms that report their performance on the JSRT dataset 
in Table 1. It is difficult to compare only the performance 
enhancements due to algorithmic differences because base-
lines were developed on different train/validation sets and 
a few were tested only on a subset of the JSRT dataset, but 
we list them for reference. General and chest radiologists 
reportedly achieved 64% and 77% recall at 0.072 and 0.076 
false positives per image, respectively [16]. In comparison, 
other baselines [24–29] we found report 25× more FPPI  
than human experts, whereas both our detection models 
can attain 0.08 FPPI. This low false positive level is neces-
sary for practical deployment of computer-aided diagnostic 
systems [1, 30]. At this level of false positives, the detec-
tion model was observed to detect nodular patterns at 49% 
and 52% recall with and without synthetic augmentation. 
This enhancement in recall shows that synthetic augmenta-
tion can improve recall while retaining the level of false 
positives.

Dataset Size

To understand the relationship between dataset size and 
how synthesized nodules affect training a detection model, 
we fixed the normal:abnormal:synthetic data ratio within 
a batch to 2 : 1 : 1 and varied the training set size N used 
to train both the generative and detection models. The 

Table 1   Recall and false positives per image reported on the JSRT 
dataset, listed in order of increasing false positive rates. All data-
driven methods other than that developed in this work exceed false 
positives per image by a factor of ≥ 25 of our model and radiologists. 

Note that our work and others’ used different training datasets and 
evaluation schemes (e.g., K-fold validation) and should be taken only 
as references as they are not directly comparable

Methods FP/image Recall (%) Training database

General radiologists [16] 0.072 64 -
Chest adiologists [16] 0.076 77 -
Standard (ours) 0.08 49.4 In-house (w/o JSRT)
Synthetic Aug. (ours) 0.08 52.0 In-house
Schiham et al. [28] 2.0 51 Nodular JSRT
Hardie et al. [26] 2.0 63 140 nodular JSRT
Chen et al. [24] 2.0 64.9 140 normal and nodular JSRT
Li et al. (Single model) [27] 2.1 57 Full JSRT
Coppini et al. [25] 4.3 60 Nodular JSRT
Wei et al. [29] 5.4 80 Full JSRT
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generative capability of the nodule synthesizer is shown in 
Fig. 4 visualizing how the generator becomes more capable 
of generating realistic synthesized nodules as the number 
of abnormal training samples increases.The detection mod-
el’s average precision (AP) change when using standard → 
synthetic augmentation on an internal and JSRT validation 
set are shown in Table 2, where it is shown that synthetic 
augmentation always helps generalize throughout various 
dataset sizes and internal/external sets.

Batch Sampling Ratio

While there are no restrictions on the class of nodular pat-
terns our generator can produce, the number of real data 
(template and nodular patterns) available in the training set 
will always remain fixed. To observe the extent to which 
a discriminative network can benefit from using synthetic 

nodules, we carefully increased the ratio between the real 
(ab) to synthetic (syn) abnormal images while keeping the 
number of normal (n) images equal to their sum. The model’s 
performances on the in-house dataset are shown in Table 3. 
We noticed that a DNN trained using the smallest ratio of 
synthetic images already outperforms the standard model 
trained using only real images, but the performance starts 
to degrade as the number of synthetic nodules excessively 
exceeds the real abnormal samples. This concave perfor-
mance indicates how a small number of synthetic patterns are 
helpful, but not particularly effective, and as more synthetic 
images are merged with the real dataset, it hinders training. 
The relatively low precision on the internal dataset is due 
to non-nodular lesions including focal interstitial opacity or 
consolidation considered normal for our nodule detection 
task.

We evalate the performance of a model trained using only 
on real normal and synthetic abnormal images to show a 
limiting case in Table 3. While synthetic images can aid in 
learning discriminative features, this experiment shows that 
synthetic samples could not be used as a replacement to real 
abnormalities. This is consistent with the observation that 
a generative model learns a compressed representation of 
the real dataset.

Conclusion

We proposed a generative framework which can be used for 
real-time augmentation to generate synthetic nodules. With 
the use of synthetic nodular patterns, batch sampling can 
be performed with nearly even classes which was shown 
to enhance the recall of a highly precise pulmonary nod-
ule detection model. Our experiments illustrate the factors 
that must be considered in training a detection network to 
localize nodules using the synthesized images and showed 
the effectiveness of our approach on internal and external 
datasets. By controlling various dataset sizes to train the 
generative and detection networks, we showed the trade-off 
between the generative capacity and detection performance 
enhancements resulting from synthesized nodules. We hope 

Fig. 4   Synthesized images 
when the nodule synthesis net-
work was trained on (left) 250, 
(middle) 500, and (right) 1958 
abnormal images. Synthetic 
examples become more visually 
realistic when the size of train-
ing image is increased

Table 2   Average precision improvements as training dataset size var-
ies. Synthetic generation of abnormal data consistently enhances the 
detection network’s precision in both low-data and large-data regimes

n, ab Internal validation JSRT

16, 531, 1958 75.1 → 77.8 47.0 → 52.3

2500, 500 64.3 → 70.8 39.8 → 47.8

1250, 250 60.5 → 64.3 32.9 → 36.3

Table 3   Ablation study: performances when trained using different 
sampling ratios within a batch. Note that recall and precision per-
formances are at 0.08 FPPI. Batches containing synthetic samples 
enhances performances while batches with only synthetic samples 
shows drastic performance drop. Different batch ratio strategy should 
be taken depending on the target metric.  Bold numbers denotes the 
highest performance in each performance metric

n : ab : syn AP Recall Precision

Standard 75.1 82.3 47.7
3 : 2 : 1 75.4 82.3 47.7
2 : 1 : 1 77.8 83.3 48.0
3 : 1 : 2 75.2 84.3 48.3
1 : 0 : 1 23.9 29.8 24.8
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that our experiments can guide future research in using syn-
thetic images to aid multi-label classification and localiza-
tion in CXR images which are known to suffer severely from 
class imbalance.

Funding  Not applicable.

Availability of Data and Material  Not applicable.

Code Availability  Not applicable.

Declarations 

Conflict of Interest  Minki Chung, Seo Taek Kong, Beomhee Park, 
Younjoon Chung and Kyu-Hwan Jung are employees of VUNO Inc. 
Kyu-Hwan Jung is an equity holder of VUNO Inc.

References

	 1.	 Sung, J., Park, S., Lee, S.M., Bae, W., Park, B., Jung, E., Seo, J.B., 
Jung, K.H.: Added value of deep learning–based detection system 
for multiple major findings on chest radiographs: A randomized 
crossover study. Radiology 299(2), 450–459 (2021)

	 2.	 Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, 
C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., et al.: 
Chexpert: A large chest radiograph dataset with uncertainty labels 
and expert comparison. In: Proceedings of the AAAI Conference 
on Artificial Intelligence. vol. 33, pp. 590–597 (2019)

	 3.	 Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: 
Chestx-ray8: Hospital-scale chest x-ray database and benchmarks 
on weakly-supervised classification and localization of common 
thorax diseases. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 2097–2106 (2017)

	 4.	 Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., 
Zhang, H., Raffel, C.: Remixmatch: Semi-supervised learning 
with distribution matching and augmentation anchoring. In: Inter-
national Conference on Learning Representations (2020)

	 5.	 Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practi-
cal automated data augmentation with a reduced search space. In: 
Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition Workshops. pp. 702–703 (2020)

	 6.	 Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adver-
sarial nets. In: Proceedings of the 27th International Conference on 
Neural Information Processing Systems - Volume 2. p. 2672–2680. 
NIPS’14, MIT Press, Cambridge, MA, USA (2014)

	 7.	 Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., 
Webb, R.: Learning from simulated and unsupervised images 
through adversarial training. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 2107–2116 
(2017)

	 8.	 Chuquicusma, M.J., Hussein, S., Burt, J., Bagci, U.: How to fool 
radiologists with generative adversarial networks? a visual turing 
test for lung cancer diagnosis. In: 2018 IEEE 15th international 
symposium on biomedical imaging (ISBI 2018). pp. 240–244. 
IEEE (2018)

	 9.	 Frid-Adar, M., Amer, R., Greenspan, H.: Endotracheal tube detec-
tion and segmentation in chest radiographs using synthetic data. 
In: International Conference on Medical Image Computing and 
Computer-Assisted Intervention. pp. 784–792. Springer (2019)

	10.	 Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: 
Chest x-ray generation and data augmentation for cardiovascular 
abnormality classification. In: Medical Imaging 2018: Image Pro-
cessing. vol. 10574, p. 105741M. International Society for Optics 
and Photonics (2018)

	11.	 Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: 
Semi-supervised learning with generative adversarial networks 
for chest x-ray classification with ability of data domain adapta-
tion. In: 2018 IEEE 15th International Symposium on Biomedical 
Imaging (ISBI 2018). pp. 1038–1042. IEEE (2018)

	12.	 Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., 
Shen, D.: Medical image synthesis with context-aware genera-
tive adversarial networks. In: International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention. pp. 
417–425. Springer (2017)

	13.	 Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data 
augmentation using generative adversarial networks (cyclegan) 
to improve generalizability in ct segmentation tasks. Scientific 
reports 9(1), 1–9 (2019)

	14.	 Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling gans 
for data augmentation in mammogram classification. In: Image 
Analysis for Moving Organ, Breast, and Thoracic Images, pp. 
98–106. Springer (2018)

	15.	 Xing, Y., Ge, Z., Zeng, R., Mahapatra, D., Seah, J., Law, M., 
Drummond, T.: Adversarial pulmonary pathology translation for 
pairwise chest x-ray data augmentation. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Inter-
vention. pp. 757–765. Springer (2019)

	16.	 Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, 
T., Komatsu, K.i., Matsui, M., Fujita, H., Kodera, Y., Doi, K.: Devel-
opment of a digital image database for chest radiographs with and 
without a lung nodule: receiver operating characteristic analysis of 
radiologists’ detection of pulmonary nodules. American Journal of 
Roentgenology 174(1), 71–74 (2000)

	17.	 Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative 
image inpainting with contextual attention. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition. pp. 
5505–5514 (2018)

	18.	 Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form 
image inpainting with gated convolution. In: Proceedings of the 
IEEE/CVF International Conference on Computer Vision. pp. 
4471–4480 (2019)

	19.	 Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: 
Least squares generative adversarial networks. In: Proceedings 
of the IEEE international conference on computer vision. pp. 
2794–2802 (2017)

	20.	 Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for 
dense object detection. In: Proceedings of the IEEE international 
conference on computer vision. pp. 2980–2988 (2017)

	21.	 Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using 
convolutional neural networks. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) 
(June 2016)

	22.	 Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time 
style transfer and super-resolution. In: European conference on com-
puter vision. pp. 694–711. Springer (2016)

	23.	 Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, 
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: 
Photo-realistic single image super-resolution using a generative 
adversarial network. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition. pp. 4681–4690 (2017)

	24.	 Chen, S., Suzuki, K., MacMahon, H.: Development and evaluation 
of a computer-aided diagnostic scheme for lung nodule detection 
in chest radiographs by means of two-stage nodule enhancement 
with support vector classification. Medical physics 38(4), 1844–
1858 (2011)

1067Journal of Digital Imaging (2022) 35:1061–1068



1 3

	25.	 Coppini, G., Diciotti, S., Falchini, M., Villari, N., Valli, G.: Neural 
networks for computer-aided diagnosis: detection of lung nodules 
in chest radiograms. IEEE Transactions on Information Technol-
ogy in Biomedicine 7(4), 344–357 (2003)

	26.	 Hardie, R.C., Rogers, S.K., Wilson, T., Rogers, A.: Performance 
analysis of a new computer aided detection system for identifying 
lung nodules on chest radiographs. Medical Image Analysis 12(3), 
240–258 (2008)

	27.	 Li, C., Zhu, G., Wu, X., Wang, Y.: False-positive reduction on 
lung nodules detection in chest radiographs by ensemble of con-
volutional neural networks. IEEE Access 6, 16060–16067 (2018)

	28.	 Schilham, A.M., Van Ginneken, B., Loog, M.: A computer-
aided diagnosis system for detection of lung nodules in chest 

radiographs with an evaluation on a public database. Medical 
Image Analysis 10(2), 247–258 (2006)

	29.	 Wei, J., Hagihara, Y., Shimizu, A., Kobatake, H.: Optimal image 
feature set for detecting lung nodules on chest x-ray images. In: 
CARS 2002 computer assisted radiology and surgery, pp. 706–
711. Springer (2002)

	30.	 Park, S., Park, G., Lee, S.M., Kim, W., Park, H., Jung, K., Seo, 
J.B.: Deep learning–based differentiation of invasive adenocar-
cinomas from preinvasive or minimally invasive lesions among 
pulmonary subsolid nodules. European Radiology pp. 1–9 (2021)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1068 Journal of Digital Imaging (2022) 35:1061–1068


	Utilizing Synthetic Nodules for Improving Nodule Detection in Chest Radiographs
	Abstract
	Introduction
	Materials and Method
	Chest X-ray Images
	Nodule Synthesizer
	Overview
	Generator Network
	Online Nodule Augmentation


	Experiments
	Implementation Details
	Results
	Dataset Size
	Batch Sampling Ratio

	Conclusion
	References


