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Abstract
Parametric imaging obtained from kinetic modeling analysis of dynamic positron emission tomography (PET) data is a useful 
tool for quantifying tracer kinetics. However, pixel-wise time-activity curves have high noise levels which lead to poor quality 
of parametric images. To solve this limitation, we proposed a new image denoising method based on deep image prior (DIP). 
Like the original DIP method, the proposed DIP method is an unsupervised method, in which no training dataset is required. 
However, the difference is that our method can simultaneously denoise all dynamic PET images. Moreover, we propose a 
modified version of the DIP method called double DIP (DDIP), which has two DIP architectures. The additional DIP model 
is used to generate high-quality input data for the second DIP model. Computer simulations were performed to evaluate 
the performance of the proposed DIP-based methods. Our simulation results showed that the DDIP method outperformed 
the single DIP method. In addition, the DDIP method combined with data augmentation could generate PET parametric 
images with superior image quality compared to the spatiotemporal-based non-local means filtering and high constrained 
backprojection. Our preliminary results show that our proposed DDIP method is a novel and effective unsupervised method 
for simultaneously denoising dynamic PET images.
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Introduction

Kinetic modeling has been used for quantitative analysis of 
time-varying imaging data such as dynamic positron emis-
sion tomography (PET) [1, 2], dynamic computed tomog-
raphy [3, 4], and dynamic contrast-enhanced magnetic 
resonance imaging [5, 6]. In particular, the quantitative 
analysis of dynamic PET data can provide various types of 
physiological information such as glucose metabolism, tis-
sue perfusion, and receptor density [1, 2]. Traditionally, a 
time-activity curve (TAC) measured from a region of inter-
est (ROI) is used to estimate model parameters. Because 
the TAC is obtained by averaging over multiple pixels, the 
ROI-based parameter estimation method is less affected by 
noise. However, it cannot provide the spatial distribution 
of the tracer kinetics. To reveal the spatial distribution of 

tracer kinetics, a pixel-by-pixel parameter estimation can 
be used. When the parameter estimation is performed at the 
pixel level, the so-called parametric images are generated. 
However, due to the presence of high noise in the pixel-wise 
TAC, reliable estimation of parametric images from dynamic 
PET data is still a challenge.

To improve the quality of PET parametric images, differ-
ent approaches such as image reconstruction [7–9], image 
denoising [10–13], and curve fitting [14–16] can be used. 
Moreover, one can directly reconstruct the kinetic param-
eters from the raw PET projection data [17–19]. The direct 
reconstruction of parametric images from dynamic PET pro-
jection data was shown to outperform the indirect method 
(i.e., post-reconstruction pixel-wise fitting of kinetic model 
to TACs) [17–19]. However, dynamic PET image recon-
struction is a complex task that requires several quantitative 
corrections including normalization, attenuation, random, 
and scattering. In addition, the calculation of a robust and 
accurate system matrix is required. These make it difficult 
to implement the reconstruction-based methods. In contrast, 
image denoising applied to the reconstructed dynamic PET 
images can be easily implemented to reduce the noise of 
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dynamic PET images, thus improving the quality of para-
metric images.

Over the last 20 years, several different image denoising 
methods, such as wavelet denoising [10], high constrained 
backprojection (HYPR) [11], non-local means filtering 
based on spatiotemporal block search (NLM-ST) [12], and 
image-guided filter [13], have been proposed to improve the 
quality of dynamic PET images. The improved image qual-
ity can thus produce PET parametric images with superior 
image quality. In addition to traditional denoising methods, 
many deep learning (DL)-based denoising methods have 
been developed in recent years [20]. Although DL-based 
methods can achieve promising denoising results, there are 
several challenges to be solved. For example, DL-based 
denoising methods often require large and clean training 
datasets which are difficult to obtain in clinical practice.

To overcome this problem, unsupervised learning can 
be used. For example, deep image prior (DIP) has been 
shown to be capable of solving standard inverse problems 
such as such as denoising, super-resolution, and inpainting 
[21]. Recently, the DIP method has been applied to denoise 
dynamic PET images [22]. However, due to the fact that the 
DIP method proposed by [22] can process a single time-
frame PET image at a time, denoising all the dynamic PET 
images may be time-consuming. Moreover, based on the 
previous study [22], it is still unknown whether the DIP-
based denoising method could improve the quality of PET 
parametric images. To address these limitations, we propose 
a new DIP-based method that has the ability to denoise all 
dynamic PET images simultaneously. Moreover, we propose 
a modified version of the DIP method to further improve the 
quality of dynamic PET images. The performance evaluation 
was conducted using simulated dynamic PET data, and the 
proposed DIP-based methods were compared to the HYPR 
[11] and NLM-ST [12] methods.

Methods and Materials

Image Denoising Method Based on DIP

The original DIP method [21, 22] is a type of unsupervised 
learning which can be used to perform image denoising 
without training data. In the original DIP method, an image 
(I) is represented as an input (x) in a convolutional neural 
network (f) with network weights (θ) as follows:

Given a noisy image (y), the denoised image 
( I∗ = f(θ∗;x) ) can be obtained by minimizing the following 
equation:

(1)I = f(θ;x)

where ∥ ∙ ∥ is the L2 norm and θ∗ is the network weights 
after training. Based on the observation that the network can 
fit natural images faster than noise [21], using early stopping 
can produce images with less noise. The input (x) can be a 
random image, but it was shown that the input (x) obtained 
by summing all dynamic PET images can be used to improve 
the performance of the DIP-based denoising method [22].

According to the previous studies [21, 22], the original  
DIP method can only process a single image at a time.  
It may be very time-consuming to denoise all dynamic 
(multi-frame) PET images. To address this limitation,  
we propose a new DIP-based method that has the abil- 
ity to simultaneously denoise all noisy dynamic PET  
images, {xt}

T
t=1

 . T is the total number of time frames. 
As shown in Fig. 1, given different time-averaged PET 
images  (xmean), all denoised dynamic PET images 
( {x∗

t
}T
t=1

= fDIP(θ
∗;xmean) ) can be obtained by minimizing 

the following equation:

For a 60-min dynamic PET scan,  xmean used in this 
study was four time-averaged PET images averaged over 
0–20  min, 20–40  min, 40–60  min, and 0–60  min (i.e., 
(
∑

t∈0−20minxt)∕20 , (
∑

t∈20−40minxt)∕20 , (
∑

t∈40−60minxt)∕20 , 
and (

∑
t∈0−60minxt)∕60 ). In Eq. (3), we used one single DIP 

(SDIP) model to simultaneously denoise all dynamic PET 
images. As also shown in Fig. 1, the SDIP model consisted 
of twelve two-dimensional (2D) convolutional layers with 
two different kernel sizes: 1 × 1 and 3 × 3. The 1 × 1 con-
volutional layer was used as a channel-wise pooling to  
capture temporal information presented in the input feature 
maps. In contrast, the 3 × 3 convolutional layer was used  
to extract spatial information. The number of filters for  
each convolutional layer was 128 except for the last two 
convolutional layers which had 64 and 32 filters. Note that  
the number of filters for the last convolutional layer is  
equal to the number of dynamic PET frames. Except for 
the last two convolutional layers that used a tanh activa- 
tion function, each convolutional layer was followed by a 
rectified linear unit (ReLu) activation function and a drop 
layer before the next layer. However, due to the fact that 
the input images (i.e.,  xmean) still contain some noise, the 
proposed SDIP method may not produce optimal denoising 
results for dynamic PET images.

To further improve the denoising performance, we pro-
posed a double DIP (DDIP) method which consisted of 
two DIP models (Fig. 2). In the first DIP model, given all 
noisy dynamic PET ( {xt}

T
t=1

 ), the time-averaged PET images 
( x∗

mean
= f(θ∗;{xt}

T
t=1

) ) can be obtained by minimizing the 
following equation:

(2)θ∗ = arg min
θ

∥ y − f(θ;x) ∥

(3)θ∗ = arg min
θ

∥∥ {xt}
T
t=1

− fDIP(θ;xmean)||
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Next, we trained the other DIP model to obtain all 
denoised dynamic PET images ( {x∗

t
}T
t=1

= fDIP(θ
∗;x∗

mean
) ). 

The second DIP model is the same as the SDIP model 

(4)θ∗ = arg min
θ

∥∥ xmean − fDIP(θ;{xt}
T
t=1

)|| (Fig. 1) except for the input ( x∗
mean

 instead of  xmean). The  
first DIP model is designed to obtain high-quality time-
averaged PET images which can be a good input for the 
second DIP model. As shown in Fig. 2, the first DIP model 
consisted of ten 2D convolutional layers with 3 × 3 kernel 

Fig. 1  The architecture of the SDIP method. The noisy dynamic PET images are used as training targets, and the four time-averaged PET images 
are used as the network input

Fig. 2  The architecture of the 
DDIP method. In the first DIP, 
the four time-averaged PET 
images are used as training 
targets, and the dynamic PET 
images are used as the input. 
The second DIP architecture is 
similar to the SDIP architecture
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size and two 2D convolutional layers with 1 × 1 kernel  
size. The number of filters for each convolutional layer  
was 64 except for the last two convolutional layers which 
were 16 and 4 (= the number of mean images). Except for 
the last two convolutional layers that use a tanh activation 
function, each convolutional layer is followed by a ReLu 
activation function and a drop layer before the next layer. 
The second DIP model is the same as the SDIP model  
except that there is a Gaussian noise layer. The output of  
the first DIP model is fed into the Gaussian noise layer  
which acts as a regularizer and avoids overfitting [23].

In order to improve the consistency of the proposed  
DDIP method, we performed data augmentation (DA) 
[24] on the noisy dynamic PET images. The standard  
90 degree rotation and left-to-right flip were used to  
increase the amount of data (8 times). The average of the 
eight model’s outputs was treated as the final prediction. 
The DDIP method that combined with DA was denoted as 
DDIP-DA. The adaptive moment estimation optimization  
algorithm [24] was used to minimize Eqs. (3) and (4).  
In the proposed DIP architectures, the initial learning  
rate was set to  10−3, the dropout rate was set to 0.15,  
and the number of epochs was 1000. The beta1 and  
beta2 were 0.9 and 0.999, respectively. For the SDIP  
and DDIP methods, the batch size was 1. In contrast, the 
batch size was set to 8 for the DDIP-DA method. The  
proposed DIP-based methods were run on a computer  
with Fedora 26 and NVIDIA Titan XP GPU, TensorFlow 

1.4, and Keras 2.2.5. Each input (and output) image was 
normalized to the range [−1, 1] by dividing its maximum 
value, subtracting 0.5, and multiplying by 2.

Computer Simulations

We used a brain phantom to simulate dynamic PET data 
(Fig.  3) based on a GE Discovery ST PET scanner. A  
standard two-compartment four-rate constant model was 
used to simulate the kinetics of 18F-FDG in the brain.  
Model parameters were set as follows:  [K1  (min−1),  
 k2  (min−1),  k3  (min−1),  k4  (min−1),  Vb (unitless)],  
gray matter = [0.102, 0.130, 0.062, 0.007, 0.03],  
white matter = [0.054, 0.109, 0.045, 0.006, 0.02], and 
tumor = [0.089, 0.055, 0.096, 0.001, 0.05] [25]. The  
dynamic PET images consisted of 32 time frames over 
60 min and followed the rules: 10 × 6 s, 4 × 15 s, 6 × 60 s,  
4 × 180 s, and 8 × 300 s. To model the intrinsic resolution  
of a clinical PET scanner, each noise-free dynamic  
PET image was filtered by a 5-mm FWHM (full width  
at half maximum) Gaussian filter [26]. All smoothed 
dynamic PET images were then forward projected to  
generate noise-free emission sinograms. In this study, 
the system matrix was calculated based on square pixel 
basis and strip-integral detector model, and the system 
matrix generation was implemented using the Michigan 
Image Reconstruction Toolbox (http:// web.eecs.umich.
edu/∼fessler/code). We also simulated physical processes 

Fig. 3  Simulated brain image 
and TACs of input function, 
gray matter, white matter, and 
tumor
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such as radioactive decay, attenuation, random, and  
scatter. The distribution of random events was modeled  
by a uniform background. We applied a 20-cm FWHM 
Gaussian kernel to each dynamic PET image, and  
the distribution of scattered events was generated by  
forward projecting each blurred dynamic PET image  
[26]. The random and scatter fractions were 5% and  
20%, respectively. Finally, we added Poisson noise to  
the attenuated emission sinograms which resulted in a  
total number of 20 million events. Each time-frame noisy 
emission sinogram was independently reconstructed  
using the kernelized expectation–maximization (KEM)  
algorithm [8] with 100 iterations, and the reconstruction 
parameters were the same as those used in [8]. A total of 
twenty noisy realizations were simulated.

Data Analysis

Parametric images were generated by the nonlinear  
least-square fitting of pixel-wise TACs. The trust-region-
reflective algorithm [27, 28] was used to solve the ordinary 
least squares objective function. The initial guesses were 

set as  K1,  k2,  k3,  k4, and  Vb = [0.12   min−1, 0.15   min−1, 
0.02  min−1, 0.005  min−1, and 0.01]. The lower and upper 
bounds were set as [0.01 ≤  K1 ≤ 1.0  min−1], [0.01 ≤  k2 ≤ 
1.0  min−1], [0.0 ≤  k3 ≤ 0.4  min−1], [0.0 ≤  k4 ≤ 0.1  min−1], 
and [0 ≤  Vb ≤ 1]. The input function used for kinetic  
modeling analysis was estimated from the reconstructed 
dynamic PET images. The first ten denoised dynamic PET 
images (i.e., 0–1 min) were summed. Then, a threshold  
(i.e., 90% of the maximum intensity) was set to create a 
binary mask. Given each denoised dynamic PET image,  
the pixel intensities in this mask were averaged to obtain 
the blood TAC.

We compared the results of the proposed DIP-based 
methods with those of HYPR and NLM-ST. In the HYPR 
method, the composite image was the sum of all dynamic 
PET images, and a 9-mm-FWHM Gaussian filter was used. 
In the NLM-ST method, the temporal threshold was set  
to 20 min, and the smoothing parameter was set to 1.5.  
The local neighborhood was set to 3 × 3, and the search 
window was set to 11 × 11. The performance of all denoising  
methods was evaluated by bias and coefficient of variation  
(CV) of parameter estimates. We calculated the bias as 
follows:

Fig. 4  Parametric images of  K1, 
 k2,  k3, and  Ki obtained using 
KEM-reconstructed dynamic 
PET images with and without 
the proposed DIP-based denois-
ing methods: SDIP, DDIP, and 
DDIP-DA
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Fig. 5  RMSE of  K1,  k2,  k3, 
and  Ki for SDIP, DDIP, and 
DDIP-DA

Fig. 6  True, noisy, and denoised 
dynamic PET images for 
different time frames. From 
left to right columns: the 
5th frame, 12th frame, 18th 
frame, and 30th frame. From 
top to bottom rows: ground 
truth, KEM, KEM + NLM-
ST, KEM + HYPR, and 
KEM + DDIP-DA
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where ci =
1

J

∑J

j=1
cest
i,j

 is the mean parameter value of the  ith 
pixel calculated from all noise realizations (J = 20), cest

i,j
 is the 

estimated parameter value for the  ith pixel of the  jth noise 
realization, I is the total number of pixels in each tissue (i.e., 
gray matter, white matter, and tumor), and ctrue

i
 is the true 

parameter value of the  ith pixel. The CV was calculated as 
follows:

The bias and CV were calculated for each tissue type, and 
the average of these three values was presented.

(5)Bias =
1

I

∑I

i=1

|||ci − ctrue
i

|||
ctrue
i

(6)
CV =

1

I

�I

i=1

�
1

J−1

∑J

j=1

�
cest
i,j

− ci

�2

ci

Results

Figure 4 shows an example of the parametric images of  K1, 
 k2,  k3, and  Ki obtained from the ground truth, the KEM 
reconstructions, and the KEM reconstructions denoised by 
the proposed DIP-based methods. The quality of paramet-
ric images obtained from the proposed DIP-based methods 
was better than that obtained from the KEM reconstruc- 
tions. Moreover, we observed that both the DDIP and  
DDIP-DA methods provided better tissue contrast than  
the SDIP method. Compared with the DDIP method, the 
DDIP-DA method produced less biased  k2 and  k3 estimates 
in the tumor region. Figure 5 shows the root-mean-square 
error (RMSE) of parameter estimates obtained by the pro-
posed DIP-based methods. The RMSE values were sepa-
rately calculated for gray matter, white matter, and tumor, 
and the averaged values were presented. Obviously, the 
DDIP-DA method outperformed both the SDIP and DDIP 

Fig. 7  Parametric images of  K1, 
 k2,  k3, and  Ki estimated using 
the three denoising methods 
(i.e., HYPR, NLM-ST, and 
DDIP-DA). The parametric 
images obtained from unde-
noised dynamic PET images 
(i.e., KEM) were also presented
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methods. As also shown in Figs. 9 and 10 in the Appendix, 
the SDIP combined with DA (SDIP-DA) did not improve 
the performance of parameter estimates. Similar results were 
observed even if we repeated the SDIP-based denoising pro-
cess twice.

Next, we compared the performance of the proposed 
DDIP-DA method with that of other image denoising 
methods (i.e., HYPR and NLM-ST). As shown in Fig. 6, 
the NLM-ST method could reduce image noise at the  
cost of over-smoothing the dynamic PET images. The 
HYPR method prevented over-smoothing the dynamic  
PET images but provided limited noise reduction. Only  
the proposed DDIP-DA method could reduce image  
noise without over-smoothing edges and fine structures. 
Figure  7  shows the parametric images of  K1,  k2,  k3,  
and  Ki obtained from the ground truth and the KEM  
reconstruction denoised by different denoising methods.  
It can be seen that the  k2 the  k3 parametric images  
obtained from the NLM-ST and HYPR methods were  
over-smoothing. The DDIP-DA method could alleviate  
the over-smoothing problem and provide good tissue  
contrast. Figure 8 shows the plot of bias vs. CV with the  
four denoising methods. Overall, the proposed DDIP-DA 
could achieve a better balance between bias and CV than  
the other two denoising methods.

Discussion

The original DIP method [21] has been applied to  
denoise dynamic PET images [22]. Like the origi- 
nal DIP method [21], the DIP-based method used for 
dynamic PET images [22] can process one image at a  
time. Because dynamic PET data are reconstructed into 
multiple time frames, denoising one image at a time may 
be time-consuming. In this study, we proposed a modi- 
fied DIP method (SDIP) to denoise all dynamic PET  
images simultaneously. The simulation results showed  
the feasibility of using the proposed SDIP method to  
simultaneously denoise all dynamic PET images. How- 
ever, the denoising performance of the proposed SDIP 
method was limited. One possible reason is that the input 
images (i.e., the time-averaged PET images) still con- 
tain some noise (Fig.  11  in the Appendix). To further 
improve the performance of the proposed SDIP method,  
we proposed a DDIP architecture which consisted of two 
DIP models. The first DIP model was designed to gener-
ate high-quality images which were used as the input of 
the second DIP model. We observed that the input data 
obtained from the first DIP model had improved image  
quality (Fig.  11  in the Appendix) which led to great  

Fig. 8  Plots of bias vs. CV of  K1,  k2,  k3, and  Ki for the three denoising methods: HYPR, NLM-ST, and DDIP-DA. The results obtained from 
undenoised dynamic PET images (i.e., KEM) were also presented
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improvements in the quality of dynamic PET images.  
We also found that the proposed DDIP method combin- 
ing with DA (i.e., DDIP-DA) could further improve its 
denoising performance.

Overall, the proposed DDIP-DA method achieved a  
better balance between bias and CV than the other two  
image denoising methods (Fig. 8). Both the NLM-ST and 
HYPR methods yielded poor-quality parametric images. 
In particular, the  k2 and  k3 parametric images were over-
smoothed. Although the over-smoothing problem can  
be alleviated by changing the value of the smoothing  
parameter used in the NLM-ST and HYPR methods,  
this would increase the bias of parameter estimates.  
Compared to the NLM-ST and HYPR methods, the  
proposed DDIP-DA method could improve the under-  
and over-estimation of the model parameters while  
maintaining good tissue contrast.

Although the proposed DDIP-DA method could  
improve the quality of PET parametric images, there  
were several limitations to our study. First, we evalu- 
ated the performance of the proposed DDIP-DA method 
using simulation data. The proposed DDIP-DA method 
should be further evaluated using real dynamic PET  
data. Second, the proposed DDIP-DA method had high  
computational time. To denoise 32-frame dynamic PET 
images, the NLM-ST and HYPR methods took 2 and  
0.05 s, respectively. In contrast, the proposed DDIP-DA 
method took 180  s. However, the proposed DDIP-DA 
method required less computational time than the origi-
nal DIP method [22] which took 1085  s. The original  
DIP method [22] was more time-consuming because  
it processed a single time-frame PET image at a time. 
Denoising all dynamic PET images sequentially (i.e.,  

32 frames) would be time-consuming. Third, the perfor-
mance of the proposed DIP-based methods depends on  
the epoch selection. Using a low number of epochs can  
lead to under-fitting. In contrast, using a high number  
of epochs can result in over-fitting. The optimal num- 
ber of epochs may be affected by several factors such  
as total counts and dynamic PET scan protocols. Some 
automatic stopping criteria [29, 30] will be investigated  
in our future work. Finally, we observed that the tumor 
region had higher bias (40% for  k2 and 15% for  k3) and  
CV (44% for  k2 and 38% for  k3) than gray matter and  
white matter (bias < 10% and CV < 13% for  k2 and  k3).  
One possible reason is that the simulated tumor lesion  
has a small size which is easily affected by surrounding  
tissues. Moreover, the tumor had high intensities which 
may need more epochs to recover. This indicates that  
the DIP-based methods have different learning rates  in  
different regions.

Conclusions

In this study, we proposed an unsupervised image denois-
ing method based on the concept of DIP. Different from  
the original DIP method, the proposed DIP-based meth-
ods can simultaneously denoise all frames of the dynamic 
PET data. Our simulation results showed that dynamic  
PET images denoised using the proposed DDIP-DA  
method could provide higher-quality parametric images  
and lower RMSE than both NLM-ST and HYPR meth- 
ods. Our preliminary results indicate that the proposed 
DDIP-DA method is an effective method for simultane- 
ously denoising dynamic PET images.
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Appendix

Fig. 9 Parametric images of  K1,  k2,  k3, and  Ki obtained using KEM-reconstructed dynamic PET images with the proposed DIP-based denoising 
methods: SDIP and SDIP-DA. Both SDIP and SDIP-DA methods were repeated twice
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Fig. 10 RMSE of  K1,  k2,  k3, and  Ki for SDIP and SDIP-DA. Both SDIP and SDIP-DA were repeated twice

Fig. 11 The four time-averaged PET images  (xmean and x∗
mean

 ) obtained from noisy dynamic PET images (top) and the first DIP output of the 
DDIP model (bottom)
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